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Abstract— As the complexity of the specifications that must
be met by a system increases, hierarchical control protocols
that merge control and planning decisions at multiple levels
of abstraction become necessary. For such hierarchical reason-
ing, a suitable finite-state abstraction for dynamical systems
evolving over continuous state spaces may be needed. The
implementation of existing controllers derived using a finite-
state abstraction often require that the current continuous state
be known exactly, in order to guarantee that the required
transitions in the finite-state abstraction occur. When the
measurements are partial or noisy, the true state is unknown,
and these controllers cannot be implemented. We propose an
abstraction that can be used to overcome the uncertainty in
the state resulting from imperfect measurement, at the cost
of providing only probabilistic guarantees. The abstraction is
based on the filter used to maintain an estimate of the true
state. We show how the abstraction can be used to create a
time-varying policy which maximizes the minimum probability
that a target discrete state is reached in finite time from any
initial state.

I. INTRODUCTION

Motion control problems can sometimes be solved effec-
tively by designing continuous feedback control laws [1].
More often, the complexity of the desired motion or system
dynamics leads to the adoption of a hierarchical scheme. In
such a scheme, a planning algorithm determines a suitable
high-level plan and a continuous controller is designed to
implement this plan.

The application of planning algorithms for motion plan-
ning over continuous spaces often rely on a discretization of
the space into a finite (or at least a countable) set of states.
The discretization may be based on regular grids [2], random
sampling [2], or the satisfaction of logical propositions [3].
Furthermore, suitable transitions must be defined between
the discrete states such that they appropriately capture the
behaviour of the original continuous system [4]. The dis-
cretization and transitions together form an abstraction of the
continuous system. Various decision-making algorithms can
be applied to the abstracted system, to generate a high-level
plan. Once a suitable path has been planned in the discretized
space, the continuous control is tasked with achieving the
desired transitions between discrete states.

When the uncertainty in the state due to partial and/or
noisy measurements is significant, these hierarchical plan-
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ning methods must often be modified in order to account for
the resulting uncertainty in the state. In the case of planning
and control for autonomous rendezvous and docking of
spacecraft [5], the limited control authority of the spacecraft
and noisy sensing make the problem highly challenging.
The control goal is more complicated than a regulation or
tracking problem, since it involves reaching a given convex
region in finite time. These challenges motivate us to develop
planning methods that account for state uncertainty due to
measurement noise, in the presence of constrained inputs.

The most common approach for modifying hierarchical
planning methods in order to account for noise is to assume
that the estimation and control aspects of the problem can
be treated separately. For certain systems, such separation is
justified due to the existence of a separation principle [1], [6]
guaranteeing that the state and estimate will independently
converge to their desired values. When such a principle
does not exist, this approach may still be reasonable when
the estimation error can be reduced arbitrarily fast through
design of estimator parameters (e.g. high-gain observers [6]).
Alternatively, the system may be shown to be stable despite
large errors in the estimate of the state. These large errors
may lead to poor control performance or prevent the control
objective from being achieved during the initial time period.
As the estimation error decrease over time, eventually the
control performance will improve or the control objective
will be achieved.

The separation between estimation and control may not
always be relied upon in many control problems. When the
inputs are constrained, or when the control goals need to be
achieved in finite time, the planning methods used may need
to explicitly account for the uncertainty in the state due to
noisy measurement at the instant of implementing the derived
control policy. Alternate plans or control strategies may be
implemented depending on the amount of information or
uncertainty in the system. Solution methods for partially ob-
servable Markov decision processes (POMDPs) [7] explicitly
account for the uncertainty in the state induced by imperfect
measurement at the time of choosing actions. The derived
optimal control policy is able to handle the trade-off between
needing to improve the quality of information and achieving
the control objective.

The work in [8] proposes a finite-state abstraction for
dynamical systems that yields a finite-state POMDP. The
resulting planning problem is computationally expensive,
as noted by the authors. We therefore wish to avoid the
POMDP formulation if possible. Work by [9] develops
controllers over finite-state abstractions for the case when



no measurement noise exists. The controller is modified to
be robust to measurement noise, however the robustness
depends directly on the initial uncertainty, and the evolution
of the covariance of the estimates is not exploited in the
method.

We propose a method of abstraction of a continuous
dynamical system with noisy measurements that enables
probabilistic-reachability-based methods [10] to be used to
predict the probability that a discrete goal state is reached
from any other discrete state in the abstraction. These reach-
ability probabilities are valid when the uncertainty in the
state is constant. Since the estimation scheme will reduce
the uncertainty over time, the policy that maximizes the
probability of successfully transitioning between two states at
the initial time may be different from that at a later time. We
also propose a planning method that uses the predicted levels
of uncertainty at future times in order to select the policy at
those future times. The result is a time-varying policy which
maximizes the lower bound on the probability with which
the final discrete state is reached from the initial state. Due
to the design of the abstraction and the planning method, a
continuous control exists which achieves this lower bound
on the reachability probability at least.

II. PROBLEM STATEMENT

We now discuss a number of preliminary concepts and
notation as a prelude to the statement of the main problem.

A. System Model

Consider the discrete Linear Time Invariant (LTI) system

(1a)q(k + 1) = Adq(k) +Bdu(k) + w

(1b)y(k) = Cq(k) + v

where q(k) ∈ Q ⊂ Rn is the state at the kth time instant,
u(k) ∈ U ⊂ Rp is the control at this instant, y(k) is the
measurement, v is a zero-mean Gaussian noise term with
covariance matrix Σv , w is a zero-mean Gaussian noise term
with covariance matrix Σw, Ad ∈ Rn×n is the system matrix,
Bd ∈ Rn×p is the input matrix, and C ∈ Rm×n is the sensing
matrix. The dimension m of the range space of C may be less
than n, implying that the observations are partial. Note that
we will assume p = n in this work, implying that the system
is fully actuated. A controllable underactuated discrete time
linear system can be converted to a fully actuated system
by grouping multiple time steps together and appropriately
redefining the control and measurement signals.

B. State Space Partitions

A common choice for partitioning a continuous space is
to partition it into convex polytopes. A convex polytope in
Rn is a convex set {x ∈ Rn|aTi x ≤ bi, } where ai ∈ Rn and
bi ∈ R for i ∈ {1, 2, . . . ,m}. These m constraints can be
represented by a matrix L ∈ Rm×n and w ∈ Rm as Lx ≤ w.
The advantage of such sets is that their images under affine
transformations remain as convex polytopes. Furthermore,
several algorithms exist for computing probability bounds
related to distributions over such sets [11].

C. Markov Decision Process

A Markov decision process (MDP) [10] is a tuple
(S,A, P ) where
• S is a set of states,
• A is a set of labels (or actions), and
• P is a probability transition function
P :S ×A→ Distr(S).

where Distr(S) is the space of probability distributions on
the set S. The MDP is assumed to evolve in discrete time
steps. At a given discrete time k ∈ N, an action a ∈ A is
chosen when the current state is s ∈ S. The state at the
next time step k + 1 is a random variable described by the
distribution P (s, a). We can denote the transition from si ∈
S to sj ∈ S due to action a as si

a−→ sj . Thus, P (si, a)(sj)
is the probability with which this transition will occur, given
that the initial state is si and action a ∈ A is chosen.

An execution of an MDP is a sequence of states
s0, s1, s2, . . . under a sequence of actions a0, a1, . . . such
that P (si, ai)(si+1) > 0. A policy π : S → A is a map that
assigns each state in S to an action A. When the policy
is fixed, the MDP reduces to a Markov chain (MC). An
execution of an MDP under policy π is a sequence of states
s0, s1, s2, . . . such that P (si, π(si))(si+1) > 0.

Let s � ♦g denote the logical condition that an execution
s0, s1, s2, . . . exists such that s0 = s and there exists i ≥ 0
such that si = g. The probability with which this will occur
in an execution beginning at s is denoted as Pr(s � ♦g).
The probability that i ≤ N is denoted by PrN (s � ♦g). If
the execution is determined by a policy π, then we denote
the same probability as PrπN (s � ♦g)

D. Recursive Estimation

Given a partially observable dynamical (control) system,
a belief is a probability distribution representing the estimate
of the true state of the system. The belief space B is the set of
all possible beliefs regarding the true state. We assume that
there exists a recursive estimator F : B×U×Y → B for such
a system, which maps the current belief bk, control action
uk and resulting measurement yk+1 into a new belief bk+1.
In other words, the new belief is bk+1 = F (bk, uk, yk+1).

The measurement y which will be received is unknown,
but can be represented as a random variable that depends on
the (future) true state and noise. This measurement is used to
update the future belief of the system. The current belief b,
action u, and the model of the dynamical system together can
be used to generate a distribution over the possible expected
value of F (b, u, ·), since y is unknown but is This distribution
will be denoted as pF (b, u). In this paper, we will represent
a belief by its mean and covariance.

E. Problem Statement

Consider a system with state space Q ⊂ Rn and dynamics
given by (1). Let F be a recursive filter designed for the
system (1). Let Qf be a connected subset of Q, and N ∈ N
be a desired final time. Let q(k) be the unique solution of (1a)
given a control signal u(k), where k ≥ 0. Given an initial



probability distribution b0, derive a control u(k) ⊂ U ∀k ∈
[0, N ] which maximizes the probability that q(N) ∈ Qf .

III. FILTER-BASED ABSTRACTION

Given an MDP, techniques from model checking [10]
can be used to determine whether a certain state can be
reached from a set of initial states or not. These techniques
have been modified in order to obtain a method to generate
controllers that can guarantee that a goal state will be reached
from a given initial state. Furthermore, reachability while
avoiding certain unsafe states can also be achieved. In order
to extend these methods to continuous state systems, finite-
state abstraction methods have been proposed [3], [12], [13]
which capture the relevant behavior of the continuous system
in the form of an MDP or transition system [10].

However, these methods assume that the true state is
known when implementing the control policy derived from
the abstraction. When the state is uncertain, it is not clear
which action should actually be used. Even if the correct
action is selected in a discrete state, it is not clear whether the
corresponding continuous control action when applied to the
estimated continuous state will result in the true continuous
state achieving the intended transition. Thus, the guarantees
available for the case in which the complete true state is
measured precisely will not necessarily extend to the case in
which the state is uncertain due to noisy measurement, even
when the uncertainty is low.

A common method for dealing with uncertainty in the state
is to derive control policies by solving planning problems in
the belief space [7], [14], [15]. The control is selected based
on the current belief, instead of the (unknown) current true
state. For example, value iteration algorithms used to solve
for the optimal policy in MDPs are extended to POMDPs by
solving for a value function defined on the belief space [7].
In [14], [15], the state space is continuous, and hence the
planning method in [7] cannot be applied. These planning
methods use an extended Kalman filter (EKF) to maintain
a belief (represented by a Gaussian distribution) which is
updated whenever measurements are received. The EKF
update equations define the dynamics of the belief, which
we refer to as the filter dynamics.

We are motivated to define a finite-abstraction of the
belief space using the filter dynamics in order to derive
controllers that can guarantee reachability. However, given
that the measurements are random, we can only guarantee
probabilistic reachability. The planning methods in [14], [15]
can maximize the probability of reaching a desired belief.
However, these methods rely on predicting the future beliefs
obtained resulting from a given initial belief and a sequence
of actions. This is done by assuming that the measurement
(which is random) in a state will equal its expected value.
This is known as the assumption of maximum likelihood
measurement. Due to this ability to predict the evolution
of the beliefs deterministically, these methods are similar to
model predictive control techniques.

In order to depend on the probabilistic guarantees we seek
to obtain, we need to relax the assumption of maximum
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Fig. 1. Paritition of the continuous state space Q ⊂ R2. Each polytope is
an element of P .

likelihood estimation. Indeed, the use of this assumption in
deriving a control policy may result in unreliable perfor-
mance in practice [16]. The authors in [16] overcome this
limitation by picking a nominal trajectory and deriving a
locally-optimal controller that is robust to the randomness
of the measurement. The benefit of this approach is that
the state space does not need to be discretized, while the
disadvantage is that the control policy needs to be computed
online once the initial belief is specified. We believe that
a judicious discretization of the belief space is worth the
increased complexity in designing a controller, in order to be
able to compute control strategies offline. We now describe
the derivation of a finite-state abstraction of the belief space
and its dynamics.

The true state q is treated as a random variable Q̂ and is
represented as a belief b. The expected value of the belief
is µ = E[Q̂] ∈ Rn and the covariance is Σ = E[(Q̂ −
µ)(Q̂− µ)T ] ∈ Rn×n++ , where Rn×n++ is the space of positive
semidefinite matrices of rank n. We will represent the belief
b as the pair (µ,Σ).

We can partition Q into a set of polytopes P as depicted in
Figure 1. A key aspect of the method we propose is that this
partition P also serves as a partition of the the subspace
of B corresponding to the mean of the distributions. Let
the map T :Q → P assign a vector x ∈ Rn to one of the
elements of P . Given this partition, if the current belief is
b = (µ,Σ), then µ = E[Q̂] belongs to T (µ) ∈ P . Starting
from this belief, an action and measurement pair (u, y) in
the continuous space will result in a new belief b̄ = (µ̄, Σ̄),
based on the filter map F .

When only the control u is known, the future belief
b̄ = (µ̄, Σ̄) is a random variable since it depends on the
measurement which is random. We denote its probability
distribution function (PDF) by p(b̄|b, u), which is a joint PDF
over (µ̄, Σ̄). We marginalize it with respect to the random
variable Σ̄ in order to obtain p(µ̄|b, u), which is the PDF
of the expected value of the future belief given the current
belief b and control u. We denote the mean and covariance
of p(µ̄|b, u) by µ̃ and Σ̃ respectively.

The action is chosen such that E[p(µ̄|b, u)] ∈ T−1(Pj).
Once the measurement is received, b̄ may be such that µ̄
belongs to a partition Pk 6= Pj . The probability that µ̃ ∈
Pk depends on Σ̃. Thus, given a discrete state and action,
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Fig. 2. The filter update can be viewed as a two step process. The action
u from P1 defines a transition such that T (E[E[pF (b, u)]]) = P2, which
can be viewed as a deterministic transition. The measurement y results in
a new belief. Since y is a random variable, the effect of action u can be
viewed as a probabilistic transition from the state P2 (and thus from P1)
to other states.

we obtain a probability distribution on the resulting discrete
state. This process is depicted in Figure 2.

We can define an abstraction of the dynamics of
the mean (expected value) of the belief b as an MDP
M = (S,A, PΣ̃k

), where
• S = {s1, s2, . . . , s|P|} ∪ sa is a finite set states, one

for each partition in P and an absorbing state sa
representing Rn\Q. If Rn\Q = ∅ then sa = ∅,

• A = {a1, a2, . . . , a|P|} is a set of actions,
• PΣ̃k

:S × A → Distr(S) is a probabilistic transition
function.

Here, the subscript Σ̃k indicates that the transition prob-
abilities depend on the time-varying matrix Σ̃k ∈ Rn×n++ ,
where k denotes the time instant. For each state si ∈ S,
we can define a fixed point di ∈ T−1(si). The point di is
a target point in the partition corresponding to si. If for all
µ ∈ T−1(si), there exists dj ∈ T−1(sj) and a control u ∈ U
such that µ̃ = dj , then the action aj is said to exist in state
si. The action aj ∈ A in any state represents an attempt
to induce a transition from that state to the state sj ∈ S.
This definition of actions is one of many alternatives when
defining an abstraction M.

As mentioned earlier, the existence of an action aj that
ensures that E[p(µ̄|b, u)] ∈ T−1(sj) does not necessarily
imply that E[F (b, u, y)] ∈ T−1(sj). Furthermore, it is
possible that the updated belief has an expected value in
Rn\Q if the latter is non-empty, and so we include the
absorbing state sa in S.

For an action al ∈ A, the transition probabilities are given
by

(2)PΣ̃(si, al, sj)

=

{∫
x∈T−1(sj)

p(µ̄|b, u)(x)dx, l = j and si
aj−→ sj exists,

0, otherwise.

where the definition of PΣ̃ depends only on Σ̃ since we
require that µ̃ = E[p(µ̄|b, u)] is identical for all b = (µ,Σ).
This is achieved by choosing an appropriate control u for
each µ ∈ T−1(si). By definition of action al, such a control
u exists for each such µ.

In general, it may not be possible to compute the transition
probabilities in (2) exactly. However, efficient techniques to
bound the transition probabilities may exist. Thus, in practice
we may need to resort to an uncertain MDP [17], [18], in
which the transition probabilities belong to known sets. In
the next section, we will describe how to derive a control
policy for the abstraction that maximizes the probability of
reaching a goal discrete state.

IV. PLANNING USING FILTER-BASED ABSTRACTIONS

The continuous control objective consists of maximizing
the probability that a target set Qf is reached from an initial
state (or belief) within some finite time N . Once we have
formulated an abstraction M = (S,A, PΣ̃k

) that describes
the filter dynamics, maximizing the probability of reaching
Qf is equivalent to maximizing PrN (s � ♦g) where s ∈ S
represents the partition of Q that contains the initial belief,
and g ∈ S represents Qf . Thus, the control objective in the
abstraction is to design a planning algorithm which provides
a policy π that maximizes PrπN (s � ♦g). When the transition
probabilities in M are not known exactly, then we can only
compute a lower bound on PrπN (s � ♦g). In this case, the
control objective is to maximize this lower bound. Let the
lower bound be denoted by PrπN (s � ♦g).

Let the space of policies for M be Π. Then, the policy
π∗ ∈ Π that maximizes the lower bound on the probability
of reaching g from s in N steps is

(3)π∗ = arg max
π∈Π

PrπN (s � ♦g)

and the reachability probability is

(4)PrmaxN (s � ♦g) = Prπ
∗

N (s � ♦g).

We can compute π∗ by extending a value-iteration
method [18], [19] for the solution of parametric MDPs.
In [18], the method focuses on the case when each state
has only two successor states, and the transition probabilities
are fixed. In the abstraction M, each state has multiple
successors, and the transition probabilities vary due to their
dependence on Σ̃k.

In order to deal with the case where the covariance
changes, we capture the change by creating a larger MDP
Mp from N + 1 copies of S, one for each time step
k ∈ {0, . . . , N}. The transitions in Mp are defined such
that the transition probability from a state s in the kth copy
of S to a state s′ in the (k + 1)

th copy of S reflects the
covariance Σ̃k at the kth time step. The method from [18]
can then be applied to Mp.

V. LINEAR SYSTEMS WITH KALMAN FILTERING

In this section, we describe the details of obtaining a filter-
based abstraction of a discrete-time linear system driven by
Gaussian measurement noise, assuming that the state space
Q has been partitioned into a finite set of convex polytopes
P , and a Kalman filter [20] is used to update the belief.



A. Kalman Filter Equations
Let the current estimate of the true state q(k) at time step k

be represented by a Gaussian distribution with mean µk and
variance Σk. Assume that a control uk is selected. According
to the The Kalman filter equations, the predicted mean and
covariance are

(5a)µpredk+1 = Adµk +Bduk

(5b)Σpredk+1 = AdΣkA
T
d + Σw

where Σw is the covariance of the process noise. The
innovation ỹk+1 = yk+1−Cµpredk+1 is the difference between
the measurement received and the expected measurement.
The optimal Kalman gain Kk+1 is

(6)Kk+1 = Σpredk+1C
T
(
CΣpredk+1C

T + Σv

)−1

.

where Σv is the covariance of the measurement noise. The
updated mean and covariance is then

(7a)µk+1 = µpredk+1 +Kk+1ỹk+1

(7b)Σk+1 = (I −Kk+1C) Σpredk+1

where the updated covariance turns out to be independent of
the measurement received.

The innovation ỹ is a Gaussian random variable
ỹk+1 ∼ N

(
0, CΣpredk+1C

T + Σv

)
. Thus, given µpredk+1 but not

yk+1, the mean µk+1 is a Gaussian random variable with
mean µpredk+1 and covariance

(8)Σ̃k = Kk+1

(
CΣpredk+1C

T + Σv

)
KT
k+1.

B. Constructing the Abstraction
The abstraction of the filter dynamics is given by M =

(S,A, PΣ̃k
) as mentioned in Section III. Given the finite

partition of Q into convex polytopes P , we can define the
states as S = {s1, s2, . . . , s|P|} ∪ sa, where si = Pi and
sa is an absorbing state that represents Rn\Q. The set of
possible actions in a state is A = {a1, a2, . . . , a|P|}. The
implementation of action aj in state si as a continuous
control input involves the selection of a control u ∈ U given
µ = E[Q̂] ∈ T−1(si) such that the resulting predicted mean
of the belief µpred = Adµ+Bu is equal to the target point
dj ∈ Pj associated with discrete state sj .

C. Determining Transition Probabilities
Given a belief b = (µ,Σ), the PDF of the expected value

of the future belief under action u is a Gaussian distribution
with mean µ̃ and covariance RKỹ

given by the right hand
sides of (5a) and (8) respectively. We use an implementation
of the algorithm in [21] to compute the right hand sides of
(5a). The method provides estimates of the numerical error
in the result, which are used to provide upper and lower
bounds on the true transition probability.

Given an initial covariance Σ0 representing the uncertainty
in the estimate of the true state, the covariance Σk at
subsequent time steps k ∈ n can be computed using (7b)
repeatedly. The transition probabilities used in the value
iteration [18] at the kth time step are computed using the
covariance matrix Σ̃k, given by (8).
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Fig. 3. The plane is partitioned into 122 regions, depicted here as 121
squares in a 11× 11 grid. The region outside this grid is the 122nd state,
which is treated as an absorbing state. Each unit square - marked by a
colored box - represents a single discrete state, and is identified by the
number located inside this box. The state numbered 61 contains the origin
at its centre.

VI. SIMULATION

In this section, we show the results of computing a policy
that maximizes a lower bound on the probability of reaching
the origin for a discretized double integrator system. This
system has a 2-dimensional state space, with discretized
double integrator dynamics

(9a)q(k + 1) =

[
1 τ
0 1

]
q(k) +

[
τ2

2
τ

]
u(k) + w

(9b)y(k) =
[
0 1

]
q(k) + v,

where q(k) ∈ R2 is the state at discrete time k. The control
u(k) ∈ R belongs to the control region U = [−5, 5]. The
terms w and v represent process noise and measurement
noise respectively, which are modeled as gaussian random
variables with mean 0 and variance Σv = 0.3 and Σw = 0.3
respectively. The sampling period of the discretization is τ ,
which has value 1sec in the results presented here.

The partition P of R2 consists of 121 squares of side 2
units, arranged in a 11 × 11 grid, as seen in Figure 3. The
centre of this grid is the origin. The initial covariance is

(10)Σ0 =

[
2 0
0 2

]
The planning horizon is N = 30. The objective is to find
a time-varying policy which maximizes the probability of
reaching the polytope containing the origin (state s61) within
these 30 time steps.

The results of the policy computation can be seen in Fig-
ure 4. The value iteration procedure described in Section IV
yields the maximum lower bound on PrπN (s � ♦g) over
all policies, for each time step k, where 1 ≤ k ≤ 30. The
probability of reaching the goal state depends on both the
uncertainty of the state estimate (represented by Σk), and the
number of time steps remaining, i.e., N −k. As k increases,
the Kalman filter reduces the uncertainty in the state estimate.
However, due to the limited control authority, the goal may
not be reached from some states when N − k is small. This
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Fig. 4. This figure shows the computed lower bound Prmax
N (s) on the

probability of reaching the goal state s61 from the state si, at different times
steps k, over a planning horizon N = 30 time steps. For small k, the trace
of Σk is large, and therefore the probability of reaching the goal state is
not very high (red line). As estimation proceeds, the uncertainty decreases,
therefore the lower bound on the probability of reaching the goal states
increases. This can be seen in the plot for k = 15 (blue dashed and dotted
line). The probability increases from k = 1 to k = 15 despite the decrease
in the remaining time N − k. For k close to N = 30, the probability of
reaching the goal state from most states is small or even zero, since the
goal state cannot be reached from most states in a small number of steps
(green dashed line).

tradeoff is captured by the computed lower bounds, as seen
in Figure 4.

As an illustrative example, we provide the computed
optimal policy for state s57. The policy for the remaining
states are omitted due to space constraints. The optimal
policy π∗k(s57) is

(11)π∗k(s57) =


a69 , if k = 1 or k = 2,

a57 , if k = 30,

a81 , otherwise.

The choice of action a69 at k = 1 in state s57 would
result in reaching the goal at k = 4, via s69 and s62,
assuming the intended transitions are achieved. In contrast,
choosing action a81 at some time instant k′ > 2 results
in reaching the goal at time step k′ + 2, via s81. In other
words, the method determines that a longer path has a higher
probability of reaching the goal when the uncertainty is high,
but chooses a shorter path when the uncertainty reduces.
Thus, the proposed method takes into account the sensing
and control limitations of the system while planning over
finite horizons.

VII. CONCLUSION

We proposed a filter-based abstraction for dynamical sys-
tems with noisy and partial measurement. We also presented
a planning method which used this abstraction to compute
an optimal control policy in the discrete state space of the
abstraction. The optimal policy maximizes the lower bound
of the probability of reaching a goal state in finite time
from any initial state. The derived control policy can then
be implemented by a continuous control signal which will
achieve this bound. We demonstrated the planning method
on a simple continuous control system.
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