
Decentralized Estimation of the Algebraic Connectivity for Strongly
Connected Networks

Hasan A Poonawala and Mark W Spong

Abstract— The second smallest eigenvalue λ2(L) of the
Laplacian L of a network G is a parameter that captures
important properties of the network. Applications such as syn-
chronization of networked systems, consensus-based algorithms
and network connectivity control may require one to regulate
the magnitude of λ2(L) in order to achieve suitable network
performance. The problem of decentralized estimation of λ2(L)
for directed graphs is thus a relevant problem, yet it has
received little attention thus far. We present an algorithm for
its estimation and demonstrate its performance.

I. INTRODUCTION

The eigenvalues of the graph Laplacian L(G) [1] of
a network G contain important information regarding the
network’s properties and performance. The second smallest
eigenvalue λ2 of L(G) is particularily significant. Note that
for the case when L is asymmetric, the eigenvalues are
ordered based on their absolute values. In the case of undi-
rected networks, λ2(L) is called the Fiedler value [2]. The
Fiedler value can be used to determine whether an undirected
network is connected or not. The value of λ2(L) for a
directed network can be used to deduce whether the network
has a globally reachable node [3] or not. Therefore, λ2(L)
is called the algebraic connectivity of the network. For both
directed and undirected networks, the rate of convergence of
several consensus and synchronization algorithms depends
on the magnitude of λ2(L) [3], [4].

In the case of Multi-Robot Networks (MRN), the com-
munication network is state dependent and hence λ2(L)
changes depending on the motion of the robots. This requires
monitoring of λ2(L) and possibly the adoption of control
strategies to influence its value. Thus estimation of λ2(L) is
a relevant problem in several applications.

Several methods to estimate the algebraic connectivity
for undirected graphs have been proposed, using power
iterations [5], decentralized orthogonal iterations [6], Fast
Fourier Transforms [7] and dynamical systems theory [8].
The methods in [6] and [7] are computationally expensive.
The third method is highly effective and has been imple-
mented in experiments [9], [10] where the objective is to
preserve network connectivity. The method in [5] estimates
the kth power of a matrix C derived from the Laplacian,
using power iterations [11]. The largest eigenvalue of C can
then be obtained from the limit of the kth root of the induced

Hasan A Poonawala is with the Erik Jonsson School of Engineering and
Computer Science, University of Texas at Dallas, Richardson, Texas, USA
hasanp@utdallas.edu

Mark W Spong is the Dean of the Erik Jonsson School of Engineering
and Computer Science, University of Texas at Dallas, Richardson, Texas,
USA mspong@utdallas.edu

infinity norm of Ck as k increases. The estimate of the
Fiedler value is then computed directly from the estimated
largest eigenvalue of C. However, these methods do not
apply to directed graphs, since in this case λ2(L) may be
complex, and the methods above only return real values.

The decentralized estimation of λ2(L) for directed net-
works has received little attention thus far. One method
for its estimation is given in [12]. The method proposes
the construction of a matrix AL1

similar to C in [5],
however AL1 may not be symmetric. Again, λ2(L) can
be computed directly from the largest eigenvalue of AL1 .
Since AL1 may be asymmetric, the power iteration only
yields an estimate of the absolute values of the elements
of the eigenvector ν corresponding to the largest eigenvalue
of AL1

. The arguments of the elements of ν are obtained by
finding the root of a nonlinear function. The Jacobian of this
function turns out to be singular on an uncountable set (see
Appendix) , which makes the numerical computation of the
root unreliable, and in the authors’ experience unsuccessful.

Another method was presented in [13], which can be used
to obtain |λ2(L)|∈ R even if λ2(L) is complex. In contrast,
the method presented in this paper obtains the complex
number λ2(L) and not just its modulus. Similar to [5], [12],
the adjacency matrix A of the network is converted into a
matrix Q, whose largest eigenvalue is a function of λ2(L).
A modified power iteration algorithm [14] can be used to
compute the dominant eigenvalue of Q if it is complex. This
algorithm combines a power iteration with the construction
of a quadratic equation whose roots contain the largest
eigenvalues of Q. Solving only a quadratic equation makes
the method more reliable when compared to that in [12].
If the largest eigenvalue of Q is real, then standard power
iterations can be used to estimate it.

The main contribution of this paper is to identify an
iterative algorithm that allows each node in a directed graph
to obtain an estimate of λ2(L) through local communication
only. The algorithm is shown to converge as the iterations
proceed. A criterion is provided by which one can decide
when to stop the iterations, while ensuring sufficient accuracy
in the estimate. Examples are provided which show the
performance of the estimation method.

II. PRELIMINARIES

In this section we introduce various definitions and nota-
tions from graph theory that will be used in this paper.

A weighted directed graph G is a tuple consisting of a set
of vertices V = {1, ..., n} (also called nodes) and a set of
edges E. An edge ε is an ordered pair (i, j) which indicates

that a connection exists which starts at node j and ends at
node i. Thus (i, j) is an in-edge of node i and an out-edge
of node j. We can define the set of neighbors Ni of agent i
as

Ni = {j ∈ V |(i, j) ∈ E}

which has cardinality ni. We also define N̄1 = Ni ∪ i.
Each edge (i, j) ∈ E is associated with a strength wij ∈

(0, 1], giving rise to the adjacency matrix A = {aij} ∈
Rn×n, given by

aij =

{
wij if (i, j) ∈ E
0 otherwise

(1)

The Laplacian of the graph is then given by

L = D −A

where D is a diagonal matrix whose ith diagonal element is∑n
j=1 aij . The Laplacian L always has an eigenvalue at 0,

corresponding to a right eigenvector given by 1√
n

1n, where
1n ∈ Rn, 1n = [1, . . . , 1]T . The second smallest eigenvalue1

of L is denoted by λ2(L).
An undirected network is connected if a path exists

between any two nodes, which is equivalent to the Fiedler
value being non-zero. For directed graphs, there are multiple
notions of connectivity. The most relevant one is that of
strong connectivity. A directed network is strongly connected
if there exists a directed path between any two nodes of the
network.

We can now state the following properties [12]:
• λ2(L) has multiplicity 1 if the graph is strongly con-

nected
• λj(L), j ∈ 2, . . . , n have positive real part if the graph

is strongly connected
The graph Laplacian can be converted into a row-

stochastic and non-negative matrix S ∈ Rn×n, by using the
transformation

(2)S = In − εL

where In is the identity matrix of size n and ε > 0 is a
sufficiently small number. This was done in [15], with a view
to analysis of discrete-time consensus protocols. It turns out
that the same matrix is useful in the estimation of λ2(L).
Assuming that each edge weight wij is bounded above by
1, then selecting ε ≤ 1/n ensures S is non-negative. We
now show that S is an irreducible matrix if G is strongly
connected.

Lemma II.1. Consider a graph G with adjacency matrix
A and matrix S ∈ Rn×n defined by (2). If G is strongly
connected, then S is irreducible.

Proof. If the graph G is strongly connected, A is an irre-
ducible matrix [16]. The matrix S is of the form kA + B
where k is a non-zero scalar and B is a diagonal matrix.
Suppose that S is reducible. Then there exists a permutation
matrix P ∈ Rn×n such that PTSP is in upper block

1The nth smallest and largest eigenvalues of a matrix A are denoted by
λn(A) and λn(A) respectively

triangular form. This implies that kPTAP + PTBP is
upper block triangular. Since B is diagonal, so is PTBP .
Thus, PTAP must also be upper block triangular, which
contradicts the fact that A is irreducible. Hence, S must be
irreducible.

The choice of ε ≤ 1/n also ensures that the diagonal
elements are non-zero, implying that the trace of S is non-
zero. Since S is irreducible and its trace is positive, it is a
primitive matrix [17]. This fact is central to the success of
the estimators presented in this paper.

III. DECENTRALIZED ESTIMATION OF λ2(L)

Consider a graph G with adjacency matrix A and graph
Laplacian L. We want each node to estimate λ2(L). This
estimation must be decentralized, meaning that each node
may only receive information via communication with its
neighbors. Another constraint is that each node only knows
part of the matrices A and L. In particular, node i only knows
the variables aij for j ∈ {1, 2, . . . n}.

The estimation method presented in this paper requires the
following assumption:
A1 The graph G is strongly connected.

As described in Section I, λ2(L) can be estimated by
estimating the largest eigenvalue of a matrix Q using a
modified power iteration method. The matrix Q is given by

(3)Q = S − 1

‖γ1‖2
γ1γ

T
1

where S is the non-negative row stochastic matrix defined
by (2), and γ1 is the left eigenvector of S corresponding
to the eigenvalue 1 such that γT1 1n = 1. If the eigenvalues
of S are denoted by λi(S) for i ∈ {1, 2, . . . , n} such that
|λi(S)|≥ |λi+1(S)|, then the eigenvalues of Q can be shown
to be {0, λ2(S), λ3(S), . . . , λn(S)} ([12], Lemma 4). Thus,
λ1(Q) = λ2(S), where λ1(Q) is the largest eigenvalue of
Q. The value of λ2(L) can be computed from λ2(S) using
the relation

(4)λ2(L) =
1

ε
(1− λ2(S)) =

1

ε
(1− λ1(Q))

The power iteration method involves the computation of
a vector z(k) ∈ Rn given by z(k) = Qkz(0), where
z(0) ∈ Rn is some initial condition. This computation can
be implemented in an iterative manner using the equation

(5)z(k + 1) = Qz(k)

where z(k) is obtained at the kth iteration. Three consecutive
values z(k + 1), z(k) and z(k − 1) can be used to compute
λ2(S) = λ1(Q), for sufficiently large k. In a decentralized
implementation of (5), node i computes the ith component
of z(k + 1). This computation requires each node to know
γ1 and z(k).

It can be shown [15] that for any primitive stochastic
matrix S,

(6)liml→∞(S)l = 1nγ
T
1

Suppose ω ∈ Rn is a distributed vector, such that each node
i holds the ith element ωi. The authors in [15] use (6) to
design a consensus algorithm given by

(7)wi(l + 1) =

n∑
k∈Ni

sikwk(l)

where S = {sij}. The authors show that liml→∞wi(l) =∑n
i γ1,iwi(0), where γ1,i is the ith element of γ1. This

readily implies a method to distribute the γ1 to all agents, and
through γ1 any other vector v ∈ Rm. In order to obtain γ1,
each agent implements n copies of (7), with the ith robot’s
initial value for the jth copy given by the kronecker delta
product δji .

Once γ1 is known, any distributed n dimensional vector
v can be completely spread to any node by implementing
n copies of (7) with the ith robot’s initial value for the jth

copy given by viδ
j
i . The estimate at each node converges to

an n dimensional vector ω such that the ith element is viγ1,i.
The vector v is obtained as Γ−1ω, where Γ = diag(γ1). This
method can be used to spread z(k + 1) to all nodes, once
zi(k + 1) has been computed at each node. This procedure
can also be found in [12].

With these details in place, we are ready to present an
estimator that allows each node to estimate λ2(L) using
communication with its neighbors only. This is the main
result of this paper.

Theorem III.1. Consider a row-stochastic matrix S(G)
corresponding to a strongly connected directed graph G, as
defined in (2). Consider the following algorithm:
Algorithm 1 Let the ith node of the graph G perform the
following iterative estimation scheme
E1 Initialize an estimate zi(0) = 1√

(n)

E2 Perform the iterations

(8)
zi(k + 1) =

 n∑
j∈Ni

sijzj(k)

− 1

‖γ1(k)‖2
γ1,i(k)(γT1 z(k))

where γ1 and z(k) are obtained using estimators defined
by (7) with appropriate initial conditions

E3 Store the result of three consecutive iterations
zp(k), zp(k − 1) and zp(k − 2) for p ∈ i ∪Ni

E4 Solve the ni + 1 linear equations

zp(k) + bzp(k − 1) + czp(k − 2) = 0

for b and c using the method of least squares , where
p ∈ i ∪Ni.

E5 Compute the roots xi,1(k) and xi,2(k) of the equation

x2 + bx+ c = 0

E6 Compute
xi,3(k) = zi(k)/zi(k − 1)

Then, as k → ∞, at least one of the estimates xi,j(k) →
λ2(S), where j ∈ {1, 2, 3}.

Proof. When all n nodes implement steps S1 and S2, the
resulting computation is the decentralized implementation of
the power iteration step (5), as shown below:

(9)

z(k + 1) = Sz(k)− 1

‖γ1‖2
γ1γ

T
1 z(k)

=

(
S − 1

‖γ1‖2
γ1γ

T
1

)
z(k)

= Qz(k)

We now study the form of z(k + 1) as k increases. The
eigenvectors vi of Q are identical to those of S [12], and
are independent. Let the vi have indices such that their
corresponding eigenvalues λi are ordered as

|λ1|≥ |λ2|≥ . . . ≥ |λn|

Hence, the initial condition z(0) for the power iteration can
be expressed as

(10)z(0) =

n∑
i=1

βivi

so that

(11)

z(k) = Qkz(0) =

n∑
i=1

βiQ
kvi

=

n∑
i=1

βiλ
k
i vi

Case 1: λ1(Q) = λ̄2(Q) or λ1(Q), λ2(Q) ∈ R
Let b0, c0 ∈ R be the coefficients of the monic second
order polynomial whose roots are the two largest eigenvalues
eigenvalues of Q (either both complex conjugates or both real
numbers). Then

(12)λ2j + b0λj + c0 = 0, j ∈ {1, 2}

Consider the sum f(b, c) = zk + bzk−1 + czk−2. Using (11)
we obtain

f(b, c) =

n∑
i=1

βiλ
k
i vi + b(

n∑
i=1

βiλ
k−1
i vi) + c(

n∑
i=1

βiλ
k−2
i vi)

=

n∑
i=1

βi(λ
2
i + bλi + c)λk−2i vi

=

n∑
i=j−1

βi(λ
2
i + bλi + c)λk−2i vi + εk

(13)

where εk =
∑n

i=j βi(λ
2
i + bλi + c)λk−2i vi, and j is the

index of the largest eigenvalue such that |λj(Q)|< |λ2(Q)|.
If λ1(Q) is complex, then j = 3 because of A1. Clearly,
f(b0, c0) = εk. Consider the solutions to f(b, c) = 0. The
ith node computes this by solving the ni+1 linear equations

(14)zp(k) +
[
zp(k − 1) zp(k − 2)

] [b
c

]
= 0

where p ∈ Ni ∪{i}. The relation f(b0, c0) = εk at node i is
equivalent to the ni + 1 linear equations given by

(15)zp(k) +
[
zp(k − 1) zp(k − 2)

] [b0
c0

]
= εk,p

We can combine (14) and (15) to obtain the system of
equations

(16)
[
zp(k − 1) zp(k − 2)

] [b0 − b
c0 − c

]
= εk,p

Since |λ2|> |λ3|, as k → ∞, |εk|� |zk|. This implies that
as k →∞, (b, c)→ (b0, c0). Note that z(k−1) and z(k−2)
are independent, since λ1(Q) is not real, and v2 = v̄1. Thus,
the matrix formed from z(k−1) and z(k−2) in (16) has rank
2. In turn, (xi,1, xi,2)→ (λ1(Q), λ̄1(Q)) = (λ2(S), λ̄2(S)).
Case 2: |λ1(Q)|> |λ2(Q)|
This case occurs when λ1(Q) is real. The estimate can be
expressed as

(17)xi,3(k) =
zi(k)

zi(k − 1)
=

β1λ
k
1v1 +

∑n
i=2 βiλ

k
i vi

β1λ
k−1
1 v1 +

∑n
i=2 βiλ

k−1
i vi

Since |λ1|> |λ2|, the terms in the sum must become
negligible compared to the first term, as k → ∞. Then
clearly

(18)lim
k →∞

zi(k)

zi(k − 1)
= λ1

This completes the proof.

Remark 1. The Fiedler value λ2(L) can now be obtained as
1
ε (1− λ2(S)).
Remark 2. The Theorem states that one of three estimates
converges to the true value of λ2(S). We propose a stopping
criterion in the next section which is used to extract the
estimated value of λ2(S) from the sequences of values
xi,j(k).

IV. NUMERICAL IMPLEMENTATION AND EXAMPLES

An important issue that must be resolved before imple-
menting the estimator in Section III is to decide at which
iteration k the estimation may be stopped, and one of the
xi,j(k), j ∈ {1, 2, 3} be accepted as the estimate of λ2(S) for
each node i. The authors in [12] discuss methods to ensure
convergence of the estimates of γ1 and ωi. We now describe
a method to detect when the convergence of one of the xi,j
has occurred.

Our stopping criterion relies on the observation that for
large values of k, the error in the estimate decreases accord-
ing to a power law. For the case when λ2(S) is real, this
property can be seen from Equation (17). Consider the case
when λ2(S) is complex. We note that

(19)εk =

n∑
i=3

βi(λ
2
i + bλi + c)λk−2i vi

which implies that for a sufficiently large k,

(20)εk ≈ βi(λ2i + bλi + c)λk−2i vi

Equation (20) indicates that ‖εk‖2 decreases according to
a power law, for sufficiently large k. From (16), we see that
the error in estimated values (b0, c0) will follow this power
law. We can model this behavior as

(21)|b(k)− b0|= λ|b(k − 1)− b̂0|
|c(k)− c0|= λ|c(k − 1)− ĉ0|

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

|
x
i,
1
|,

|
x
i,
2
|

Fig. 1: Absolute values of the estimates of λ2(S1) for each
agent given by xi,1 and xi,2. The dashed black line indicates
|λ2(S1)|.

It is straightforward to solve for (b̂0, ĉ0) using (21), given
the current estimates b(k) and c(k) and a small number
of previous estimates. As estimates (b(k), c(k)) converge
to (b0, c0), the predictions (b̂0, ĉ0) approach (b0, c0). Thus,
when the difference between the current estimate (b(k), c(k))
at iteration k and the predicted true value (b̂0, ĉ0) is smaller
than some specified threshold, we can stop the iterations
with the estimate at iteration k (or predicted value) accepted
as our final estimate. An additional condition is imposed
that requires the difference between the predicted values at
iteration k and k − 1 to be smaller than some threshold.

We now describe the convergence of all three estimates
xi,3. If λ2(S) is complex , then (xi,1, xi,2) converge to
(λ2(S), λ̄2(S)) but xi,3 does not converge to any number.
When λ2(S) ∈ R and λ3(S) is complex, then xi,3 converges
to λ2(S) but (xi,1, xi,2) do not converge to any value.
When λ2(S), λ3(S) ∈ R then (xi,1, xi,2) converges to
(λ2(S), λ3(S)) (or (λ3(S), λ2(S))) and xi,3 converges to
λ2(S).

In order to demonstrate the performance of the algo-
rithm, we implement the estimation algorithm on three row-
stochastic matrices. The first was used as an example in [12],
and is presented to enable a comparison with their work.

Example 1. Estimate λ2(S1), where

S1 =

0.3 0 0.7
0.5 0.5 0
0.2 0.2 0.6

In Figure 1 we can observe that the estimate has converged

to the true value of 0.3 by the fourth iteration (only the
absolute value is plotted for representation). The stopping
criterion is satisfied at the fourth iteration for all nodes (see
Figure 2). We continue the iterations in order to facilitate a
comparison with Figure 1b in [12], wherein the estimates do
not settle at the true value. It is possible to accept the mean
of several iterations as the estimate, however we submit that
our algorithm has better performance.

0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

k

b̂
i
,
ĉ
i
,
b
0
,
c
0

Fig. 2: The estimates of b and c for each node in Example
1. The dashed vertical line marks the iteration at which the
stopping criterion is satisfied. The dashed horizontal black
lines are the true values.

0 5 10 15 20 25 30

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k

b̂
i
,
ĉ
i
,
b
0
,
c
0

(a) The estimates of b and c for each node. The
estimates and predictions converge as k increases. The
dashed vertical lines indicate the iteration at which the
stopping criterion is met for each node.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

|
x
i,
1
|,

|
x
i,
2
|

(b) Absolute values of the estimates of λ2(S2) for each
agent given by xi,1 and xi,2. The dashed black line
indicates |λ2(S2)|.

Fig. 3: Simulation results for the second example. Plots of
the same color corresponds to the same node. The sets N̄1

and N̄2 are identical, hence their estimates are identical and
only four plots can be seen.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

x
i,
3

Fig. 4: The estimates xi,3 of λ2(S2) using (17) for all five
nodes. The sequence of estimates fail to meet the stopping
criterion for any k.

Example 2. Estimate λ2(S2), where

S2 =

0.7349 0.1190 0 0 0.1460
0.0878 0.8145 0 0 0.0977

0 0.1206 0.6035 0.1602 0.1157
0 0.1422 0.0848 0.7729 0

0.081744 0 0.1016 0.1858 0.6309

The matrix S2 is generated by creating a random matrix

in MATLAB. The matrix is scaled and the diagonal entries
modified so that the matrix is row stochastic. Its second
largest eigenvalue (in magnitude) is 0.73113± 0.080893i.

Figure 3 shows the results of the estimation. The estimates
of b and c are seen to converge to their expected true values
in Figure 3a. The dashed vertical lines mark the iterations at
which the stopping criterion is met for the different nodes,
which occurs when |xi,2| is nearly equal to λ2(S2) . The
absolute values of the estimates xi,1 and xi,2 are seen to
converge to that of λ2(S2) for all five nodes, in Figure 3b.

As expected, the estimate xi,3 (which is always a real
number) does not converge to λ2(S2) since the latter is
complex, as seen in Figure 4.

Example 3. Estimate λ2(S3), where

S3 =

0.521 0.163 0.122 0.045 0.147
0.112 0.473 0.198 0.099 0.117
0.185 0.197 0.386 0.180 0.049
0.139 0.000 0.095 0.631 0.133
0.116 0.173 0.160 0.169 0.381

This matrix is generated in the same way as in the previous

example. Its second largest eigenvalue is 0.5140. Figure 5a
shows the results of the estimation. The estimates xi,3 are
seen to converge to λ2(S3) for all five agents.

Since λ3(S3) is real , (xi,1, xi,2) converges to (λ2(S3),
λ3(S3)). This can be seen in Figure 5b. Note that the
stopping criterion is met at an earlier iteration for these
estimates compared to the standard power iterations for real
largest eigenvalues. Since each node is connected to all the
remaining nodes, all five estimates are identical in Figure
5b.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

x
i,
3

(a) Absolute values of xi,3 for each node. The dashed
black line denotes |λ2(S2)|.

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

k

b̂
i
,
ĉ
i
,
b
0
,
c
0

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

k

|
x
i
,
1
|,

|
x
i
,
2
|

(b) The estimates of b and c for each node (above) and
the resulting estimates xi,1 and xi,2 (below), for S3.

Fig. 5: Simulation results for the third example.

V. CONCLUSION

In this paper we propose a decentralized method to es-
timate λ2(L) of a strongly connected graph. The method
combines existing decentralized methods to perform power
iterations with a method to compute complex dominant
eigenvalues of a real matrix. The algorithm requires each
agent to communicate a vector whose size increases linearly
with the number of agents in the network. The computations
performed by each agent at every iteration are inexpensive,
unlike other methods.

REFERENCES

[1] M. De Gennaro and A. Jadbabaie, “Decentralized control of connec-
tivity for multi-agent systems,” in Decision and Control, 2006 45th
IEEE Conference on, Dec 2006, pp. 3628–3633.

[2] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-
matical Journal, vol. 23, no. 2, pp. 298–305, 1973.

[3] C. Wu, Synchronization in Complex Networks of Non-
linear Dynamical Systems. World Scientific Publish-
ing Company, Incorporated, 2007. [Online]. Available:
http://books.google.com/books?id=vMUexcIVnjIC

[4] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and Cooperation in
Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[5] R. Aragues, G. Shi, D. Dimarogonas, C. Sagues, and K. Johansson,
“Distributed algebraic connectivity estimation for adaptive event-
triggered consensus,” in American Control Conference (ACC), 2012,
June 2012, pp. 32–37.

[6] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” Journal of Computer and System Sciences, vol. 74, no. 1,
pp. 70 – 83, 2008, ¡ce:title¿Learning Theory 2004¡/ce:title¿.

[7] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu, “Decentralized
laplacian eigenvalues estimation for networked multi-agent systems,”
in Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, 2009, pp. 2717–2722.

[8] P. Yang, R. Freeman, G. Gordon, K. Lynch, S. Srinivasa, and R. Suk-
thankar, “Decentralized estimation and control of graph connectivity
in mobile sensor networks,” in American Control Conference, 2008,
june 2008, pp. 2678 –2683.

[9] A. C. Satici, H. A. Poonawala, H. Eckert, and M. W. Spong, “Con-
nectivity preserving formation control with collision avoidance for
nonholonomic wheeled mobile robots,” in International Conference
on Intelligent Robots and Systems, to appear in Proceedings of, 2013.

[10] L. Sabattini, N. Chopra, and C. Secchi, “Decentralized connectiv-
ity maintenance for cooperative control of mobile robotic systems,”
vol. 32, no. 12, pp. 1411–1423, October 2013.

[11] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.).
Baltimore, MD, USA: Johns Hopkins University Press.

[12] C. Li and Z. Qu, “Distributed estimation of algebraic connectivity of
directed networks,” Systems & Control Letters, vol. 62, no. 6, pp. 517
– 524, 2013.

[13] F. Knorn, R. Stanojevic, M. Corless, and R. Shorten, “A
framework for decentralised feedback connectivity control with
application to sensor networks,” International Journal of Control,
vol. 82, no. 11, pp. 2095–2114, 2009. [Online]. Available:
http://dx.doi.org/10.1080/00207170902912056

[14] A. Gourlay and G. Watson, Computational Methods for Matrix Eigen-
problems. John Wiley & Sons, 1973.

[15] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, Jan 2007.

[16] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathe-
matical Sciences. Society for Industrial Mathematics, Jan. 1987.

[17] H. Minc, Nonnegative matrices. Technion-Israel Institute of Tech-
nology, Dept. of Mathematics, 1974.

APPENDIX

ANALYSIS OF JACOBIAN IN [12]

The method in [12] requires one to find the values of θ2,
φi and φl which are roots of the equation f = 0, where
f = [fk, fk−1, fk−2]T and fk is given by

fk(θ2, φi, φl) =
v̂2,i(k + 1)v̂2,l(k)

v̂2,l(k + 1)v̂2,i(k)

− cos (kθ2 + φi) cos [(k − 1)θ2 + φl]

cos (kθ2 + φl) cos [(k − 1)θ2 + φi]

The determinant of its Jacobian ∇f can be computed as

det(∇f) = 8 cos θ2 sec2(φi + (k − 3)θ2) sec(φi

+ (k − 2)θ2) sec(φl + (k − 2)θ2) sec(φi

+ (k − 1)θ2) sec(φl + (k − 1)θ2) sec2(φl

+ kθ2) sin2(φi − φl) sin5 θ2

(22)

which vanishes at several points for any k. Thus, the selection
of an appropriate initial condition is critical to being able to
find a root. Since the set of points where det(∇f) vanishes
is large, the initial condition needs to be close to the solution,
which is hard to achieve without prior knowledge.

