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Abstract

The sensors of many autonomous systems provide high-dimensional and information-rich measurements. The state of the
system is a part of this information, however it is challenging to extract it from such measurements. An autonomous system
cannot use traditional feedback control algorithms without knowledge of the state. We propose computational algorithms
for the analysis and synthesis of classifier-enabled control architectures. We show how to train classifiers based on criteria
that relate to both learning from data and properties of the resulting closed-loop system. The approach to deriving these
algorithms involves modeling the resulting closed-loop system as a piecewise affine differential inclusion. The training method
is based on the projected gradient descent algorithm. An application of this method to a navigation problem for a mobile
robot demonstrates the capabilities of this approach.
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1 Introduction

A common situation for autonomous systems – e.g.
drones, self-driving vehicles, collaborative robots – in-
volves using information-rich sensors, which provide
high-dimensional measurements, to control the state
of the system in different environments [1]. Optical
cameras [2] and three-dimensional light detection and
ranging (LIDAR) sensors [3] are examples of such sen-
sors. The high-dimensional measurements depend on
the state of the robot in the environment, and it may
be difficult to extract the state from this measurement.

Instead of attempting to extract a state, the autonomous
system may only need to identify the current situation it
is in and use a control strategy associated with that sit-
uation. Obstacle avoidance using proximity sensors such
as SONAR [4] is an example of such a strategy, where
the situation is proximity to any object, as identified by
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the SONAR readings. The problem of learning how to
act in response to any measurement, given a finite set of
measurements labeled with the corresponding situation,
falls under the scope of supervised machine learning [5].
When the possible situations are finite, this problem is
more specifically one of classification. The set of situ-
ations form the set of class labels, and the goal of su-
pervised learning algorithms is to learn a classifier that
assigns a unique class label to every measurement.

Given a classifier that maps measurements to class la-
bels, the autonomous system uses a control input asso-
ciated with the class label. This control input may be
a constant vector, or function of the measurement. We
refer to such a feedback control system, depicted in Fig-
ure 1, as a classifier-in-the-loop system.

Motivation. The standard approach to evaluating the
suitability of a classifier is to look at the predicted label
it assigns to measurements not included in the training
set [5, 6]. The error rate on these measurements, known
as the generalization error, should be low. This approach
to assessing classifiers is meaningful when each measure-
ment is generated independently using the same process,
which is known as the independent and identically dis-
tributed (IID) assumption.

Methods such as deep learning achieve extremely low
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Fig. 1. A dynamical system with a classifier in the feedback
loop. The measurement y obtained by the sensor in state x
depends on an unknown map H. The classifier converts the
measurement into a label b that determines which control
law gb(y) is chosen for measurement-based feedback.

generalization error rates [7]. This success has led to
significant increase in the use of classifier-in-the-loop
control schemes [8–10]. Most classifier-based control
solutions involve achieving good generalization error
estimates and then empirically demonstrating suitable
closed-loop behavior [10]. Recent work shows that low
generalization error does not automatically imply safe
or correct autonomous control [11–13]. When classifiers
are used for control, the IID assumption does not hold.
The classifier’s predictions feed back into the evolu-
tion of the system, and the properties of the resulting
closed-loop system need to be determined. Further-
more, methods for training classifiers – intended for use
as feedback controllers – should preferably account for
these closed-loop properties.

Related Work. Much of the work on learning and con-
trol with safety guarantees focuses on learning contin-
uous state-based control functions where the dynamics
of the state are almost entirely unknown [14–16]. These
problems assume that the state can be observed, perhaps
with added noise. Safe reinforcement learning [17–19] is
similar to the work just mentioned, except that the re-
wards from taking actions must be learned. By contrast,
our work focuses on the case where the state is observed
indirectly through a high-dimensional information-rich
measurement, similar to [10].

Most work on robustness and verification of the behav-
ior of classifiers focuses on showing that the output of
the classifier does not change under small enough per-
turbations of the input. The closed-loop dynamics of
a classifier-in-the-loop system may cause the measure-
ment to change significantly, with the class label switch-
ing over time. Our work explicitly tackles the switching
aspect of classification-based control of continuous-state
dynamical systems.

Prior work by the authors in [20] first proposed applying
tools from switched systems analysis to classifier-in-the-
loop systems. The analysis was limited to qualitative ro-
bustness guarantees using the notion of structural stabil-
ity of dynamical systems. Further work in [21] proposes
methods to synthesize classifiers using switched systems

tools, by incorporating stability conditions into existing
optimization-based training algorithms for classifiers.

Contributions. The primary objective of this pa-
per is to develop algorithms that train classifiers for
information-rich-sensor-based control, without inter-
mediate state estimation. It makes two contributions
towards achieving this objective. First, we show that
piecewise affine differential inclusions provide a frame-
work for modeling classifier-in-the-loop systems that a)
accounts for switching behavior [22] due to classification
of measurements at classifier boundaries, and b) incor-
porates robustness to feedback uncertainties when using
classifiers trained from limited data. Second, we formu-
late the training problem for classifiers used in control
as a two-step process. The first step involves the design
of switching surfaces in the state-space using Lyapunov
methods. The second step involves supervised learning
methods that convert the state-space surfaces into clas-
sifiers in the measurement-space. Finally, we demon-
strate that the empirical behavior of classification-based
control algorithms for path-following, such as in [10],
can be explained using the proposed approach.

Note that prior work by the authors in [21] formulated
stability conditions on the parameters of classifiers of
measurements. By using a two-step procedure instead,
we overcome limitations of the approach in [21]. First,
classifiers in the measurement space are no longer re-
stricted to be linear classifiers. Second, we avoid needing
to estimate and then linearize a closed-form map from
state-space to measurement-space.

2 Preliminaries

Notation. The set Bε(x) = {y ∈ Rn| ‖x − y‖ < ε}
denotes an open ball of size ε centered at x. For a set
S, we denote its interior as Int(S), its closure as S, its
boundary as ∂S, and its cardinality as |S|. We denote
the set of indices of a countable set S as I(S). The vector
1 denotes a vector with all elements equal to unity.

2.1 Partitions And Labeled Partitions

A partition P(X) of a set X ⊆ Rn is a collection of
subsets {Xi}i∈I(P), where I(P) is an index set, n ∈
N, Xi ⊆ X and Int(Xi) 6= ∅ for each i ∈ I(P), X =
∪i∈I(P)Xi, and Int(Xi) ∩ Int(Xj) = ∅ for each pair
i, j ∈ I(P) such that i 6= j.

A labeled partition is a tuple (P(X), L, π), where P(X)
is a partition, L is a finite set of labels, and π: I(P)→ L
assigns labels to the regions in P(X).

2.2 Classifiers

A classifier CΦ: Φ → L is a map that assigns a unique
label b ∈ L to an input φ ∈ Φ ⊂ Rm, where Φ is the
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space of inputs. The set L is typically a finite set. Ex-
amples of input spaces Φ include sensor outputs such as
pixel intensity values from a digital camera, or distances
to objects obtained from an array of sensors that use
SONAR or infra-red light to measure distance.

A classifier CΦ is typically parametrized by weights w ∈
Rs. The process of determining weights w is known as
training the classifier, and uses training data consisting
of pairs (φk, bk), where k is the index of a datum. Several
methods exist for training a classifier using data [5].

When L = {b1, b2}, so that |L| = 2, we may classify
inputs using a binary classifier CΦ given by

CΦ(φ) =

{
b1, if h(φ) ≥ 0,

b2, otherwise.
(1)

where h: Φ→ R is a continuous function. Often, the set
{φ ∈ Φ:h(φ) = 0} is a hypersurface, which is called the
classifier boundary.

When |L| > 2, it is possible to construct a classifier
CΦ: Φ → L by combining multiple binary classifiers (1)
in different ways. One way is to construct a decision tree,
where every node is a binary classifier. Another way is
to train multiple binary classifiers, where each classifier

distinguishes between one of the
(|L|

2

)
possible pairs of

labels from L. This multi-label classification scheme is
known as one-vs-one classification. Instead, we can train
|L| binary classifiers that separate each label from all
other labels. This classification scheme is known as one-
vs-all classification.

2.3 Labeled Partition Of A Classifier

Consider a space Φ and a classifierCΦ: Φ→ L. This clas-
sifier corresponds to a labeled partition of Φ as follows.
We define a relation R on Φ through CΦ, given by

φ1Rφ2 ⇐⇒ CΦ(φ1) = CΦ(φ2).

In words, two points are related if they possess the same
class label under CΦ. This relation is easily shown to be
an equivalence relation, where the quotient space corre-
sponds to L. The equivalence classes are subsets of Φ,
and so the classifier defines a partition P(Φ). Let the
map π provide the label associated with each such re-
gion in this partition. In this way, a classifier CΦ creates
a labeled partition which we denote as (P(Φ), L, π).

3 Classifier-in-the-Loop Systems

Consider a dynamical system with state x ∈ X ⊆ Rn,
input u ∈ U ⊆ Rp and measurement y ∈ Y ⊆ Rm.
The sets X, U , and Y may be compact subsets of their

respective vector spaces. The measurement y obtained
is high-dimensional and depends on the low-dimensional
state through a map H:X → Y that is not explicitly
known. Therefore,

y = H(x). (2)

This assumption is valid for robots operating in static
or slowly changing environments, so that its sensor mea-
surements depend on its state.

One approach to feedback control for this system is to
use a classifier CY to choose a control input, without ex-
plicitly estimating the state. The classifier CY specifies
a control input u ∈ U ⊆ Rp through a map gbi :Y → U
associated with each label bi ∈ L. For example, gbi (y)
may be a constant vector gbi(y) = ubi , or a linear feed-
back gbi(y) = Kbi(y − ybi) for some constant ybi ∈ Rm.
The classifier-based control is therefore

u(y) = gCY (y) (y) . (3)

Figure 1 depicts this control approach, which we refer to
as a classifier-in-the-loop system.

As we describe in Section 6, we assume that the closed-
loop dynamics under a classifier-based control (3) may
be modeled as a state-dependent differential inclusion:

ẋ(t) ∈ A(x).

For dynamical systems, we have three kinds of paired
data sets, which we denote Dxb, Dyb, and Dxy. Let su-
perscript k denote the kth element of a data set. Then,

Dxb = {(xk, bk)}, for k ∈ {1, . . . , |Dxb|},
Dyb = {(yk, bk)}, for k ∈ {1, . . . , |Dyb|}, and

Dxy = {(xk, yk)}, for k ∈ {1, . . . , |Dxy|}.

The data sets Dxb and Dyb correspond to labeled states
and measurements respectively. The data set Dxy cor-
responds to measurements observed in states. Most
classifier-in-the-loop systems use data of the form Dyb.
In this paper, we require availability of Dxb and Dxy.
The next section describes the control design problem
we wish to solve for such systems.

4 Problem Statement

Training of a classifier usually focuses on classifying the
data, and not on the implied closed-loop behavior. In this
section, we specify control-oriented training problems.

We consider closed-loop behaviors related to safety,
which we characterize as invariance of a set Sinv ⊆ X.
This property depends on the behavior of solutions x(t)
of the system. Formally,
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Definition 1 (Positive Invariance) A set Sinv ⊆ X
is positively invariant if

x(t0) ∈ Sinv =⇒ x(t) ∈ Sinv ∀t > t0.

This definition leads to the following problem.

Problem 2 Design a classifier CY such that a given set
Sinv ⊆ X is invariant.

In the rest of this paper, we develop a solution to Prob-
lem (2) when Sinv is a convex polyhedral set containing
the origin.

5 Training Measurement-Space Classifiers

In this section, we provide an overview of our approach
to solving Problem 2. A fundamental idea in our ap-
proach to control-oriented training of classifiers CY is
that these classifiers define the boundaries of a piece-
wise dynamics model in the state space [20, 21]. Train-
ing a classifier, therefore, corresponds to designing these
boundaries. These boundaries represent discontinuities
in the control, or switching surfaces.

We refer to classifiers with domain Y as measurement-
space classifiers. Similarly, we refer to classifiers with
domain X as state-space classifiers. In the rest of this
section, we provide details about the state-space classi-
fier, and how this classifier is used to train measurement-
space classifiers.

5.1 State-Space Classifiers

We use the idea of an arrangement W of hyperplanes in
Rn to design a partition of X ⊆ Rn. The arrangement
W consists of N hyperplanes:

W = {(wi1, wi0)}i∈{1,...,N}, (4)

where wi1 ∈ Rn, wi0 ∈ R for each i ∈ {1, . . . , N}. These
hyperplanes create a partition P(X). The regions of
P(X) are polytopes whenX is a either a polytope or Rn.

By assigning labels from L to regions in P(X) through a
map π, we obtain a labeled partition. This labeled parti-
tion corresponds to a classifier CX composed of multiple
binary classifiers, each classifier corresponding to one of
the hyperplanes in W . The parameters of CX are there-
fore W . Each polytopic region Xi of the partition P(X)
will be defined by affine inequalities corresponding to the
hyperplanes in W . We collect the inequalities defining
Xi into a matrix Ei(W ) and vector ei(W ), so that

Xi = {x ∈ X:Ei(W )x+ ei(W ) ≥ 0} . (5)

By construction, Ei(W ) and ei(W ) are affine functions
of W . We represent the classifier CX as

CX(x) = π(i), if Ei(W )x+ ei(W ) ≥ 0, (6)

where π: I(P)→ L labels each region in P(X).

5.2 Measurement Space Classifiers

In this section, we describe how to train a measurement-
space classifier CY given a state-space classifier CX . We
achieve this training by creating a new labeled data set
DX
yb, defined as

DX
yb = ∪(xk,yk)∈Dxy

(
yk, CX(xk)

)
.

This process can be seen as approximating the relation-
ship y = H(x) using available paired data in Dxy. This
approach enables control behaviors, associated with a
few states, to be used for measurement-based feedback.

Any sufficiently complex classifier CY may be used to
classify the data set DX

yb [5]. One way to define CY is to
use use binary classifiers that mimic those defining CX ,
but this approach is not required. For example, convo-
lutional neural networks [7] may be used for optical im-
ages. Note that the work in [21] allows use of only binary
linear classifiers to define CY .

This section introduced the idea of training measurement-
space classifiers by first training state-space classifiers.
Sections 6, 7 and 8 describe how we train these state-
space classifiers.

6 Robust State Space Models Of Classifier-In-
The-Loop Systems

In this section we derive a piecewise affine differential
inclusion model corresponding to a classifierCX through
the labeled partition (P(X), L, π) it creates. We then
describe how we make this model robust to uncertainties.

For each label bi ∈ L, we assume that the measurement-
based control input gbi(y) associated with bi creates
closed-loop dynamics in state space X that can be em-
bedded in a piecewise affine differential inclusion [23]

ẋ(t) ∈ Abi(x) = co
(
{Akx+ ak}k∈IAbi

)
, (7)

where co (·) is the convex hull operation, and IAbi
is

the (finite) index set of the affine functions that define
Abi(x). Affine differential inclusions (7) are often used
to represent uncertainty in dynamics [24,25] or approxi-
mate nonlinear dynamics. For example, let the dynamics
in the state space be given by a model

ẋ(t) = f(x(t), ubi),
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where gbi(y) = ubi is a constant control input associated
with label bi. We embed the vector field f(x, ubi) in an
affine differential inclusion Abi(x) of the form (7), such
that f(x, ubi) ∈ Abi(x) for each x ∈ S, where S is region
of interest in the state space. Procedures for computing
such an embedding are beyond the scope of this paper
(see [26,27], for example).

A classifier CX given by (5) and (6), and the dynamics
models (7) for each label bi ∈ L, together create the
piecewise differential inclusion

Ω(CX): ẋ(t) ∈ A(x) = Aπ(i)(x(t)), if x ∈ Xi. (8)

A classifier CY , trained by applying the methods in Sec-
tion 5.2 to CX , induces a classifier CYX through compo-
sition with H(x):

CYX(x) = CY ◦ H(x). (9)

In general, the boundaries of the partition due to CYX
will not match those due to the designed CX . Figure 2a
depicts such a mismatch.

To make the design and analysis of classifiers robust, we
derive a robust piecewise differential inclusion Ω∆(CX)
from Ω(CX) in (8) as follows. Figure 2b depicts an exam-
ple of this procedure for one linear boundary. We define
a new arrangement W∆ from W in (4), given by

(10)
W∆ = {(wi1, wi0 + ∆)}i∈{1,...,N}

∪ {(wi1, wi0 −∆)}i∈{1,...,N},

where ∆ > 0 is a parameter to be chosen.

Let P∆(X) represent the polytopic partition of X asso-
ciated with W∆. The partition P∆(X) has more regions
than P(X). Let X∆

j ∈ P∆(X) represent one of these re-
gions, and consider the index set

I(X∆
j ) =

{
i ∈ I(P):X∆

j ∩Xi 6= ∅
}
.

Let the index set of the regions in P∆(X) be I (P∆). We
define a differential inclusion

A∆
j (x) = co

(
{Aπ(i)(x)}i∈I(X∆

j
))
)
, (11)

for each j ∈ I (P∆). The regions X∆
j defined by the

arrangement W∆ in (10) and the dynamics (11) lead to
the piecewise affine differential inclusion

Ω∆(CX): ẋ(t) ∈ A∆(x) = A∆
j (x), if x ∈ X∆

j . (12)

The set of trajectories of the robust model Ω∆(CX) will
contain all those of the nominal model Ω(CX), including

x1

x2
CX CY

X 6= CX

Incorrectly modeled dynamics

A1(x)

A2(x)

a)

x1

x2
new region

A1(x)

A2(x)

A ∆
3 (x)

b)

Fig. 2. [Figure best viewed in color.] Classifiers define switch-
ing surfaces and piecewise dynamics. a) The switching sur-
face due to CY in state spaceX may not match the switching
hyperplane of the designed classifier CX , leading to model-
ing errors (shaded region). b) We model the uncertainty in
switching surface by creating a new region with differential
inclusion A∆

3 (x) = co (A1(x),A2(x)).

sliding solutions [22], allowing analysis of the former to
apply to the latter. The caveat to this approach is that
Ω∆(CX) may exhibit far too many trajectories relative
to Ω(CX). Some of these trajectories may not satisfy
the closed-loop properties we wish to certify, while a less
conservative model may satisfy these control properties.

7 Control-Oriented Constraints On Classifier
Parameters

In this section, we present the theoretical results that al-
low us to train CX in Section 8. These results are in the
form of conditions on the set-valued Lie derivatives (de-
fined below) of a polytopic Lyapunov function [28] along
the solutions of differential inclusion Ω∆(CX) that guar-
antee closed-loop behaviors of Ω(CX). These conditions
are a modification of the approach in [23,29].

7.1 Representing a Polytopic Lyapunov Function

Consider a partition Q(Rn) = {Zi}i∈I(Q) given by

Zi = {x ∈ Rn:Fix ≥ 0}, (13)

where Fi ∈ Rn×n is full rank. Each region Zi is an un-
bounded polyhedral cone with apex at the origin. The
adjacent regions of Q are characterized by the set

Icont(Q) = {(i, j) ∈ I(Q)× I(Q):Zi ∩ Zj 6= ∅}. (14)

We parametrize the common boundary between adja-
cent regions using the vector ηij ∈ Rn, so that x ∈
Zi ∩ Zj =⇒ ηTijx = 0. Furthermore, we assume that

Zi ⊆ {x ∈ X: ηTijx ≥ 0}.
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We define a candidate Lyapunov function VQ(x) using
partitionQ(Rn) and a collection of vectors {pi}i∈I(Q) as

VQ(x) = pTi x, if x ∈ Zi. (15)

By construction VQ(0) = 0, however VQ(x) is possibly
multi-valued at the boundaries of regions in Q(Rn). We
need VQ(x) to be positive, locally Lipschitz, and regu-
lar [23]. The next two Lemmas describe conditions under
which VQ(x) possesses these properties.

Lemma 3 (Lemma 4.7 [29]) The following are equiv-
alent

(1) Fx ≥ 0, x 6= 0 =⇒ pTx > 0.
(2) ∃v ∈ Rn where v > 0 such that FT v = p.

Lemma 4 Consider a function VQ(x) as in equa-
tions (13), (14) and (15). If there exist variables µi for
i ∈ I(Q), λij for (i, j) ∈ Icont(Q), and ε > 0 that satisfy

pi = FTi µi, ∀i ∈ I(Q), (16)

µi ≥ ε1, ∀i ∈ I(Q), (17)

pi − pj = λijηij , ∀(i, j) ∈ Icont(Q), and (18)

λij ≥ 0, ∀(i, j) ∈ Icont(Q), (19)

then VQ(x) is positive definite, locally Lipschitz, and reg-
ular.

PROOF. VQ(x) is piecewise linear. Assume that vari-
ables satisfying (16)-(19) exist. When x ∈ Zi ∩Zj , then
ηTijx = 0 by definition. Therefore, condition (18) im-
plies that VQ(x) is continuous at its boundaries, so that
VQ(x) is locally Lipschitz. By construction, VQ(0) = 0.
By Lemma 3, if conditions (16) and (17) hold, then
VQ(x) > 0 when x 6= 0. Therefore, VQ(x) is positive def-
inite. If λij ≥ 0 for all (i, j) ∈ Icont(Q), and VQ(x) is
continuous, then VQ(x) is convex. Since convex functions
are regular [23], we conclude that VQ(x) is regular. �

7.2 Lyapunov-Based Conditions For Set Invariance

The closed-loop model Ω∆(CX) in (12) we derive for
a classifier-in-the-loop system in Section 3 is inherently
discontinuous. We follow the approach in [23] for analyz-
ing such models, beginning with some definitions below.

Definition 5 (Generalized gradient [23]) Let V be
a locally Lipschitz function, and let Z be the set of points
where V fails to be differentiable. The generalized gradi-
ent DV (x) at x is defined by

DV (x) = co
(
{ lim
i→∞

∇V (xi):xi → x, xi /∈ S ∪ Z}
)
,

where S is any set of measure zero that can be arbitrar-
ily chosen to simplify the computation. The resulting set
DV (x) is independent of the choice of S.

Definition 6 (Set-valued Lie Derivative [23])
Given a locally Lipschitz function V : Rn → R and a set-
valued map A:Rn → 2R

n

, the set-valued Lie derivative
LAV (x) of V with respect to A at x ∈ Rn is given by

LAV (x)

= {a∈R:∃v ∈A(x) and ζ ∈DV (x) such that ζT v= a ∀}.

Definition 7 (Caratheodory solution) A Caratheodory
solution of ẋ(t) ∈ A(x) defined on [t0, t1] ⊂ [0,∞) is
an absolutely continuous map x: [t0, t1] → Rn such that
ẋ(t) ∈ A(x) for almost every t ∈ [t0, t1].

Note that Caratheodory solutions of differential inclu-
sions are identical to Filippov solutions of discontinuous
systems with the typical convex relaxation of the dy-
namics [22, 23]. These definitions enable us to describe,
in the next sections, how we derive conditions on the
closed-loop system that correspond to desired behavior.

One way to determine if the system Ω∆(CX) possesses
desired properties is by finding a candidate Lyapunov
function VQ(x) whose set-valued Lie derivative along so-
lutions of Ω∆(CX) satisfies

maxLAVQ(x) ≤ 0,∀x ∈ X. (20)

Due to the piecewise nature of Ω∆(CX), we must ver-
ify (20) on multiple regions formed by the intersection
of regions in P∆(X) and Q(Rn). Let R(X) be the par-
tition whose elements are these intersections. Then

R(X) = {Rij}(i,j)∈I(R) , where (21)

I(R) = {(i, j) ∈ I(Q)× I(P∆):Zi ∩X∆
j 6= ∅}. (22)

For each (i, j) ∈ I(R), let

Rij = Zi ∩X∆
j = {x ∈ X:Gijx+ gij ≥ 0}, (23)

where Gij , gij depend on W , ∆, {pi}i∈I(P), and
{Fi}i∈I(P). To check if (20) holds for each region in
R(X), we use the following results.

Lemma 8 Let the set {x ∈ Rn|Gx + g ≥ 0} be non-
empty, where G ∈ Rl×n, g ∈ Rl for some l ∈ N. Let
p ∈ Rn and q ∈ R. Then, the following are equivalent

(1) Gx+ g ≥ 0 =⇒ pTx+ q ≤ 0.
(2) ∃v ∈ Rn, where v ≥ 0 such that GT v + p = 0 and

gT v + q ≤ 0.
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PROOF. We use an inhomogenous Theorem of Alter-
natives due to Duffin [30]. The theorem states that ei-
ther Gx + g ≥ 0 and pTx + q > 0 are feasible in x, or
one of the following are feasible in v:

(1) GT v + p = 0, gT v + q ≤ 0, v ≥ 0.
(2) GT v = 0, gT v < 0, v ≥ 0.

By Gale’s Theorem of Alternatives [31], the system of
equationsGT v = 0, gT v < 0, v ≥ 0 is feasible if and only
if Gx + g ≥ 0 is infeasible. Infeasibility of the system
Gx + g ≥ 0 and pTx + q > 0, when Gx + g ≥ 0 is
feasible, is equivalent to the implication Gx+g ≥ 0 =⇒
pTx + q ≤ 0. Therefore, when Gx + g ≥ 0 is feasible,
Duffin’s Theorem of Alternatives reduces to a form that
proves this Lemma. �

Lemma 9 Let V (x) = pTx, where p, x ∈ Rn. Let

S = {x ∈ X:Gx+ g ≥ 0}, and (24)

A(x) = co
(
{Akx+ ak}k∈I(A)

)
, (25)

whereG ∈ Rl×n, g ∈ Rl for some l ∈ N, andAk ∈ Rn×n,
ak ∈ Rn for each k ∈ I(A). Consider a piecewise affine
dynamical system given by

ẋ ∈ A(x) ∀x ∈ S. (26)

If there exist νk ≥ 0 for each k ∈ I(A) satisfying

GT νk +ATk p = 0, (27)

gT νk + aTk p ≤ 0, and (28)

νk ≥ 0, (29)

then
maxLAV (x) ≤ 0 ∀x ∈ S.

PROOF. If V (x) = pTx, then its generalized gradient
is simply its gradient DV (x) = p. At each x, A(x) is
the convex hull of vectors Akx + ak for k ∈ I(A). The
set-valued Lie derivative LAV (x) at x (Definition 6) is

LAV (x) = co
(
{pT (Akx+ ak)}k∈I(A)

)
. (30)

If conditions (27)-(29) are satisfied for some νk, for each
k ∈ I(A), then by Lemma 8, pT (Akx + ak) ≤ 0 for all
k ∈ I(A) and all x ∈ S. This conclusion implies that
LAV (x) ≤ 0 for each x ∈ S, proving the Lemma. �

To apply Lemma 9 to all regions of R(X), where each
region has an inclusion A∆

j , we define the index set

Idec(R) = {(i, j, k) ∈ I(R)× N: k ∈ I(A∆
j )}. (31)

We now state the main result.

Theorem 10 Consider a piecewise affine differential
inclusion Ω∆(CX) of the form (12), and a set Sinv
defined by

Sinv = {x ∈ Rn:VQ(x) ≤ 1}, (32)

where VQ(x) is given by (15) and satisfies the conditions
of Lemma 4. Assume thatX contains the boundary ∂Sinv
of Sinv. If there exist variables νijk ∈ Rn that satisfy

GTijνijk +ATk pi = 0, (33)

gTijνijk + aTk pi ≤ 0, and (34)

νijk ≥ 0, (35)

for each (i, j, k) ∈ Idec(R), then Sinv is invariant under
dynamics Ω(CX).

8 Control-Oriented Training Of Classifiers

In this section, we present an algorithm to train a clas-
sifier CX corresponding to arrangement W using the
results of Section 7. This algorithm involves solving a
bilinear optimization problem that combines control-
oriented conditions (33)-(35) in Theorem 10 with condi-
tions related to classifying data.

We will constrain the hyperplanes W that define clas-
sifier CX to correctly classify the labeled dataset Dxb.
Recall that W defines a partition P(X) whose regions
we label through map π. Let index set I(D) identify the
data in Dxb associated with each region Xi in P(X):

I(D) = {(i, k) ∈ I(P)× I(Dxb):π(i) = bk}. (36)

Let Sinv be a convex polygon containing the origin.
We may represent this convex polygon as the set {x ∈
Rn:VQ(x) ≤ 1} for an appropriate partition Q(Rn) and
parameters {pi}i∈I(Q). By construction, the correspond-
ing function VQ(x) will be positive definite, locally Lip-
schitz, and regular. Let the regions X∆

j of Ω∆(CX) be
given by

X∆
j = {x ∈ X:Ej(W∆)x+ ej(W∆) ≥ 0}. (37)

We derive the matrices and vectors in (23) that define
the regions in partition I(R) as

Gij =


Ej(W∆)

Fi

pTi

−pTi

 , gij =


ej(W∆)

0

−1

−1

 . (38)
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With this notation, we define the following optimization
problem.

min
W,νijk

N∑
1

‖wi1‖ (39)

s.t.

Ei(W )xk + ei(W ) ≥ 1 ∀(i, k) ∈ I(D) (40)

GTijνijk +ATk pi = 0 ∀(i, j, k) ∈ Idec(R), (41)

gTijνijk + aTk pi ≤ 0, ∀(i, j, k) ∈ Idec(R), (42)

νijk ≥ 0, ∀(i, j, k) ∈ Idec(R), (43)

The optimization variables includeW , µi, and νijk for all
values of indices as mentioned in (41)-(43). The objective
function (39) and (40) implements training of multiple
support vector machines [32] that classify datasets de-
fined by I(D). The constraints (41)-(43) are bilinear in
the variables of the optimization problem. A feasible so-
lution of (39)-(43) defines a classifier that separates the
training data Dxb and renders Sinv positively invariant.

Optimization problems with bilinear constraints are typ-
ically NP-hard. We solve this optimization problem us-
ing projected gradient descent [33]. The projection step
is solved using Alternate Convex Search (ACS) [34]. To
implement the ACS, we group the variables of the op-
timization into two groups. One group contains W and
{pi}i∈I(Q), which define regions, and the second group
consists of νijk for (i, j, k) ∈ Idec(R). ACS is a heuristic
approach, and convergence is not guaranteed.

9 Case Study: Path Following

This case study is motivated by the work in [10]. In that
work, the authors collect three types of measurements
corresponding to different headings relative to the path,
and train a deep-neural-network to classify camera im-
ages into one of three simple control actions: moving for-
ward, turning left, or turning right. We mimic this set-
ting using the Gazebo robot simulation environment. We
task a quadrotor equipped with an infra-red-based scan-
ning device to navigate a canyon-like terrain [21]. The
quadrotor must follow the path defined by this canyon,
while avoiding its sides. The varying curvature of the
path and irregularity of the canyon present uncertainty
in the dynamics and the relationship between states and
measurements. We use the optimization package cvx and
MatLAB R2018b to train classifiers, using a computer
with a 2.6 GHz processor and 16 GB RAM.

9.1 Modeling

We model the quadrotor kinematics as a differential-
drive mobile robot. That is, we command the quadrotor
to achieve has a forward velocity v and an angular ve-
locity ω. This path defined by the canyon has varying

forward
velocity v

ψ

angular
velocity ω

path radius
1/ρ

path

d

Fig. 3. A quadrotor with forward speed v, and angular ve-
locity ω. The curved black line represents a local segment
of the path, with instantaneous path curvature ρ, that the
quadrotor must follow. The local Frenet-Serret frame (red)
attached to the path is also shown. The quadrotor’s state
consists of the offset d and angle ψ with respect to the path.

curvature, denoted by ρ (see Figure 3). We can attach a
moving Frenet-Serret frame to this path and express the
dynamics of the quadrotor within this frame. The con-
figuration of the quadrotor in the Frenet-Serret frame is
x = (ψ, d), where angle ψ is the heading of the quadrotor
with respect to the path-aligned axis of the frame, and
offset d is the distance between the quadrotor’s location
and the origin of the frame.

The quadrotor uses three control inputs like in [10]:

ub1 =
[
v∗ 0

]T
(move forward), ub2 =

[
0 ω∗

]T
(turn

left), and ub3 =
[
0 −ω∗

]T
(turn right), where v∗ > 0

and ω∗ > 0 are constants, so that L = {b1, b2, b3}. The
differential inclusionsAb2(x) andAb3(x) are respectively

Ab2(x) = ub2 and Ab3(x) = ub3 .

The dynamics under label b1 are more complex, and de-
pend on the curvature ρ of the path. For a given constant
curvature, it is given by a vector field fb1(x), where

fb1(x) =

[
v∗ρ cos(ψ)

1+ρd

v∗ sin(ψ)

]
. (44)

We approximate this uncertain nonlinear dynamics by
assuming that |ψ|, |d|, and |ρ| are bounded by ψmax,
dmax and ρmax respectively, where ψmax < π/2. Noting
that sinψ ≈ ψ near ψ = 0, we model (44) through the
affine differential inclusion

Ab1(x) = co ({Ax+ a,Ax− a}) , where

A =

[
0 0

v∗ 0

]
, a =

[
v∗α

0

]
, and

α = max

(∣∣∣∣ρmax cosψmax

1 + ρmaxdmax

∣∣∣∣ , ∣∣∣∣ρmax cosψmax

1− ρmaxdmax

∣∣∣∣) .
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Fig. 4. Gazebo simulation results for set invariance. The
trajectory in blue corresponds to a classifier trained using
control-oriented constraints (40)-(43) to make the set Sinv

invariant. The trajectory in red corresponds to a classifier
trained without constraints, and this trajectory leaves Sinv.

9.2 Training Data And Classifier

We collect training data in a canyon created using a
height map. This canyon is 5m deep, 1m wide on average
at the bottom, and widens to an average width of 5m at
the top. We consider a canyon with zero curvature. The
laser scanner provides a measurement y ∈ R200, and has
a field of view of 2 rad.

The dataset Dxy consists of 180 pairs (xk, yk, ) where xk

are uniformly sampled from the unit square. This dataset
has no class labels. The dataset Dxb consists of pairs
(xk, bk, ) where xk = (ψk, dk). For all k ∈ {1, . . . , |Dxb|},
dk = 0. The data points with state xk for which ψk is
π/6 rad, 0 rad, or −π/6 rad are labeled as b3, b1, and
b2 respectively. The set Dxb mimics the data collected
in [10]. For each state in Dxb, we also have the measure-
ment observed in that set, thereby creating the dataset
Dyb consisting of labeled measurements.

Based on the three labeled states, we use a classifier CX
consisting of two hyperplanes

W = {(w1
1, w

1
0), (w2

1, w
2
0)}. (45)

The classification rule is then as follows:

CX(x) =


b2, w1

1x+ w1
0 < 0 and w2

1x+ w2
0 ≥ 0,

b3, w1
1x+ w1

0 ≥ 0 and w2
1x+ w2

0 < 0,

b1, otherwise.

This choice partitions X into three regions.

9.3 Training And Simulation Results

We train two state-space classifiers, a control-oriented
classifier designed to make a set Sinv invariant, and

a data-oriented classifier that only classifies the data
in Dxb. We use Dxy to convert both these classifiers
into measurement-space classifiers (support vector ma-
chines) for use in simulation. The invariant set Sinv is
given by Sinv = {x ∈ R2: |d| ≤ 0.5 m, |ψ| ≤ π/2 rad}.
We take v∗ and ω∗ to be 0.5 m/s and 0.15 rad/s re-
spectively. We use the dynamics in Section 9.1 to define
Ω∆(CX), where ∆ = 0.05, ρmax = 0.2m−1. The control-
oriented classifier is trained by solving (39)-(43). The
data-oriented classifier only solves (39)-(40).

Figure 4 shows trajectories corresponding to simula-
tions, in Gazebo, of classifier-based control for naviga-
tion of a quadrotor. The blue and red trajectories corre-
sponds to control-oriented and data-oriented classifiers
respectively. The use of control-oriented constraints ap-
pears to render Sinv positively invariant. Trajectories
travel along the canyon, with non-zero net forward mo-
tion. The data-oriented classifier will lead to vertical
switching surfaces, since the data lies on the ψ-axis. The
diverging values of d due to these vertical surfaces are
predicted by switched systems methods. The control-
oriented constraints therefore modify the switching sur-
faces to produce the desired set invariance, while classi-
fying available data.

10 Discussion And Future Work

We have presented a training algorithm for classifiers
that incorporates control-oriented constraints on the
classifier parameters. These constraints are a result of
modeling the closed-loop system as a piecewise affine
differential inclusion, and using polytopic Lyapunov
functions to verify the desired closed-loop properties.
To apply these constraints on the measurement-space
classifier, we use a two-step procedure. We constrain a
classifier in the state space to create an invariant set.
Then, we train a classifier in the measurement space
that approximately creates the same boundaries in the
state space as the designed state-space classifier.

Limitations and Future Work. The approach is lim-
ited to cases where we know the state-space dynamics
corresponding to output feedback. This approach is rea-
sonable when we use constant control inputs for each la-
bel. An alternate approach is to learn low dimensional
latent-space dynamical models directly from measure-
ment data. We will explore such an approach in future.
A second issue is that the bilinear constraints create a
non-convex optimization problem with few guarantees.
We will explore the use of ADMM techniques applied
to bi-convex problems [35] to solve the projection step.
Finally, the piecewise approach may lead to significant
computational cost as the dimension of the state space
increases. An interesting avenue of future work is to ex-
tend the framework to use the history of inputs and
measurements in the classification, potentially improv-
ing the closed-loop behavior and performance.
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