
Formation Control of Wheeled Robots with Vision-Based Position
Measurement

Hasan Poonawala, Aykut C Satici, Nicholas Gans and Mark W Spong

Abstract— Many applications require multiple mobile robots
to move with a common velocity and at fixed relative distances.
We present a time-invariant, state-feedback control law and
a novel vision-based pose reconstruction system that allows
one differential drive robot to follow another at a constant
relative distance. The control law does not require measurement
or estimation of the leader robot velocity and has tunable
parameters that allows one to prioritize the error bounds of
the desired states. The proposed pose reconstruction algorithm
is computationally inexpensive and reliable. We present ex-
perimental results on two iRobot Create robots showing the
performance of the controller and vision algorithm.

I. INTRODUCTION

Multi-robot systems present a more robust and cheaper
solution to certain tasks that are better performed using
several low-cost robots rather than single, complex ones.
A multi-robot system may be required to travel over large
distances in order to reach a site related to a mission or
task. While traversing the distances, it may be desirable for
the robots to move in a rigid formation with fixed inter-
robot distances. This gives rise to the formation control
problem. Further, it is often desired that the control of these
distances be done in a decentralized manner, rather than
through a common supervisor or command center. Such
control solutions can be applied to military maneuvers or
automated highways.

Many approaches to formation control have been pre-
sented. The methods of formation control commonly em-
ployed can be classified into leader-follower methods [1],
[2], behavior-based control [3], [4], variable structure control
techniques [5], and consensus based methods [6], [7]. The
behavior-based control methods provide the robots with
actions in reaction to sensor data. The local interactions
occurring throughout the team ultimately result in a for-
mation emerging and being maintained. The behavior is
often encoded using potential functions. The leader-follower
methods use techniques such as input-output partial feedback
linearization of the dynamics of the relative pose between
two robots [2]. Another leader-follower method makes use
of potential functions and virtual leaders [1]. The consensus
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based methods take into account the effect of the information
flow between agents on the stability and performance of
formation control while designing the control law.

Visual servo control involves using vision sensors to
provide feedback control. The leader-follower based forma-
tion control problem incorporating visual feedback has also
received some attention [8], [9], [10], [11], [12]. The various
methods of visual servoing are often categorized into two
groups, Position Based Visual Servoing (PBVS) and Image
Based Visual Servoing (IBVS) [13]. Both methods seek
to drive the camera to a goal pose with respect to some
target. In the PBVS method, the control is based on the 3D
pose information reconstructed from the image. In the IBVS
method, the controlled states are image features of the target.

The earliest pose reconstruction methods used knowledge
of the target geometry to obtain the pose of the target. In [14],
four or more non-coplanar points on the target are required.
The algorithm can then compute the pose of the target from
a single image. In [15], four or more coplanar points on a
target can be used to determine the pose from a single image,
except for certain critical configurations of the points and
camera. The method involves solution of the singular value
decomposition of a matrix at least once for five or more
points, and twice for four points. Essential Matrix [16] and
Euclidean homography [17] methods were developed, which
do not require a known geometry of points on the target,
however they can compute the pose of the camera (at which
an image is taken) only with respect to the pose in a reference
image. The relative distances are obtained up to an unknown
scale factor. Knowledge of the depth of the target is required
in at least one reference image in order to calculate the
scale factor. The work in [12] incorporates a known length
between two of points on the target into a homography-based
reconstruction. This enables visual servoing of the camera
to an arbitrary pose with respect to the target. The work in
[18] uses a pink ball to estimate relative position between
two robots, however the relative pose cannot be estimated.
Another aproach to pose estimation is to design nonlinear
observers [19], [20]. The approaches used in leader-follower
methods often require measurement of the velocity of the
leader robot. Some papers address this by using estimation
methods [21], [22] or nonlinear observers [23].

The work in this paper has two major contributions.
1) A feedback control that requires only relative pose

information is proposed. The controller leads to uniform
ultimate boundedness of the errors. In particular, for
straight line motion of the leader robot, the bound on all
coordinates can be arbitrarily decreased by increasing
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Fig. 1. WMRs in inertial and relative coordinates

the controller gains. For a general motion, only the
bound on the relative distance error can be decreased
arbitrarily, while the rest of the errors are ultimately
bounded and this bound can be analytically character-
ized. Moreover, the controller possesses tunable gains
which allows one to prioritize the convergence of the
relative polar angle over the relative orientation or
vice versa. We show in Appendix I how to find the
steady state errors in the polar angle and orientation
given a set of gains and the curvature of leader path.
This knowledge can be used to accomplish obstacle
avoidance by appropriately changing the desired polar
angle.

2) A novel pose reconstruction method is presented, which
provides reliable measurements of the state. The method
exploits restricted motions of the robots, the and a
known fiducial geometry. The work is similar to [15],
except that the restriction to planar motions renders
computations such as singular value decompositions
unnecessary. A unique fiducial is used, which leads to
simple and reliable extraction of feature points.

II. BACKGROUND

A. Differential-drive Wheeled Mobile Robot

Differential drive wheeled mobile robots (WMR) are pop-
ular for their low cost and simplicity, and we base our
work on implementation on such robots. This type of WMR
consists of a body resting on two coaxial wheels. A third
castor wheel is added for support. In an inertial world
reference frame, the configuration of a WMR is given by
the position of the center between its two wheels (x,y) and
the angle ϕ of its heading direction. The heading direction
is the line perpendicular to the axes of wheel rotations, and
is positive in the direction of forward motion (See Fig. 1).
The kinematic equations of motion of a WMR are

(1)

ẋẏ
ϕ̇

 =

cosϕ 0
sinϕ 0
0 1

[
v
ω

]

where v and ω are the forward speed and angular velocity of
the WMR. Assume robot L with configuration (xL,yL,ϕL)
has a Cartesian frame attached to it (Fig. 1). The z-axis
coincides with the robot’s heading direction, the y-axis (not
shown in Fig. 1) is normal to the ground plane oriented
downwards, and the x-axis is chosen to result in a right-
handed Cartesian frame. This convention for the robot frame
axes is chosen to match the convention used in labeling
camera axes, since the camera optical axis and robot heading
direction are assumed to be parallel in this work.

B. Relative kinematics between two WMR

Let the configurations of the leader and follower robots
in the world frame be (xL,yL,ϕL) and (x,y,ϕ) respectively.
In the frame of the follower, the polar coordinates of the
leader are given by (ρ, ψ). The angle that the z-axis of the
leader frame makes with the z-axis of the follower is given
by γ (see Fig. 1). The relative coordinates of the leader in
the frame of the follower robot are then

(2)

q1q2
q3

 =


(
(xL − x)2 + (yL − y)2

) 1
2

arctan
(

yL−y
xL−x

)
− ϕ

ϕL − ϕ


Using (1) and differentiating (2) results in

(3)

q̇1q̇2
q̇3

 =

−c2 0
s2
q1

−1
0 −1

[
v
ω

]
+

c32 0
s32
q1

0
0 1

[
vL
ωL

]
where ci = cos qi, si = sin qi and cij = cos (qi − qj), sij =
sin (qi − qj). While vL and ωL are translational and angular
velocities of the leader WMR, v and ω are translational and
angular velocities of the follower WMR, respectively.

C. Camera Model

We assume the pinhole camera model for relating the
image coordinates and the world coordinates of a feature
point. The camera frame coincides with the robot frame.
The image coordinates of a feature point m = (mx,my)
are obtained from its 3D coordinates in the camera frame
m̄ = (m̄x, m̄y, m̄z) under perspective projection

mx = f
m̄x

m̄z
, my = f

m̄y

m̄z

where f is the focal length of the camera.

III. CONTROL DESIGN

The control goal is to regulate the relative position between
the follower and the leader WMRs, moving with bounded
positive translational and angular velocity (vL, ωL) ∈ R+ ×
R. This amounts to keeping (q1, q2) at a desired value
(q1d, q2d), cf. Fig. 1. Notice that this puts no restrictions
on the orientation of the follower with respect to the leader.
Furthermore, the nonholonomic nature of the system makes
it impossible to control all three states continuously. At best,
one can hope to control a combination of these three. In this
work, we will be controlling q1 and αq2 + βq3 for some
α, β ∈ R. One of the important contributions of this work
is that, we can prioritize the control of q2 over q3, or vice
versa.



Since the pose measurements are made through a vision-
based algorithm, differentiation of these inherently noisy
measurements is problematic. Therefore, we will be using
only relative position feedback to achieve stability. In par-
ticular, when the leader is moving in a straight line, all
of the error states are uniformly ultimately bounded in the
vicinity of the origin and this bound may be made arbitrarily
small by increasing the controller gains. When the leader
is moving with nonzero angular velocity, we again claim
ultimate boundedness of the error states with the ability to
make the bound on q̃1 arbitrarily small.

Let q̃ = (q̃1, q̃2, q̃3) , (q1− q1d, q2− q2d, q3) ∈ D = {q ∈
R+×R2 : |qi|< π

2 , i = 2, 3, |q1d|> 0 and |q2d|< π
2 }, where

q1d and q2d are the desired values of q1 and q2. The desired
value q3d of q3 is assumed to be zero. Define,

(4a)Λ1 =

(
−p11c2 + p22

s22
q21c2

)
, Λ2 =

p22
q21

(
s2
c22

+ s2

)
(4b)Θ1 =

(
p11c2 + p22

t2s32
q21

)
(4c)Θ2 =

p22
q1

(t2c32 + s32) =
p22
q1

sin q3
cos q2

(4d)Θ3 =
p22
q21

(
s32
c22

− t2c32

)
Theorem III.1. The following control law, accompanied
by the conditions on the positive constants pii, given in
Appendix I, ensures ultimate boundedness of the states along
with the properties discussed in the previous two paragraphs.

(5a)v = −k1 (Λ1q̃1 + Λ2q̃1q̃2)

(5b)ω = k2

(
p22

t2
q1

q̃1 + p22q̃2 + p33q̃3 +
p22
q1c22

q̃1q̃2

)
where t2 := tan q2, (k1, k2) are positive constants and

(6)p11 > p22

(
t2
q1

)2

+
p22
q21

∣∣∣∣(s2
c32

+
s2
c2

)∣∣∣∣ |q̃2|

and either the first or the second of the following conditions
are satisfied

p22 ≤ p33 (7a)

p22 > p33 and
|ωL|
vL

<
1

q1
(7b)

Proof. The proof of this theorem is found in Appendix I.

IV. VISION-BASED RELATIVE POSE RECONSTRUCTION

In this section we describe the novel pose reconstruction
algorithm used for vision-based measurements. A standard
camera is used to measure the relative state (q1, q2, q3) of
the lead robot. We use a specific marker to provide four
detectable feature points which are used to compute the
desired coordinates. Each feature point is the center of two
concentric circles. The points A, B, E and F shown in Fig. 2
form a square. The (virtual) points C and D are the computed
midpoints of line segments AE and BF , respectively, and
correspond to the center of the fiducial, which is assumed to
lie above the midpoint between the lead robots wheels.

Fig. 2. Blob analysis; detected feature points are marked as red circles

The camera output is converted to a binary image. A blob
analysis algorithm returns geometric information about all
detected light-colored closed segments in the image. Each
blob is identified by the location of its centroid in the image
plane. If two centroids are closer (using a Euclidean norm)
than some threshold, they are identified as one of the feature
points. This algorithm returns the image coordinates of the
four points A, B, E and F . In case the algorithm does not
find four pairs of blobs with close enough centroids in the
current image, the coordinates from the previously sampled
image are returned.

The chief advantage of this algorithm is that the mea-
surements are computed from the present frame only. Thus,
initialization is not required, and errors due to large motions
are not propagated.

Once the four corners of the fiducial are extracted, it
remains to obtain the coordinates q1, q2 and q3. There are
three planes involved in these computations:
P1 The horizontal ground plane of the inertial or world

frame
P2 The plane of the flat fiducial in 3D coordinates
P3 The image plane of the camera

The normal to the fiducial and the camera optical axis are
parallel to the plane P1. Since the motion of both robots is
entirely in P1, the effects of pinhole projection on the height
and width between the markers are decoupled, allowing us to
construct the inverse of the projection without difficulty. On
the plane P2, the points C and D are separated by a distance
dv. Taking z = C̄z = D̄z as the depth of the fiducial in the
follower frame, C and D are separated by fdv

z in the plane
P3. This separation in P3 shows up as the difference in Cy

and Dy . Hence we have

Cy = f
C̄y

C̄z
, Dy = f

D̄y

D̄z

Dy − Cy = f
D̄y − C̄y

C̄z
, z =

f dv
Dy − Cy

The angular location and polar distance of the vertical line
CD is then computed by

q2 = tan−1

(
Dx

f

)
, q1 =

z

cos q2
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Fig. 3. The leader and follower trajectories in world coordinates

Since CD is located above the center of the leader robot,
the coordinates of the leader are now known in the follower
frame. Using the above methods, the points Ā, Ē and F̄ can
also be reconstructed. Then, the normal vector to the plane,
P2, in the follower robot frame is given by

n̂ =

−→̄
AĒ ×

−→
F̄ Ē

∥
−→̄
AĒ∥∥

−→
F̄ Ē∥

The dot product between this vector and the optical axis
yields cos q3.

V. EXPERIMENTAL IMPLEMENTATION

The presented experiments utilize two iRobot Creates, one
as leader and one as follower. The leader is commanded to
move in a circle or a straight line. The iRobot Creates, which
are controlled using QuaRC with Simulink, accept velocity
commands. Hence, it is straightforward to implement our
controller on them. The selected camera was a Logitech
Quickcam Pro V-UA1 with a resolution of 800×600 pixels.
The intrinsic and extrinsic parameters were coarsely cali-
brated with no obvious ill-effects. The visual servo control
works well for gains that are not too large and for sufficiently
slow motions of the leader in the image plane. A VICON
motion capture system was used to validate the data obtained
from the vision-based system [24].

Three experiments are performed where the leader moves
in a circle with the same radius (See Fig. 3). A video of one

TABLE I
PARAMETERS USED IN EXPERIMENTS

Circle 1 Circle 2 Circle 3 Linear
k1 2e-4 2e-4 3e-4 3e-4
k2 0.05 0.05 0.05 0.1
p22 10 6 10 1
p33 1 1 1 1

vL [m/s] 0.2 0.2 0.2 0.1
ωL [rad/s] 0.108 0.108 0.108 0
q1d [m] 1 1 1 0.7
q2d [rad] 0 0 0 0
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Fig. 4. [Experiment: Circle 1] The errors in relative coordinates
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Fig. 5. [Experiment: Circle 2] The errors in relative coordinates

such experiment can be seen at http://www.youtube.
com/watch?v=4KodVTi7RcU. The gains are varied in
the experiments to demonstrate various aspects of the control
(See Table I). An increase in the gain k1 going from the
first experiment (’Circle 1’) to the second (’Circle 2’) results
in a decrease in q̃1, from that in Fig 4, to that in Fig. 5.
In the experiment ’Circle 3’, the value of p22 is reduced
from the value in ’Circle 1’. As expected, figures 5 and
6 show that the steady state value of q̃3 decreases while
that of q̃2 increases. We draw the attention of the reader
to the good match between the VICON data (in blue in the
figures) and the data from our camera-based system (in red in
the figures). In addition, the marker is occasionally detected
erroneously in the image, leading to spikes in the measured
values of the relative coordinates. Since the feature detection
is memoryless, the ill-effects of erroneous detections are
minimized. Therefore, there is no need to use any estimation
technique with memory, which would remove the spikes at
the cost of propagating these effects through time.

The results of the experiment where the leader moves
in a straight line are shown in Fig. 7, where the follower
robot starts with initial relative coordinates different from
their desired values. Initially, no command is given to either

http://www.youtube.com/watch?v=4KodVTi7RcU
http://www.youtube.com/watch?v=4KodVTi7RcU


0 20 40 60 80 100 120 140 160 180
0

50

100

150

t [sec]

q
1

[m
m

]

0 50 100 150
−0.2

−0.15

−0.1

−0.05

0

t [sec]

q
2

[r
a

d
]

0 50 100 150
0

0.2

0.4

0.6

0.8

1

t [sec]

q
3

[r
a

d
]

~
~ ~

Fig. 6. [Experiment: Circle 3] The errors in relative coordinates

0 10 20 30 40 50 60 70 80
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t [sec]

 

q
1

[m]

~

~

~

q
2

[rad]

q
3

[rad]

Fig. 7. [Experiment: linear motion] The errors in relative coordinates

robot. Once commands are given, the value of q̃1 shoots
quickly to a constant value. The observed steady state error
in q1 drives the robot forward. The q̃2 and q̃3 values decrease
to zero. Due to limitations on space, the experiment could
not be run until the errors in q2 and q3 converged to zero.
However, we submit that the trend is quite clear.

VI. CONCLUSION

This paper addresses formation control of nonholonomic
mobile robots with using visual servoing. A controller is
presented which requires pose estimation, avoiding measure-
ment of velocities. The pose reconstruction uses simplified
homography relations and knowledge of the length between
two points on a fiducial. The algorithm is memoryless, so
errors in detection are not propogated in time.

The controller and vision-based-measurement pair is ex-
tremely simple to setup. It is a low-cost method of achieving
uniform ultimate boundedness of the state errors. The bound
can be made arbitrarily small for a straight line motion. For
a general motion this is valid only for the relative distance
error. The computational effort is low as the system avoids
essential matrix and Euclidean homography methods to
compute the pose, while, in the meantime, avoiding multiple
solution problems. The only drawback is the restriction of

the movement to the plane. This restriction is valid in many
applications, such as groups of robots moving at high speeds
over sufficiently flat terrains.

The major restriction in the control gains stems from
limited field of view of the camera. From the discussion
in the last paragraph of Appendix I, one can determine the
steady state value of the polar angle. The weighting between
the gains p22 and p33 can then be selected such that the
fiducial lies in the field of view for all time.

This work can be extended to formations of multiple
robots using the same controller and vision-based measure-
ment technique. The assignment of leader-follower pairs has
been discussed in [2].

APPENDIX I
PROOF OF THEOREM III.1

Consider the quadratic Lyapunov function candidate

(8)V =
1

2
q̃TP q̃

where P = (pij) is the matrix representation of a symmetric,
positive definite transformation with the entries p13 = p31 =
p23 = p32 selected as zero, pjj for j = 1, 2, 3 are positive
constants and p12 = p22

t2
q1

, where t2
.
= tan q2. Therefore,

P is positive definite if and only if its diagonal entries are
positive and

p11 − p22

(
t2
q1

)2

> 0

which is guaranteed to hold by the hypotheses of the Theo-
rem III.1. Differentiating (8) along the trajectories of q̃, and
collecting the terms involving, v, ω, vL, and ωL ones arrives
at the expression in (9).

(9)

V̇ = (Λ1q̃1 + Λ2q̃1q̃2) v

−
(
p22

t2
q1
q̃1 + p22q̃2 + p33q̃3 +

p22
q1c22

q̃1q̃2

)
ω

+ (Θ1q̃1 +Θ2q̃2 +Θ3q̃1q̃2)vL + p33q̃3ωL

Note that with the controller selected as in (5), the first two
terms in equation (9) become negative semi-definite for all
q̃ ∈ D.

Selecting p11 such that the only nullspace of v is q̃1 = 0
will ensure that q̃1 −→ 0 as t −→ ∞. This clarifies the
purpose of the condition (6) in Theorem III.1.

The first term in (9) can dominate the forcing terms (terms
involving vL, ωL) with large enough k1 if |q1|≥ ϵ1 for all
ϵ1 > 0 so that V̇ < 0 and the states move towards |q1|= 0.
Given k1 > 0, there is an ϵ1 > 0 such that if |q1|< ϵ1, the
forcing terms in V̇ cannot be dominated by the first term.
In this case, the second term can be used to dominate the
forcing terms unless given k2 > 0, p22q̃2 + p33q̃3 < ϵ2, for
some ϵ2 such that −k2ϵ22 is also very close to zero.

This discussion implies that the states tend to a neighbor-
hood of the set N = {q̃ ∈ D : q̃1 = 0 and p22q̃2 + p33q̃3 =
0}. Next, we show that if ωL = 0, then the forcing function
is actually negative definite on the set N . Moreover, in the
neighborhood of N , the forcing function is only positive for



very small values of q̃2 and this positivity depends on how far
the states are allowed to be from N by the individual choices
of k1 and k2. This implies, all states go to a neighborhood
of the origin, the radius of which is determined by how large
k1 and k2 are selected.

Since |q1|< ϵ1, the only coefficient of vL that can be large
is Θ2q̃2. Apparently, Θ2 is an odd function of q3 with Θ2 < 0
if q3 < 0. This means, q3Θ2 > 0 for all q3. On N , we have
q̃2 = −p33

p22
q3, so that, Θ2q̃2 < 0, and thus, so is V̇ . By the

continuity of Θ2q̃2, there exists at least one neighborhood of
N where Θ2q̃2 < 0. As a result, for a straight line motion
of the leader, there is a neighborhood of the origin that is
uniformly ultimately bounded, with the bound determined by
the controller gains k1 and k2.

If ωL ̸= 0, the last forcing term in equation (9) can be
positive. However, this positivity is overcome again by the
negative definite function Θ2q̃2 introduced in the preceding
paragraph, as follows. If either (1) p33

p22
≥ 1, or (2) p33

p22
< 1

and |ωL|
vL

< 1
q1

holds, then there exist q3 : |q3|< π
2 such that∣∣∣∣ sin q3cos q2

∣∣∣∣ > q1
|ωL|
vL

= κq1 (10)

where κ := |ωL|
vL

is the instantaneous radius of curvature.
This clarifies the purpose of condition (7) in Theorem III.1.

As a result, the system is also stable in the presence of
a nonzero rotational motion of the leader WMR with the
trajectories bounded in the region defined by N ∩ {q̃ ∈ D :∣∣∣ sin q3
cos q2

∣∣∣ > q1
|ωL|
vL

}.
Finally, it is notable that, we can determine the fixed point

of the system if the leader is undergoing a circular motion
(for a straight line motion, the origin is the fixed point).
For a circular motion, the radius of curvature is a constant.
Assuming that the motion is restricted to N , we replace
q2 by −p33

p22
q3 + q2d and solve equation (10), holding with

equality, for q3. Since q1 = q1d and q2 is a function of q3
on N , this yields the fixed point of the system in the case
of a circular motion. Given a leader trajectory, this defines
the follower trajectory. If the leader is performing a more
complex motion, then although there is no fixed point of
the differential equations, the bounds on the states can be
tightened by going through the same procedure and replacing
the constant curvature by the supremum of the curvature of
the complex motion.
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