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Abstract— This paper provides a new tool for verifying
behavior of path-following controllers. Use of this tool in-
volves evaluating the monotonicity of the controller with
respect to the state. The resulting verification process is
therefore simpler than Lyapunov-based methods. More-
over, the evaluation may be performed directly using ob-
servation data, without relying on a dynamics or sensor
model to be learned. The verification is therefore prac-
tical in the context of data-driven control and feedback
from information-rich sensors. Knowledge of dynamics or
sensor models permits offline verification and design, as
shown in several examples.

Index Terms— Robotics; Nonholonomic systems; Stabil-
ity of nonlinear systems; Autonomous vehicles; Data driven
control.

I. INTRODUCTION

PATH-FOLLOWING for mobile robots using information-
rich sensors like LiDAR or cameras is an important con-

trol application [1], [2]. A critical step in the control design is
to certify that the path will be followed in some sense when us-
ing the sensor-controller combination. Lyapunov methods [3]
are commonly used to show stability and convergence to the
path due to the nonlinearity of the closed-loop system [4]–[10].
However, Lyapunov methods present two challenges. First,
designers must often exploit details of the closed-form system
equations to find valid Lyapunov functions, making the process
highly specific to the dynamics and controller combination.
Second, modeling closed-loop systems where information-rich
sensors are part of the loop [2], [11] often relies on data-driven
models of the sensor readings [12], [13]. Such sensor models
are often too complicated for manual verification and highly
specific to the environment in which the data are collected.

Recent research efforts try to leverage computational tools
to overcome both the challenge of finding Lyapunov func-
tions [14], [15] for nonlinear systems and the challenge of
handling closed-loop models for sensor-based path-following
controllers [12], [13]. These methods are often computation-
ally expensive [12], and the guarantees are unlikely to be
robust to changes in the model. The work in [14] reports a
fast search for a Lyapunov function with some robustness to
changes in path curvature, but it is unclear if their method
will scale to closed-loop models that must account for sensing,
as in [12]. Finally, these algorithms are typically incomplete,
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Fig. 1: A wheeled mobile robot (WMR) with forward speed v, and
angular velocity ω. The curved black line represents a local segment
of the path P , with instantaneous path curvature κ, that the WMR
must follow. The local Frenet-Serret frame (red) attached to the path
is also shown. The WMR’s state consists of the cross-track error p
and angle θ with respect to the path.

meaning they may fail to find a Lyapunov function even if
one exists.

This paper develops a framework for path-following con-
troller verification based on monotonicity of the closed loop
dynamics terms with respect to the state. This framework can
address the two limitations above. First, checking monotonic-
ity does not rely on any candidate function, making it easier
to apply than Lyapunov methods. Second, monotonicity of the
closed-loop can sometimes be determined from monotonicity
of the controller, as we show for some path-following systems.
The latter can be verified online in an environment without
access to a dynamics model or a sensor model, paving the
way for practical verification of learned controllers using
information-rich sensing. Availability of these models enables
offline verification and design.

The main innovation is to define a target closed-loop
dynamics model that enables proof of asymptotic stability
even if exact closed-form expressions for some terms in the
model are unavailable. Our choice of the target dynamics and
the monotonicity conditions will enable straightforward veri-
fication of nonlinear path-following controllers in Section IV
using different types of feedback and for different wheeled
kinematics. Therefore, this paper provides a new and effective
tool for path-following controller verification. Earlier work
in [16] analyzed a specific control law and dynamics using
stability in the sense of Lyapunov. Here, we use Poincare maps
to analyze the target dynamics.

II. PATH-FOLLOWING OVERVIEW

A planar path P refers to a curve in the plane R2. We
can express the kinematics of the robot in a local state-
space representation known as the “orthogonal projection” [17,



p.132] of the robot’s centroid C about a path P . The closest
point P on P to centroid C defines a local Frenet-Serret
frame, inducing path-local variables θ and p, with arc length s
defining the 1D coordinate of P on P . Variable p is the signed
distance of the point P from the path, and θ is the difference
between the heading direction of the mobile robot and the
tangent to the path. The robot has a linear or forward velocity
v and an angular velocity ω about C. Figure 1 depicts these
quantities.

A generic curve will have a varying curvature κ(s) along
the path. Convergence to such a path is impossible without
feed-forward control of the path. Therefore, we restrict our
study to fixed-curvature paths, meaning κ(s) ≡ κ. Under fixed
curvature, we obtain the following dynamics model for state
x⃗ = (θ, p):

ṗ = v sin θ, and (1)

θ̇ = ω − v cos(θ)κ/(1− κp). (2)

The path-following problem is to design a controller that
specifies velocities v, ω that ensure that p(t) → 0 as t → ∞
and that ṡ(t) > 0 for all time.

The path-following verification problem is to verify that
the designed controller will solve the path-following problem.
This paper focuses on this second problem.

III. TARGET CLOSED-LOOP PATH-FOLLOWING SYSTEM

Our goal is to present a simple and practical method for
analyzing path-following controllers. We begin by formulating
the path-following dynamics in Section II in terms of a target
closed-loop dynamics for state x⃗ = (θ, p):

ṗ = v (θ, p)m(θ), and (3)

θ̇ = fθ (θ, p) , (4)

where m(θ) is an odd function and fθ(0, 0) = 0. These target
dynamics assume that some feedback law v (θ, p) and ω (θ, p)
has been chosen and κ(s) ≡ κ. Furthermore, we assume that
the functions v (θ, p), m(θ), and fθ (θ, p) are continuously
differentiable. Under these assumptions, the origin is an equi-
librium, and solutions to this system are well-defined and exist
for all time.

Notation: We denote a specific state with a subscript, for
example x⃗i = (θi, pi). The solution of (3)-(4) starting from
initial condition x⃗0 ∈ D is x⃗ (t; x⃗0) = (θ (t; x⃗0) , p (t; x⃗0)),
where t is time. When x⃗i is associated with a trajectory
x⃗ (t; x⃗0), then x⃗i = x⃗(Ti; x⃗0). We denote the interior of set S
by Int (S), the boundary of S by ∂S, and closure of S by S.
Finally, let Qi denote the interior of the ith quadrant:

Q1 = {x⃗ ∈ R2 : θ > 0, p > 0},
Q2 = {x⃗ ∈ R2 : θ < 0, p > 0},
Q3 = {x⃗ ∈ R2 : θ < 0, p < 0}, and

Q4 = {x⃗ ∈ R2 : θ > 0, p < 0}.

Conditions under which the origin of (3)-(4) is asymptoti-
cally stable will become tools for stability verification as well

as constraints on the control laws v (θ, p) and ω (θ, p) designed
for (1)-(2). The conditions are given by:

∂fθ
∂θ

< 0 and
∂fθ
∂p

< 0∀x⃗ ∈ R2, (5)

∃α > 0 s.t. v (θ, p)m(θ)θ ≥ αθ2 ∀x⃗ ∈ R2, and (6)∣∣∣∣ v (−θ, p)fθ (−θ, p)

∣∣∣∣ ≥ ∣∣∣∣ v (θ, p)fθ (θ, p)

∣∣∣∣ ,∀x⃗ ∈ Q1 ∪Q3. (7)

Condition (5) effectively implies that the angular velocity is
monotonic in the states. Condition (6) requires that ṗ depends
in a reasonable way on the signs of v and θ, and cannot be
small when θ is not. Condition (7) stipulates that the robot
spins faster than it moves (smaller turning radius) when it is
pointing away from the path (x⃗ ∈ Q1∪Q3) compared to when
it is pointing towards the path (x⃗ ∈ Q2 ∪Q4).

Remark 1: When v (θ, p) ≡ vc > 0, a constant, and m(θ) =
sin θ, then (5) implies (6) and (7), but on a bounded subset of
R2 where |θ| < θmax < π/2.

Condition (5) ensures that the set of points where fθ (θ, p)
vanishes forms a curve that can be represented by a function
p = h(θ):

Lemma 1: Let fθ satisfy (5). Then, there exists a continuous
function h : R→ R such that the following conditions hold:

(i) h(0) = 0,
(ii) fθ(θ, h(θ)) = 0

(iii) h is strictly decreasing, and
(iv) Inverse h−1 exists.

Proof. Given condition (5), the implicit function theorem
guarantees existence of a unique function h(θ) such that
fθ(θ, h(θ)) = 0. Since fθ(0, 0) = 0 in (4), therefore h(0) = 0.
The derivative h′ of h is

h′(θ) = −
∂fθ
∂θ
∂fθ
∂p

,

which is strictly negative due to (5), and bounded under the
assumption that fθ is continuously differentiable. By integra-
tion, this strict negativity implies that h is strictly decreasing.
Finally, since h′ < 0, the inverse function theorem implies
that h−1 : R→ R exists.

Lemma 1 allows us to divide R2 into two connected sets F+

and F− based on the sign of fθ (θ, p), with common boundary
F0:

F+ = {x⃗ ∈ R2 : p < h(θ)},
F0 = {x⃗ ∈ R2 : p = h(θ)}, and

F− = {x⃗ ∈ R2 : p > h(θ)},

where

(θ, p) ∈ F+ ⇐⇒ fθ (θ, p) > 0

(θ, p) ∈ F0 ⇐⇒ fθ (θ, p) = 0, and
(θ, p) ∈ F− ⇐⇒ fθ (θ, p) < 0.

Conditions (5)-(6) will result in trajectories starting from
the initial conditions of the form (θ0, 0) to return to the θ-
axis at an angle with sign opposite to that of θ0, unless the
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Fig. 2: A graphical illustration of Lemmas 3 and 4. The red trajectory
represents a trajectory for which TF < ∞. The magenta trajectory
represents a trajectory in which TF = ∞; the trajectory approaches
the origin. The dashed orange line is the reflected curve in Lemma 4,
which bounds the (red) trajectory in Q2.

trajectory asymptotically reaches the origin. An example of
such a trajectory is depicted in Figure 2. To prove the claim
above, we need the following result.

Lemma 2: Consider the dynamical system ˙⃗x(t) = f(x⃗(t)) for
x⃗(t) ∈ R where f is locally Lipschitz. If f(x⃗) ≤ −ϵ < 0 for
all x⃗ ∈ [a, b] and some ϵ > 0 then for any solution x⃗(t; x⃗0)
where x⃗0 ∈ [a, b] ∃T <∞ such that x⃗(T ) = a.

Proof. The proof applies the Comparison Lemma [3]. Con-
sider the dynamical system u̇ = −ϵ = f̄(u) where u(0) = b
with state u ∈ R. Then, u(t) = b − ϵt and u

(
b−a
ϵ

)
= a. For

the system in x⃗, by assumption x⃗0 ≤ u(0) and ˙⃗x ≤ f̄(u(t))
for any t. Therefore, by the Comparison Lemma, x⃗(t) ≤ u(t),
which in turn implies that ∃T such that x⃗(t) = a.

We now prove that the claim above regarding the behavior
of trajectories starting from θ-axis:

Lemma 3: If the system (3)-(4) satisfies conditions (5)-(6),
then for every solution x⃗(t; x⃗0) = (θ (t; x⃗0) , p (t; x⃗0)) where
x⃗0 = (θ0, 0) ̸= 0 there exists Tg < Tp < Th < TF ≤ ∞ such
that

(i) x⃗ (t; x⃗0) ∈ Q1 ∪Q3∀ t ∈ [0, Tp],
(ii) θ(Tp; x⃗0) = 0 and 0 < |p(Tp; x⃗0)| <∞,

(iii) p(Tg; x⃗0) = h (−θ(Tg; x⃗0)),
(iv) p(Th; x⃗0) = h (θ(Th; x⃗0)), and
(v) p(TF ; x⃗0) = 0 and 0 ≤ |θ(TF ; x⃗0)| ≤ |θ(Th; x⃗0)|.

Proof. By symmetry about the θ-axis, the arguments for initial
conditions where θ0 > 0 and will repeat for those where θ0 <
0, so we only consider the first case.
i) Trajectory enters Q1:
By choice of x⃗0, ṗ(0) > 0, therefore there exists sufficiently
small ϵ > 0 such that x⃗(t; x⃗0) ∈ Q1 for t ∈ (0, ϵ). Let T1 ∈
(0, ϵ), so that x⃗(T1; x⃗0) = x⃗1 ∈ Q1.
ii) Trajectory reaches the positive p-axis:
We now show that the trajectory must reach the p-axis ({x⃗ =
(θ, p) : θ = 0}) in finite time, using a non-zero upper bound
for θ̇. Let Y = [a, b] × [c, d] ⊂ R2, where a < b and c < d.
The monotonicity condition (5) implies that for (θ, p) ∈ Y −
{(a, c), (b, d)},

fθ(a, c) > fθ(θ, p) > fθ(b, d). (8)

We define Y1 = (0, p1) × (θ1, pmax). Due to (8), 0 >
f(0, p1) > fθ(x⃗) for x⃗ ∈ Y1. If we define

θ̇ = f̄(θ) = max
p1≤p≤pmax

fθ (θ, p) ,

by Lemma 2, we conclude that there exists finite T > 0 such
that θ(T ; x⃗1) = 0. For t ∈ [T1, Tp), x⃗(t; x⃗0) ∈ Q1, therefore
ṗ(t) > 0 over this interval. As a consequence, p(Tp; x⃗0) >
p1 > 0. Taking Tp = T1 + T , we see that x⃗p lies on the
positive p-axis. Since Tp is finite, p(Tp; x⃗0) <∞.
iii) Trajectory crosses p = h(−θ):
Since p(Tp; x⃗0) > h (−θ(Tp; x⃗0)) and p0 < h (−θ0), by
the intermediate value theorem, there exists Tg such that
p(Tg; x⃗0) = h (−θ(Tg; x⃗0)).
iv) Trajectory reaches line p = h(θ):
On a sufficiently small open set containing x⃗p, θ̇ < 0.
Therefore, there exists T > 0 such that θ(T ; x⃗p) < 0. Let

Y2(x⃗2) = {(θ, p) ∈ F− : θ ≤ θ2},

for some x⃗2 ∈ Q2. The boundary of Y2(x⃗2) is defined by F0

and the line θ = θ2. Given x⃗2 ∈ F−∩Q2, meaning that θ2 < 0
and p2 > h(θ2), for any x⃗ ∈ Y2(x⃗2),

ṗ ≤ −α|θ2| and θ̇ ≤ 0.

Therefore, trajectories starting in Y2(x⃗2) cannot exit through
θ = θ2. The derivative

d

dt
(p− h(θ)) = ṗ− h′(θ)θ̇ ≤ −α|θ2|

is strictly negative . By Lemma 2 , there must exist a finite
time T ′ where p(T ′; x⃗2) − h(θ(T ′; x⃗2)) = 0, which implies
that x⃗(T ′; x⃗2) ∈ F0. Taking x⃗2 as x⃗(T ; x⃗p), with T defined
in the previous paragraph, we can define Th = Tp + T + T ′,
so that x⃗(Th; x⃗0) ∈ F0.
v) Trajectory reaches p = 0:
Consider the closed set Y3(x⃗3) = {x⃗ ∈ F+ ∩ Q2 : θ ≥ θ3},
for some x⃗3 ∈ F+ ∩ Q2. The boundary of this set consists
of three curves corresponding to subsets of F0, θ = θ3 and
p = 0. For the trajectory x⃗(t; x⃗3) either there exists T < ∞
such that t > T =⇒ x⃗(t; x⃗3) /∈ Y3(x⃗3), or x⃗(t; x⃗3) ∈ Y3(x⃗3)
for all t ≥ 0. If a finite T exists, then x⃗(T ; x⃗3) /∈ F0 ∩ Q2,
since ṗ < 0 on this set but exiting through F0 requires ṗ > 0.
Similarly, θ(T ; x⃗3) ̸= θ3 since θ̇ ≥ 0 on the boundary of
Y3(x⃗3) corresponding to θ = θ3. Therefore, if such a finite T
exists, x⃗(T ; x⃗3) must lie on the θ-axis. Moreover, θ(T ; x⃗3) ≥
θ3. If no such T exists, then x⃗(t; x⃗3) ∈ Int (Y3(x⃗3)) for all
t > 0. In that case, ṗ < 0 and θ̇ > 0 for all t > 0. The only
way for this situation to hold is that

lim
t→∞

x⃗(t; x⃗3) = (0, 0).

Taking x⃗3 = x⃗h, and TF = Th+T in the first case or TF =
∞ in the second, we get θ(Th; x⃗0) ≤ θ(TF ; x⃗0) ≤ 0.

A useful consequence of Lemma 3 is as follows, which
allows local asymptotic stability analysis.

Corollary 1: Any domain of the form

Y (θmax, pmax) = [−θmax, θmax]× [−pmax, pmax] , (9)



where (5)-(7) are satisfied for all x⃗ ∈ Y (θmax, pmax) contains
a forward invariant subset containing the origin in its interior.

Proof. There must exist δ > 0 sufficiently small such that both
x⃗(t; (δ, 0)) and x⃗(t; (−δ, 0)) lie entirely within Y (θmax, pmax),
otherwise Lemma 3 is contradicted. For any such δ, the
solutions x⃗(t; (δ, 0)) and x⃗(t; (−δ, 0)) over their respective
time intervals of the form [0, Tp] and their reflections about the
p-axis together define a forward invariant set that lies within
Y (θmax, pmax).

Lemma 3 is useful, but not sufficient. The quantity
|θ(TF ; x⃗0)| needs to be small enough, which the next result
helps establish, through |θ(Th; x⃗0)|.

Lemma 4: Let conditions (5)-(7) hold for system (3) and (4).
Then

|θ(Th; x⃗0)| ≤ |θ(Tg; x⃗0)|. (10)

Proof. The proof again looks at only one case, x⃗0 ∈ Q1, since
the other case uses identical arguments. The idea in the proof
is that the arc of the trajectory x⃗(t; x⃗0) from [Tp, Th] (red
curve in Figure 2) must lie below the arc of the trajectory
from [Tg, Tp] when the latter is reflected about the p-axis
(dashed orange curve in Figure 2). Due to the monotonicity of
h(θ), this ‘bound’ on the former arc will imply (10). Lemma 3
ensures Tg , Tp, and Th are well-defined.

By Lemma 3, for any initial condition (θ0, 0) where θ0 ̸= 0,
θ(t; x⃗0) is monotonic for t ∈ [Tg, Th]. We can define an inverse
function T−1(θ; x⃗0), so that

p(t; x⃗0) = p(T−1(θ; x⃗0); x⃗0) := p(θ; x⃗0).

The reflected curve ←−p (θ; x⃗0) is simply

←−p (θ; x⃗0) = p(−θ; x⃗0).

We compare ←−p (θ; x⃗0) and p (θ; x⃗0) over the domain
[0,−θh], by time-reversing the dynamics of p to get the
dynamics for ←−p . We can derive the curves as solutions of
the following ODEs over interval [0,−θh]:

dp

dθ
=

dp

dt

dt

dθ
=

v (θ, p)m(θ)

fθ (θ, p)
≤ 0, and (11)

d←−p
dθ

= −v (−θ, p)m(−θ)
fθ (−θ, p)

=
v (−θ, p)m(θ)

fθ (−θ, p)
≤ 0 (12)

For x⃗ ∈ Q1, if (7) holds then

v (−θ, p)m(θ)

fθ (−θ, p)
≤ v (θ, p)m(θ)

fθ (θ, p)
.

By Lemma 2, ←−p (θ) ≤ p(θ) on θ ∈ [0,−θh]. Equivalently,
p(θ) ≤ ←−p (θ) on θ ∈ [θh, 0], as seen in Figure 2.

Now, ∃0 < θ ≤ θg such that ←−p (θ) = h(−θg), otherwise
←−p (θg) > p(θg) = h(−θg), contradicting the conclusion
above. Since ṗ < 0 for x⃗ ∈ F− ∩ Q2, we must have
ph ≤ h(−θg). Since h is strictly decreasing,

−θg ≤ θh < 0.

By applying the same ideas to trajectories in Q3 ∪ Q4, the
proof is complete.

The results above allow us to show global asymptotic
stability of the origin.

Theorem 1: If the system described by (3) and (4) satisfies the
conditions (5)-(7), then the origin is (globally) asymptotically
stable.

Proof. Since conditions (5)-(7) hold, Lemmas 3 and 4 together
imply that

|θF | ≤ |θh| ≤ θg < θ0 (13)

for any θ0 ∈ R where θ0 ̸= 0. We can define the line p = 0
as a Poincare section. If θi is the ith intersection, then (13)
implies that θi+1 < θi. As a result, iterates of the Poincare
return map converge to the point (0, 0). Therefore, the origin
is (globally) asymptotically stable.

Therefore, conditions (5)-(7) guarantee global asymptotic
stability of the origin of the target system (3) and (4). Theo-
rem 1 can also be adapted to situations where the conditions
are only shown to hold on a subset of R2:

Corollary 2: If conditions (5)-(7) hold on a subset of the form
in (9), then the origin is locally asymptotically stable.

Checking condition (5) in a state does not require knowl-
edge of that state, but (6) and (7) appear to. A simple way
to overcome this dependence is to choose a constant forward
velocity, as mentioned in Remark 1. Another way is to make
v (θ, p) depend on (θ, p) through ω (θ, p) (see Example 4).

IV. EXAMPLES

In this section, we apply the conditions from Section III
to propose and analyze designs for path-following controllers
under different scenarios. We aim to show that practical, but
nonlinear, controllers are easily analyzed using the proposed
framework. Examples 1-4 assume state-feedback, while Ex-
ample 5 uses range-based sensing.

Figure 3 shows trajectories resulting from the controllers
in each example. All parameters in the simulations have unit
value, except κ = 0.02m−1, pmax = 5m, and γ = π/3 rad.

Example 1 (Differential drive, fixed curvature): Differential
drive robots have inputs that are exactly the velocities v and
ω. We choose control laws for these inputs to be

v (θ, p) = vc, and (14)
ω (θ, p) = −ωc tanh (kθθ + kpp) + ωFF , (15)

where vc is a constant positive linear velocity, ωc is a constant
angular velocity, ωFF is a constant feed-forward angular
velocity, and kθ, kp are positive feedback gains. This control
is a saturated linear feedback with a feed-forward term. The
partial derivatives of the input ω (θ, p) are

∂ω

∂θ
= −ωc

(
1− (tanh (kθθ + kpp))

2
)
kθ, and (16)

∂ω

∂p
= −ωc

(
1− (tanh (kθθ + kpp))

2
)
kp. (17)

Clearly, the partial derivatives of ω with respect to both θ and
p are negative for any x⃗ ∈ R2.



Fig. 3: Simulation results of the closed-loop systems in Examples 1-
5 with initial condition (1rad, 0m). The state approaches the origin
in all examples except for Example 2, as no feed-forward is used,
where the equilibrium is (0rad,−0.02m). Dashed lines indicate the
corresponding set F0, which overlap for Examples 1, 3 and 4.

These control laws turn (1)-(2) into the closed-loop system

ṗ = vc sin θ, and (18)

θ̇ = −ωc tanh (kθθ + kpp) + ωFF −
vc cos(θ)κ

(1− κp)
, (19)

where κ is the (fixed) curvature.
The partial derivatives of fθ (θ, p) (RHS of (19)) are

∂fθ
∂p

=
∂ω

∂p
− vc cos θ

(
κ

1− κp

)2

, and (20)

∂fθ
∂θ

=
∂ω

∂θ
+ vc sin θ

κ

1− κp
. (21)

From (17) and (20), ∂fθ
∂p < 0 for any x⃗ ∈ R2. For ∂fθ

∂θ , the
second term in (21) is sign indefinite. However, for any set
Y (θmax, pmax) (see Equation (9)), where pmax < 1/κ and
θmax < π/2, if

ωc

(
1− (tanh (kθ|θmax|+ kp|pmax|))2

)
kθ > vc

|κ|
1− |κ|pmax

,

then ∂fθ
∂θ < 0 for x⃗ ∈ Y (θmax, pmax).

When
ωFF = vcκ,

then the origin is a unique equilibrium of (18) and (19), since
the other terms in (19) are monotonic in p. Therefore, under
inputs (14) and (15), the closed-loop dynamics (18) and (19)
satisfies conditions (5)-(6). By Theorem 1, Remark 1, and
Corollary 2, the origin is (locally) asymptotically stable.

Example 2 (No feed-forward angular velocity): Consider
Example 1 again. If ωFF ̸= vcκ, then the origin is not an
equilibrium of (18) and (19). An equilibrium will be of the
form (0, p∗) where p∗ must be a solution to the equation

−ωc tanh (kpp) + ωFF = vc
κ

1− κp
.

Since the left hand side (LHS) is monotonically decreasing
in p and the RHS is monotonically increasing in p, for small
enough vc, such a p∗ exists and is unique.

The dynamics can now be modified by transforming the
state from (θ, p) to (θ, p̄) where p̄ = p−p∗, so that the resulting
closed-loop system is.

˙̄p(θ, p̄) = vc sin θ, and (22)

θ̇(θ, p̄) = f̄θ = ω(θ, p̄)− vc cos θ
κ

1− κp̄
. (23)

Following the same arguments in Example 1, if we choose ω
and a domain Y (θmax, pmax) such that

∂ω

∂θ
< −vc

κ

1− κpmax
,

over that domain, where pmax < 1/κ and θmax < π/2, then
the origin of the closed-loop dynamics (22) and (23) will be
(locally) asymptotically stable. In turn, the original dynamics
is ultimately bounded. Thus, the robot will converge to moving
with a constant offset relative to the desired fixed curvature
path.

Example 3 (Bicycle model): For the bicycle model [8], [12],
[14], m(θ) = sin θ again, but

fθ (θ, p) =
v (θ, p)

L
tan δ − v (θ, p) cos(θ)κ

(1− κp)
,

where L is the distance between the front and rear wheels,
and δ is the steering angle of the front wheel, which is an
input. If we use the same control law for v as in (14) but
use the RHS of (15) as the law for control input δ, will the
resulting system be asymptotically stable? Since the function
tan is monotonically increasing on (−π/2, π/2), we can see
that the answer is automatically yes, but the origin’s region of
attraction is likely to be different, and equilibrium will be at
p∗ ̸= 0 unless ωFF = tan−1(Lκ).

Example 4 (De-tuned linear velocity): When vc is large,
the cross-track error p can increase significantly, which often
implies a crash with objects near the path. However, reducing
vc makes the robot slow when aligned with the path. A
practical solution is to use the following ‘de-tuned’ control
law for v (θ, p), as done in [16]:

v (θ, p) = vce
(−ω(θ,p)2). (24)

Since ω (θ, p) increases in magnitude with increase in θ
for x⃗ ∈ Q1 ∪ Q3, and the exponential is strictly positive,
conditions (6) and (7) will still hold on a similar region
compared to that for when v (θ, p) ≡ vc. Figure 3 shows that
maxt |p(t; x⃗0)| reduces compared to Example 1.

Example 5 (Range-based feedback): We analyze a robot that
uses two range sensors, one pointed to the left and the other
to the right, to navigate. The range sensors have an offset
of magnitude γ with respect to the robot heading. If the
distances returned by the left and right sensors are dL and
dR respectively, the angular velocity control law is simply

ω = 1/dR − 1/dL + ωFF , (25)

where ωFF is such that at p = θ = 0, ω = vcκ. The control
law (25) is easy to implement given range sensors, and avoids
delays due to state estimation. Is it guaranteed to work?
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Fig. 4: A robot using two range sensors to navigate between two
walls defining a curved corridor.

Figure 4 depicts this navigation strategy. Clearly, when the
distance is measured from the left wall at a point ahead of the
robot, increasing p and θ will decrease the measured distance.
The opposite is true when measuring distance from the right
wall. Therefore, when dL and dR are measured from the
left and right walls respectively, ω in (25) is monotonically
decreasing. Assuming v (θ, p) ≡ vc, we can again conclude
(local) asymptotic stability to a fixed-curvature path using
Theorem 1, Remark 1, and Corollary 2. While closed-form
expressions are not required to come to this conclusion, we
provide them below for completeness.
Zero curvature:
In a straight hallway of width 2pmax, we can derive a closed-
form expression for ω:

ω =


sin(θ−γ)
pmax−p −

sin(γ+θ)
pmax−p + vcκ if θ > γ,

sin(γ−θ)
pmax+p −

sin(γ+θ)
pmax−p + vcκ if |θ| < γ, or

sin(−θ+γ)
pmax+p −

sin(−γ−θ)
pmax+p + vcκ if θ < −γ.

One can check that ∂fθ
∂θ and ∂fθ

∂p are strictly negative for θ ∈
(−π/2, π/2) and |p| < pmax. Therefore, the path defined by
the center of the straight hallway is provably asymptotically
stable under the sensor-driven controller (25).
Non-zero curvature:
Distances to the right and left wall are respectively given by

drw(x, y) = y sin(x) +
√

(R+ pmax)2 − y2 cos2(x), and

dlw(x, y) = y sin(x)−
√

(R− pmax)2 − y2 cos2(x),

where R = 1/κ, y = R − p, and x = +γ for the left sensor
and x = −γ for the right sensor.

In all examples above, the robot converges to the desired
circular path unless ω(0, 0) ̸= vcκ, in which case the trajecto-
ries converge to an equilibrium (0, p∗) which corresponds to
a circular path with radius |R− p∗|.

V. CONCLUSION

This paper has proposed a method for analyzing planar path-
following controllers that involves checking the monotonicity
of control terms with respect to the state. As a consequence,
it enables a simpler way to predict the effect of using a
particular dynamics model (Example 3) or sensor (Example 5)
for feedback, compared to Lyapunov-based approaches.

Some limitations of the work include 1) the inability to
address time-varying closed-loop dynamics, which would cap-
ture environment properties like variable curvature, 2) the
qualitative nature of Corollary 1, and 3) the reliance on closed-
form sensor models or state-feedback in examples. Future
work will address these limitations.
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