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Abstract—This paper deals with the formation control problem
for a team of nonholonomic wheeled mobile robots. Each robot
has a leader robot with respect to which a constant relative
position is to be maintained, except for a single robot which
defines the motion of the formation. We present a feedback
control method that guarantees convergence of the relative
position of any follower robot (with respect to its leader) D
desired values. The controller does not require sensing ofhe
leader’s velocity. Instead, an adaptive method is used to gsate
the leader's forward velocity.The resulting closed loop sstem
is shown to be semi-globally asymptotically stable. Simutan
results are presented in order to demonstrate the performaoe
of the controller for two robots, and a team of mobile robots.

I. INTRODUCTION

Multi-robot systems present a more robust and chea

solution to certain tasks that are better performed usingraé

low-cost robots rather than single, complex ones. A mul
robot system may be required to travel over large distancet
in order to reach a site related to a mission or task. Whi

traversing the distances, it may be desirable for the rob?ts
to move in a rigid formation with fixed inter-robot distances

This gives rise to the formation control problem. Furthér,

agents on the stability and performance of formation cdntro
while designing the control law.

The linearization in[[2] requires knowledge of the leader ve
locity, however sensing velocity is difficult and differ@ting
position to obtain velocity is too noisy. To prevent facihgse
issues, an extended Kalman filter (EKF) is then proposed for
obtaining the leader velocity. It is unclear whether thisich
is made to account for noisy measurements, or that such a
filter is required to estimate the velocities even in the abese
of noise. Either way the convergence analysis assumedhat t
filter output has converged to the true values, whereas there
are no results guaranteeing the convergence of the EKF.

Instead of using a Kalman filter, one could use a dynamic
estimator to obtain the leader velocity information. This a

per

proach has been taken ihl [3],][6]._]10]. The work in [6],

t]iIE] use artificial potential functions, which do not guaesn

a particular relative position unless each robot follow® tw
er robots. The work in this paper is similar to that[ih [3].

e forward and angular velocities are adapted and used in a
eedback control law which guarantees ultimate boundednes
of the errors in position, for arbitrary but bounded leader

IveIocity. In the case of straight line motion of the leadbe t

is often desired that the control of these distances be done

in a decentralized manner, rather than through a commo
supervisor or command center. Such control solutions can .be

applied to military maneuvers or automated highways.

Several approaches to formation control have been pre

ployed can be classified into leader-follower methads @[

behavior-based contradll[4]5[6], [10], variable structemtrol

techniques[[7], and consensus based methiods [[8], [9]. T‘E’ur

behavior-based control methods provide the robots with

local interactions occurring throughout the team. Thisavédr
is often encoded using potential functions. The leaddoviadr

methods use techniques such as input-output partial fekdbﬁ
linearization of the dynamics of the relative pose betwe%
two robots [[2]. Another leader-follower method makes use 0
potential functions and virtual leadelfls| [1]. Consensusetas
methods account for the effect of the information flow betwe
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errors are shown to converge to zero.

“he work in this paper is a progression from the work
in"[11]. The choice of leader-follower methods is practical
when using a vision-based measurement system, since then
each robot must sense the relative pose information of only

ne robot. A feedback control law was proposed which did

not use velocity information of the leader, and the resgltin
rors in relative position are shown to be uniformly ulttelg
Sunded. Note that the leader velocity was assumed to be

. . : . ounded, but not necessarily constant. The error boundicoul
tions in reaction to sensor data. A formation emerges fran t

e arbitrarily reduced by increasing the control gains,ilaim
to [3], but without requiring any estimation of the leader
velocity. A significant feature of the work in_[11] was that
was very simple to implement with high reliability and low
mputational effort compared to other methods.
The controller we present also uses an adaptation-like
method to estimate the leader forward velocity. Sirice [11]
achieves ultimately bounded errors without adaptation, we
focus on the case where the leader moves in a straight line
or a circle, where the estimation actually yields an adgata
Our work shows that estimation of the angular velocity is
unnecessary for convergence of the relative position to the
desired values. Also, it is clear that our method is much
simpler to implement, especially when using the measurémen
system in[[111] which directly provides, v» and~.

In the next section we introduce some background relevant



Using (1) and differentiatind {2) results in
p = —vcost) + vy cos (v — 1) (3a)

1/-]:vsin1/) _w+vLsin(7p— V) (3b)

Y =wp —w (3c)

wherevy, andwy, are translational and angular velocities of the
leader WMR,v andw are translational and angular velocities
of the follower WMR, respectively.

IIl. CONTROL DESIGN

The control goal is to regulate the relative position be-
tween the follower and the leader WMRs, where the leader
moves with constant positive translational and angulasaig}

Fig. 1: WMRs in inertial and relative coordinates (vz,wr) € Ry x R. This amounts to keepingp,v) at a
desired valug(pg, 1q), cf. Fig.[d. The non-holonomic kine-
to the problem. We present the controller, and prove converaics makes it impossible to contrelin addition tow and

gence of the rglat|ve.p03|t|on states to their desired wal\e ~ through smooth feedback. In any case, controlling the gtead
then present simulation results to demonstrate the pediot® ¢i4ia value ofy is not required for formation control.

of the controller, and conclude with a discussion about the o following control linearizes the dynamics of the vari-

controller. ables(p, v):
Il. BACKGROUND (v —
o _ o s =), o (42)
A. Differential-drive Wheeled Mobile Robot cos 1
Differential drive wheeled mobile robots (WMR) are popu- _wpsin(y =) | wsin(y) |
: o w = + +w (4b)
lar for their low cost and simplicity, and we base our work on p p

implementation on such robots. In an inertial world refesen resulting in the dynamics
frame, the configuration of a WMR is given by the position j= (5a)
of the center between its two wheelg,)) and the anglep .

of its heading direction. The heading direction is the line Y= (5b)

perpendicular to the axes of wheel rotations, and is pesitiv This is the same control used ifl [2], which requires exact
the direction of forward motion (See Figgl 1). The kinematiknowledge of the leader’s forward velocity .

]|

&l

equations of motion of a WMR are Since we do not measutg,, we augment the system inl (3)
T cosg 0 with a single stater, which acts as an estimator fof,. The
y| = [sing 0O [U} (1) dynamics for this state are chosen as
. w
é 0 1

K, -
wherev andw are the forward speed and angular velocity of 7T (v =v)p (©)
the WMR. Assume robok with configuration ¢r,,y1.,¢r) has The control is then selected as
a Cartesian frame attached to it (Fig. 1). Thexis coincides ocos(y—1) + Kyp
with the robot’s heading direction, thg-axis (not shown in v= cos (7a)
Fig. ) is normal to the ground plane oriented downwards, osin(y—1)  vsin(y)
and thez-axis is chosen to result in a right-handed Cartesian w = +
frame. This convention for the robot frame axes comes from p ~
the convention for a frame fixed on a camera, as useldin [1¥herep = (p — pq) andy) = (Y —1q). Let 5 = (0 — vy).
The closed loop kinematics can now be written as

+ K1) (7b)

B. Relative kinematics between two WMR

Let the configurations of the leader and follower robots in p="Hop = COS (y =)o (83)
the world frame be;,yr,¢1) and (,y,¢) respectively. In the b= —K,0+ sin (7 — ¢)5 (8b)
frame of the follower, the polar coordinates of the leader ar P
given by [, ¢). The angle that the-axis of the leader frame o o7 osiny o sing
makes with thez-axis of the follower is given byy (see Fig. V=wr - Ko pCOS 1Y Ko p P (8)
). The relative coordinates of the leader in the frame of the . K, B
follower robot are then =5 o8 (y =) (8d)

P ((zr —2)® + (yr —9)?)* Let the state be denoted by= [p ¢ ~ U]T € Q=
Y| = arctan (gi—jg) ) (2) R.gx S! x 8! x R. We define a domai as

" b — ¢ D :={q€ Q| ¥|< r/2} 9)



The analysis of the closed loop kinematics is done in four

Proof: See AppendiX’A-C [ |

steps. First we characterize the equilibrium points of the This now enables us to guarantee thi@t) — .

system, deriving a condition that ensures a unique eqiuifitor
state exists. We then analyze the dynamics of the relat

iI\_/gmma I1.3. Assume that Lemma [IL.2 holds. Then v (t) —

distancep, relative polar angle) and estimate, and show that * %'

they asymptotically converge to their equilibrium valuesn
any initial condition inD. The orientatiorny is then shown

Proof: See AppendikA-D [
Finally, the dynamics fory are rewritten as

to converge to it's equilibrium value. We then state the main

theorem showing that the equilibrium is asymptoticallybtga

onD.

Proposition 11, If pg # | 2| and [“£le4csa < 1 then the
closed loop system described by (8) has a unique equilibrium
qe given by

Ge = {pd Yq arcsin (M) 'UL} (0

vL

Proof: See Appendik A=A [
A consequence of Propositibn 1.1 is thatif # ‘Z—i‘ then

5wy — R — osin(y)  Kypsiny
pcos p (15)
_ o _wugsin(y) -
= st 9(p,.5,7)
where
o~ _ -~ osin K, psin
9(p,¥,6,7) = Kb + %) psiny (16)

pCcos
andg(0,0,0,v) = 0. We use this fact to show thatreaches
its equilibrium value.

cos(y — 1) # 0. For the remainder of this section we assumeemma Il1.4. Assume that Proposition[[IL.T], Lemma[lL.2 and

that Propositiof TILIL holds.
We consider a subsystem of the dynamicsin (8)

p=—Kop—cos(y—1) & (11a)
&= Wp (11b)
&——w¢+w& (11c)

We define the functioV; (5, 5) as
Vi(p.3) = 57 + 10" 12)

Let 7 € Q, whereg = (p,),0) and Q = Ry x S x R.
We define the seD as

D ={qe Q| |<n/2} (13)

Let the initial condition at = t, be gy = (p(to), ¥ (o), o(to))

Lemma[IL3 hold. Then v — arcsin [££leacosva a5

vL

Proof: See AppendiX’A-E [ |
We are now in a position to state the main result.

Theorem II1.5. If the following conditions hold

Cl. vy # pg|wr| and Mlpz%'wd <1

C2. vr, < Vmas

C3. Ya < /2 and pg >0

C4. K, >0, K, and K, are designed as in Lemma [I.1
Then the equilibrium of (8) is semi-globally asymptotically
stable.

Proof: See Appendik AF [

Remark 1. These results can be extended to the case where
v € Le andwy € Lo. This implies that the leader acceler-

andVig = Vi(p(te) — pa, o(to) —vr) We define the compact ation is bounded and its motion asymptotically approaches a

setsU(go) andW(q) as

U(qo) = {(p,0) € Rog x R[V1(p,5) < Vig and p > pimin }
(14a)

W(a0) ={q € Ql(p,0) € U(qo) and [¢|< (7/2 )}
(14b)

wheree > 0 and p,,,;,, are design parameters.

Lemma IIl.1. Assume that p; > 0, |14|< 7/2 and that
there exists v,,,4, such that 0 < vy < vq.. FOr any initial
condition gy € D, there exist appropriate gainsin (@) and (7))
and paramters ¢ > 0 and p.,.;, such that the solution (¢, qo)
of the closed loop system (@) remains in W (go) V¢ > to

Proof: See AppendiX’/A-B [ |
Lemmalllld guarantees that(t) # 7/2 ando(t) < oo
vt > to. We now show thatp and o converge to their

equilibrium values.

Lemma IIl.2. Assume that Lemma [IL.1 holds, then the
equilibrium (pg, vz, ) of the subsystem given by equations (113)
and (I10)is asymptotically stable.

straight line or circle ag — oo. The directional derivatives of
the candidate Lyapunov functions will contain additioreahts
that are linear iny;, andwy,. These terms can be dominated by
appropriate selection of gairfs, and they vanish as — oc.
Thus the same arguments will be valid. This allows for a niche
class of leader motions to be used.

IV. SIMULATION RESULTS

We present separate simulations to demonstrate the proper-
ties of the control developed in Sectibnl Ill. We consider the
following cases

S1 The leader moves in a straight line
S2 The leader moves in a circle
S3 Four robots follow a leader in formation

In all the simulations, the following parameters are used:
Pmin = TM, € = 7/12rad, v, = 4m/s, andv,,,, = 5m/s.
The gains are designed as in Lemmalll.1, taking the min-
imum allowable gains. This yield¥(, = 1.666667 and
K, = 1.364185. The estimator gain ig(, = 4.5. The initial
conditions for each simulation are given in Talle I.



TABLE I: Initial conditions for simulations

Parameter S1 S2 S3
p(0) [m] 12.0 12.0 - 18or
$(0) [rad]  0.785  0.523599 0 160(
v(0) [rad]  -0.262 -0.261799 0 140}
c(0) [m/s] 0 0 0 120k R1
pa [m] 10.0 10.0 10.0 R2
g [rad] 0 0.785398 + 0.785398 g% -
wy, [rad/s] 0 0.3 0.05 >~ 80 RS
60 O initial position
O final position
40
12 20k
b
115 08 0@
— = n
= 11 = o4p 0 0 50 100 150 200 250
= = 1 x[m]
" 105 = o2 . . .
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Fig. 2: Simulation results for S1. The states converge asyn
totically to the equilibrium condition indicated by the bla T 24
. & S
dashed line = 0 =
= T 2
Figure[2 shows the result of the simulation S1. We see tt o5 o
' 100 0 50 100

the states converge to their equilibrium values. As expkcte 0 50
the equilibrium value ofy when the leader moves in a straigh.

t [sec] t [sec]

line is Orad. The maximum control efforts during the motior19- 5: Simulation results for S6: The relative coordindtas
aremax |v|= 4.71m/s andmax |w|= 0.71rad/s.

For the simulation S2, the leader moves in a circular pa

the follower robotskR2 — R5. The relative positions converge
#o their desired values during each phase of leader motion

The results are seen in figure 3. Once again the states cenverg _
to their equilibrium values. The maximum control efforts-du ing the motion arenax |v|= 5.63m/s andmax |w|= 0.3rad/s.

12

115

—~ 11

105

10

10 20

y(t) [rad]

10 20
t [sec]

In the simulationS3, R1 — R5 are five robots which must
move in a ‘vee’ formation. the leaddtl moves withv;, =

0.75

~a

0.7
0.65

P(t) [rad]

0.6

e = a .

0.55

4m/s. The leader’s path consists of two linear sections ared on
semicircle wherevy, = 0.1rad/s. RobotsR2 and R3 follow
R1. In turn, R4 follows R2 and R5 follows R3. We see that
the relative positions of all the robots converge to thesical
values whetheiR1’'s motion is linear or circular. During the
circular motion, the forward velocity of each robot depends

t [sec]

20

on the radius of curvature of the robot path. This results in
different values ofs for the follower robots. Note that the

o(t) [m/s]

0

controller smoothly handles the change in the leader motion
In all three simulations|y(t)|< (7/2 — €) and p(t) > pmin,
showing that the controller meets the design specification.

V. CONCLUSION

0 10
t [sec]

20

We have developed a controller for the purpose of regulating
the relative position between two robots, when the leadsotro

Fig. 3: Simulation results for S2. The states converge asymoyes with a constant velocity. As mentioned fin [2], several
totically t_o the equilibrium condition indicated by the bla optimal trajectories and path planning algorithms conefst
dashed line. sequences of constant velocity motions. The follower robot



only has relative pose information available to it, and thihatV; < c for some constant < oo defines compact sets in
controller accounts for this by estimating the leader vigyoc (p, o). We find V; along solutions of[(111).

We show that the closed loop system converges to the desired.

equilibrium value for any valid initial condition, both thugh
analysis and simulation.

The controller presented has some advantages over the
controllers in [2], [11]. Unlike [11], the errors in relatv
position converge to zero. When compared to the estimator
in [2], [8], ours consists of a single state, with only onengai

.. 2 .
Vi=pp+ K—(U—UL)U
= . - 4
= p(—Kyp —cos(y =)o +

o ~2
v

(21)

to be tuned. The estimator is also shown to converge, while twhich is clearly negative semi-definite ¢fy, to + 0'] x D if

convergence of that ifn[2] has not been analyzed. We claitm tHa, > 0. Thus (p,0) € U’ Vt € [to,to + ¢'], whereU’
our formation control method is the simplest to implemen{(p,o) € Rso x R|V(p,0) < Vip}. In order to have that

especially with the measurement systéml [11].

The future work consists of implementing this controller on To achieve this, the condition thgt > 0 when p(t)

a setup similar to that in [11]. The design parametisruseful

(p,0) € UVt € [to, to+ d'], we must show thap(t) > ppin.

pmin Must hold. We can choosg,,;,, to satisfy) < ppin <

in guaranteeing that the leader stays within the field of viewin{p(0), pa}, which exists sincep(0) > 0 and p; > 0 by

of the follower robot’s camera.

APPENDIXA
A. Proof of Proposition [TI.T]
Assume thatos(y. — %.) # 0, where subscript denotes

the equilibrium value. Setting the LHS dfl(8) to zero, it can
then seen thai, ¢, 6 = 0 uniquely determines the equilibrium

values forp,i» ando respectively. Setting = 0 in (8d) yields
Wi e COS Y

)

. (wLpacosg
= arcsin | —2—1°%

vL
which exists since we assume tH&f"’ﬁw < 1. Thus

Qe = |pa  Va arcsm(%wswd) vL}T

L

Ye = arcsin (
(17)

(18)

is a valid equilibrium of[(B) whemos(y. — 1) # 0.
Now we assume thatos(v. — ¢.) = 0. This yieldss = 0

in Bd). From [BR) we then derive that= 0 = p. = pq.

Equations[(8b) and (Bc) can be rewritten as

VUV — Oe

0=—K, (¥ —1q) —sin (ye — 1e) (19a)
0= wr, — sin (’76 - %)% - Kw(we - wd) (19b)
which yield
wr, :iU—L:i&‘i‘Kw(we_d}d) (20)
Pd Pd

assumption. Fron{(Illa) we obtain the condition

—Ro(pmin — pa) = cos (y = ) (0 = v1) >0
= Ky(pd — pmin) > cos(y — ) (o —vr)
However we can bound the right hand side[ofl (22) as

cos (v —¥)(o —wvr) < (vr + |o])
< (Umaw + |0|)

(22)

(23)

so that [2P) is satisfied when the following condition i
satisfied: _
Kv(pd - pmzn) > (UL + |0|) (24)
we now choosds, as
Ky(0) = Ky + —2 (25)
Pd — Pmin
Inequality [24) reduces to
K, >—%2 (26)
Pd — Pmin
Hence, we choos&’, as
Kv Z Umax UL (27)
Pd — Pmin Pd — Pmin

and the resulting choice of gaifi, (o) clearly satisfies[{24),
in turn it satisfies[(22). Sincep, o) € U’ Vt € [to,to + '],

o(t) is clearly bounded, and the control effort is also bounded.

Thus this gain ensures thatt) > .., Vt € [to, to + ']

We must finally ensure that(¢) cannot approach /2. We
do this by ensuring that for large enough|, Vo < 0. We
selecte > 0 to satisfy max{|vq4l, |¥(0)|} < € < 7/2 which
exists by assumption. We now require that 0 wheny =

which yield infinite solutions for, andy.. However, ensuring (r/2—¢) and that) > 0 wheny = —(7/2 —¢€) . From [I1t)
that py # ‘Z—LL‘ precludes the existence of this solution, anthis condition is satisfied when

qe is the only possible equilibrium point ofl(8).
B. Proof of Lemma [T

The right hand side of{11) is Lipschitz db. Theorem3.1
in [12] allows us to conclude that a unique solutig(t, q)

exists fort € [tg,to + 0]. Due to continuity, there must be

some0 < ¢ < ¢ for which ¢(t) # 7/2 ando(t) < oo for

Ko(m/2 — e = [a]) > |(vr — 0)

P

The term on the right hand side of the inequality above can

be bounded as
)||Sln(7—¢)||< UL+|0| < VL, + |U| (29)

(’UL — 0
Pmin

t € [to,to + &']. We now design the gains and parameters ¥¥e now choosex,, as

@), @) and [I¥) so thag(ty + ') € W(g). We note that
V1 in ([@3) is positive definite ifK,, > 0 and K, > 0, and

- o]

K,=K,+ _
pmin(§ — €= W)dD

(30)



Due to [29) we satisfy[(28) if Clearly V, < 0 when |y|> |g|% andy # +1. Since we
assume Propositidn 1.1 holdg,= 0 is a unigue equilibrium

Ko(m)2 — € —q) > (v + o)) of 8, and we rule ouy? = 1. From LemmagIIL.R and T3 we
Prmin (31) know that|g|— 0, sinceqg — g. andg(0,0,0,v) = 0. Hence
=K, > Urnazx for large enoughy, y is ultimately bounded, and the region
pmin(7/2 = € = [tal) of ultimate boundedness reduces to theset 0 ast — oo.

Thus we guarantee that(t)|< (7/2—¢) Vt € [to,to+d'] fora Thus~y — arcsin 7“”{31;05% ast — oo.

swta.blle ch0|ce_ of(,. The prec?dmg dlscq35|?n sﬁhows that folr:_ Proof of Theorem[IL3

the finite time intervalto, to + '] the solutiong(¢, o) cannot - -

cross the boundary o/ () denoted aHW (o), rendering The conqnmncl guarantees thg’F an eqU|I|br|ur.n_ dfl (8)
W (go) positively invariant. We repeat the above argument §¥iSts and is unique, from Proposition Tll.1. Conditio62

t = to+ &' using the Lipschitz property of the dynamigs](11 nd C3 satisfies the conditions for Lemn_ia__!]ll.l. We can
onW () D and can thus extend the interval for which théen choose appropriate values for the gaing’ihsuch that

solutiong(t, Go) € W (o) arbitrarily, completing the proof.  ¥(1)|7# 7/2 anda(t) < co. Under these conditions Lemma
C. Proof of L [M1.2] shows thatp and o converge to their equilibrium state
. Proof of Lemma[Il.2

asymptotically. Thus in turn we can conclude from Lemma
The function in [IR) is taken as a candidate lyapund@i.3]that+ converges to its desired value asymptotically. The
function V1. It is positive definite for positive gain&’, and convergence op, o and+ enables us to use LemrhaTll.4 to
K,, withV;(p,5) = 0. Its derivative along solutions of (I1a)conclude thaty also converges to its equilibrium value. Since
and [IIb) is given in({21). Lemmal[Il[] is true for any initial conditior) € D, and
The condition that)(t) # +r/2 Vt > t, ensures that the the convergence of is valid for anyy € S', we have that
control remains bounded so that the closed loop equaticasy initial conditiongy € D asymptotically converges to the
(113) and[(11b) are valid. Clearly; < 0 on D (from [21)). equilibrium value for the chosen gains. Thus the equilitoriu
We invoke La Salle’s Invariance Principle |12] and observef (8) is semi-globally asymptotically stable.
that the set wherd, = 0 is given by the solutiorp = pg.

Sincepy # |2&| we have thatos (v — ) # 0. From [II8) in
order thats iLO we must have that = Thus the largest [1] N. Leonard and E. Fiorelli, “Virtual leaders, artificipbtentials and coor-
P = = VL. 9 dinated control of groups,” iecision and Control, 2001. Proceedings

invariant set of the Lyapunov functidr, consists of the point of the 40th IEEE Conference on, vol. 3, 2001, pp. 2968 —2973 vol.3.

(p,5) = 0. We conclude that the equilibrium of (11a) and[2] .f.'l Desai, J.f Ostl;}ov;/ski, and \gIKun;)ar, “I\godelingdand cohtof
- : ormations of nonholonomic mobile robotsRobotics and Automation
(110) is asymptotically stable. ' '

|EEE Transactions on, vol. 17, no. 6, pp. 905 —908, dec 2001.
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