Guaranteed obstacle avoidance of convex objects in 2D without object
tracking, environment mapping, or stopping
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Abstract— This paper proves that a simple range-based end-
to-end feedback controller avoids convex obstacles when its
heading is sufficiently far away from a head-on collision.
Sufficient is as small as nearly, but not exactly, O degrees for a
wall or circular object and at least 45 degrees for any convex
obstacle. The guarantees use a new modeling and analysis
framework for sensor-object interaction combined with a new
barrier function that are the main contributions. The controller
avoids state estimation, mapping, object tracking, and learning
from data. This guaranteed behavior is useful for navigating
safely around arbitrary convex obstacles. We demonstrate the
behavior of the controller in a simulated navigation scenario.

I. INTRODUCTION

Mobile robots that can autonomously navigate human
environments are a widely sought goal. Safe motion is
critical for such robots. Algorithms for collision avoidance
such as dynamic window approach (DWA) [1], vector polar
histogram (VPH) [2], and follow-the-gap (FTG) [3] use
2D LiDAR for feedback without mapping, localization, or
learning. These methods are typically effective, but lack
guarantees or formal analysis. Navigation methods that use
mapping [4], [5], localization [6], or learning [7], [8] are also
effective, but they also lack guarantees and may be foiled by
unpredictable edge cases.

Guarantees of safe motion are desirable but are currently
difficult to obtain. Methods to obtain guarantees have two
limitations: 1) they need access to an accurate environment
model [9], [10] and/or 2) they involve solving partial differ-
ential inequalities [11]-[15], which is generally difficult and
computationally expensive. These two properties together
make guarantees currently impractical to obtain for mobile
robots in dynamic, complex, or unseen environments.

Existing methods fail because safe decisions rely on being
able to model the environment online (localization, local
planning) or offline (stored maps or learning).

The main contribution of this work is to develop a model
for object-sensor interactions that enables prediction of end-
to-end controller behavior without requiring detailed object
geometry information. This model enables proof of the abil-
ity of a simple controller to avoid arbitrary convex obstacles.
A secondary contribution is to propose a barrier function
for collision avoidance in terms of relative position variables
to convex obstacles, and use it to derive a practical bound
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condition which may be of separate interest. This guaranteed
behavior is useful for navigating safely and competently in
a wide range of environments. No state estimation, map-
ping, object tracking, or learning is needed. We view this
simple controller as a reliable low-level reactive end-to-end
controller that adds virtually no latency between sensing
and action. Such low-level controllers enable execution of
higher-level decisions, perhaps through a subsumption-like
architecture [16]. They also enable safe exploration during
learning for navigation.

The paper is organized as follows. Section II describes
the mobile robot and sensor, Section III gives the problem
statement, and Section IV describes the proposed controller.
Section V uses a barrier function to provide a condition on
a kinematic controller that guarantees collision avoidance.
Section VI provides the main result: a formal analysis that the
proposed closed-loop behavior meets the conditions in Sec-
tion V. Section VII shows the performance of the proposed
controllers in simulations. We end with a discussion of the
limitations of the framework and potential future directions.

II. RANGE-BASED NAVIGATION IN THE PLANE

This section describes the mobile robot model and sensors
that this paper considers.

a) Mobile Robots: We consider kinematic models of
mobile robots with control inputs as a linear speed v along a
heading direction, and the rate of change w of that heading
direction. If the pose x € SE(2) of the mobile robot is x =

(z,y,p), then

T = v CoS ¢, y = vsin, and p=w. (1)

b) Range Sensor: We consider a mobile robot navi-
gating in a planar environment using a 2D range sensor
to navigate. We model a 2D range sensor using the range
return function r: ® — R that returns distances to objects
along directions parametrized by angle ¢ from a continuous
domain ®. These distances and angles are defined relative to
a frame centered at the sensor and fixed to the mobile robot.
Note that range r also depends on the poses of the objects
relative to the robot, however we suppress that dependence in
the notation for sake of readability. For wheeled robots, we
assume the angle ¢ = 0 corresponds to the forward heading
direction. The domain ® of ¢ depends on each sensor.

III. PROBLEM STATEMENT

Let O be a closed convex subset of R2, and let the distance
between the robot at pose x and the object at time ¢ be



d*(t). Design a controller that 1) ensures that d*(¢) > 0 for
all ¢ > 0 given appropriate initial conditions at ¢ = 0, 2)
ensures that v > 0 for all time, and 3) does not estimate the
relative pose of the object to the sensor.

Note that collision avoidance can be guaranteed in a
static environment when the robot is motionless; the second
part of the problem statement avoids this behavior. All
existing guaranteed collision avoidance approaches depend
on accurate relative pose information, so that achieving the
third part constitutes the contribution of the work.

IV. PROPOSED END-TO-END CONTROLLER

To solve the problem in Section III, we propose an end-
to-end range-sensor-driven controller. This controller maps
a range measurement, or range scan, r(¢) to control inputs
v and w of the system. Based on results in [17], [18], we
propose using a controller of the form

v = vce_a(<w”“>4’)2, and 2)
w=(w,r)e, 3

where o > 0, v, is a constant cruise velocity, and w: ® — R
is a weight function that parametrizes the functional (w,r)s
with input r(¢). This functional is given by

w(9)
, = do, 4
(w,r)e /¢>e<1>7"(¢)¢ 4)
where the weights are given by
w(¢) = —sin . 5)

These weights are zero in the robot’s heading. If r(¢) is
small for ¢ > 0, so that obstacle is to the left of the robot,
the robot turns to the right (w < 0). See Section VII for a
discussion on implementation of (4). The reciprocal of the
range r(¢) is the proximity

(6)

The functional in (4) is linear in the proximity scan p(¢).

V. GUARANTEED COLLISION AVOIDANCE CONDITIONS

We propose a candidate barrier function defined in a
suitable state space related to the relative position between
the robot and obstacle, and show that its value increases
when the forward velocity v and angular velcity w satisfy an
appropriate inequality. First, we define the state space model.

A. Collision Avoidance Kinematics

Given a one-dimensional curve 0O in the plane, we
express the relative motion between the robot and object in a
frame where one axis is defined by the normal to the object
boundary and another is tangent to it. Figure 1 provides
an illustration of this frame and the relative pose variables
x§ = (s,d*,0), where s is the arc length along the curve
00, d* is the distance of the point P from 9O, and @ is
the difference between the heading direction of the WMR

and the normal to the boundary. The relative pose dynamics

object

forward boundary 0O

. velocity v
"(9)

radius of
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Fig. 1: A wheeled mobile robot with forward speed v, and angular
velocity w. The curved black line represents a local segment of
the object boundary 0O with curvature p. A boundary-local frame
(green) is also shown. The WMR’s state relative to the object
consists of the minimum distances d* and angle 6 with respect
to the normal to the boundary. The red line shows a lidar return
r(¢) at a point on 0O, where ¢ < 0.

between mobile robot and object boundary consist of the
following equations:

$=wsinb,
d* = —vcos 0, and @)
b—wt vsinf
d* + p(s)’

where p(s) is the object’s radius of curvature at the arc length
s, v is the forward velocity control input, and w is the angular
velocity control input.

B. Barrier Function Analysis

The barrier function A we choose is
h(s,d*,0) = |0|d*. ®)

Theorem 1: Consider a convex object O and mobile robot
with pose x and pose dynamics in (1). Let the relative pose
x§ satisfy 0 < |9|< 7/2, and d* > 0. If

fw > 0 and v < 1.5|w|d", ©)
then i > 0, where h is given in (8).

Proof. Let sy = sign(6). The time derivative of h along
solutions of (7) is

h = sefd* + |0|d*

in6
= sy <w + (%) d* 4+ |0|(—v cos0)
d*vsg sin 0
= spwd* + ————— — v|f|cos
spwd* + &+ p(s) v|6|cos

> spwd* — v|0|cos 6.

For 0 < |0|< §, 0 < |f|cosf < 0.5611, so that

. 2
h > spwd* — 0.5611v > sgwd* — §U

If v < 1.5d*|w| and fw > 0 then h > 0. [

It is easy to satisfy (9) by designing a state-feedback
controller based on tracking the object through (d*,6). Our
goal is an end-to-end controller that satisfies (9) without
explicitly tracking objects, at least when d* is small.



VI. MODELING SENSOR-OBJECT INTERACTIONS

The analysis in Section V provides collision avoidance
conditions on w and v, given the relative pose xg of the
object with respect to the robot. We need to establish that v
in (2) and w in (3) will result in meeting these conditions
even though d* and ¢* are not estimated. To gain intuition on
why this is achievable consider the example of an infinitely
long straight wall as the only obstacle:

Example 1 (Angular velocity due to straight walls): A
suitable model for the range scan r(¢) due to any wall is

N
0= oo <2))

cos(¢—¢*)

Then, using controller (3) with weights (5), w is given by
_ *
w:/ —sin¢7cos(<g ")
@(xg)

. do=
Clearly, wf > 0. As d* — 0, |w|— oo, so that v — 0.
Therefore conditions (9) are met for small enough d*.

msing*  wsinf

2 d*

Our main insight is that the convexity of O, together
with the pose xg of the object relative to the robot provide
enough information to derive a similar, though conservative,
description for the behavior of v and w near the obstacle.

A. Range Scans of Convex Objects

This section shows that p(¢) = 1/r(¢) produced by
convex objects will be concave enabling characterization of
w. First, we characterize objects in terms of their view cones
and proximal angles, defined below and seen in Figure 2. We
assume that objects are not in collision with the sensor. The
object will affect the range scan over an interval ® (x§) C ®
of angles, which we call the view cone.

Definition 1 (View Cone): Any object O defines an interval
® (xg) C P corresponding to the field-of-view of the object
with respect to the sensor. This interval, the view cone,
corresponds to a cone in R? whose apex is at the sensor.
When working in the frame of the sensor, the view cone is
given by

O (xQ) = {pe®:It> 05t it [ggjﬂ c 0},

where t, if it exists, is the distance to some point in O.

An object that is not in collision with the robot will
also possess a non-zero minimum distance to the object.
The direction(s) corresponding to this distance constitute the

proximal angle(s) of the object, which depends on xfg.

Definition 2 (Proximal Distance): A proximal distance
d* (xg) of an object O is given by

d* (x§) = min_r(¢).

e (x§)
Definition 3 (Proximal Angle): A proximal angle ¢* (xg)
of an object O is given by

oM (Xg) =arg min 7r(¢).
be(x2)

T2

Fig. 2: An object O subtends a cone P (xg) at the sensor location.
The shape of the object produces a unique minimum distance d*
located at single angle ¢* € @ (x§).

Note that ¢* (x§) = —0. The view cone and proximal
angles depend on the shape of the object and its pose relative
to the sensor. Convex objects always produce a strictly
convex range scan, when not in collision with the sensor.
The formal result is below.

Lemma 1: Let O be convex and compact. Then, for any
object pose xp» where xg ¢ O
i) ® (x§) is compact and connected,
i) | (x§) <,
iii) 7(¢) is strictly convex, and
iv) p(¢) is strictly concave.
Note that |S| for interval S C R is its width.

Proof. The first two claims are direct consequences of the
assumption that O is convex, compact, and does not contain
the sensor origin. The proof focuses on the last two claims.

Any ¢° € Int (<I> (xg)) defines a unique point z° € 90.
Let L be a supporting hyperplane of O at z°. Hyperplane
L separates O from xg. Let the range scan due to object O
be 7(¢), and the (imaginary) range scan due to L be 7(¢).
Without loss of generality, one can model a line in the sensor
frame as a line y = b where b > 0 with ® (x§) = [0, 7).
The range scan r(¢) for L is then given by

r(¢) = b

sin ¢

Therefore, r(¢) is strictly convex, which implies that
r(¢°) +1'(¢°) (¢ — ¢°) <r(d),

for ¢ # ¢°. Since L is a supporting hyperplane to O at x°,

r(¢) <r(9),Ve € (0,7),
r(¢°) =r(¢°) and r'(¢°) = 1/ (¢°). We rewrite (10) as

r(¢°) +7'(6°) (¢ — ¢°) <1(8) <r(¢),

for ¢ # ¢°. In words, r(¢) is strictly convex, for any x§
not in collision with the sensor.

Let p(¢) = 1/r(¢) = sing/b. Clearly p’(¢) < 0 on
(0,7) so that p(¢) is strictly concave. A similar argument as
above implies that p(¢) is strictly concave. |

= 1"(¢) = r(¢) (cot? ¢ + 1/sin® ¢) > 0.

(10)

B. Characterizing the Angular Velocity

Let 0.(s,d*) be the angle 6 at which w = 0 for a given
location of the robot in the plane relative to the object. For
perfectly radially symmetric objects like a circle, 0.(s, d*) =
0, by resulting symmetry of r(¢). For any other (convex)



object, 6.(s,d*) is likely non-zero in most states. Hence,
generally w# is not sign definite. However, if we can bound
wf > 0 holds for convex objects
when |0] is larger than this bound. We also show that |w|—
oo as d* — 0. Thus we will reach the same conclusions as in
Example 1 for any convex object when || is large enough.

The bound on 6. (s, d*) is related to a measure of deviation
from radial symmetry which we call the degree of asymmetry
(DoA) and denote by €(Q). A wall’s symmetry makes it easy
to avoid despite its size; asymmetry introduces confusion
in the correct turning direction at small #. To define the
DoA, we introduce two inverse functions ¢+ (p) and ¢~ (p)
of p(¢) whose domains are {¢ € ® (xg):¢ > ¢*} and
{p € @ (Xs) ¢ < ¢*} respectively. These two inverse
functions exist because p(¢) is strictly concave, by Lemma 1.

Definition 4 (Local Object Asymmetry Measure): Let O be
convex. The local object asymmetry measure (LOAM) e of
O at relative pose x§ is

(x§) = masx |6 (5) + 07
Definition 5 (Degree of Asymmetry): Let O be convex. The
degree of asymmetry (DoA) (O) of O is

£(0) = max e(x§).
xs

_2¢|

For a circle, €(@) = 0 by symmetry. For any convex
object, since |®|< 7, therefore €(0) < /2.
We define the mirrored proximity function p,,(¢) as

pm(¢) :p(_d))v (11)

for —¢ € @ (xg). This function will enable us to bound |w]|
away from 0 when |¢*| is large enough and in turn derive a
bound on |6.].

Lemma 2: If ¢* > €(0)/2 and ¢~ (0) < 0, then
Pm(¢) < min(p(¢),p(0)) Vo € [0, ¢~ (0)].

Proof. The proof is a formal version of the intuition depicted
in Figure 3. Since p(¢) is strictly increasing when ¢ < 0 <
¢*, pm/(¢) is strictly decreasing on [0, —¢~ (0)]. Therefore

Pm (@) < p(0) V¢ € [0, =47 (0)].

Moreover, since p(¢) is concave, p(¢) > p(0) on
[~ (p(0)), »* (p(0))] which contains [0, $*]. In other words,
¢

Pm(9) < p(9) Vo € [0,¢7].
Combining this bound with (13) we get

Pm(¢) < min(p(¢), p(0)) V¢ € [0, min(¢",

12)

13)

—¢~(0))]-
(14)

If —¢~(p(0)) < d* we are done. If not, then let ¢ > ¢*.
Since ¢* > €(0)/2, we have that for all p < 1/d*,
¢r = |¢>+ p) + ¢~ (p) — 2¢"|
= 26" >+ (67 (p) + 6 (p) — 267)
= 0<¢"(p) +¢ (p) < 4o™.

Fig. 3: Assume that w(¢) = —sign(¢). The integral (w,r)s is
then the sum of the areas of the red and green regions minus the
area of the blue region. The mirrored curve p.m,(¢) (dashed blue
line) will always be below p(¢) and p(0) when |¢*|> |€|, so that
area of the red region is always larger than that of the blue region.
Therefore, the magnitude of the integral (w,r)s is lower bounded
by the area of the green region. This argument still holds when the

weights in (w,r)s are w(¢) = — sin ¢.
Therefore,
¢ (pm(9) + ¢~ (Pm(0)) > 0
= ¢ (Pm(9) + ¢~ (p(—¢)) > 0
= ¢ (pm(8)) — ¢ > 0.

Since ¢ > ¢*, and p(¢) is strictly decreasing over this range,
we must have that

p (6" (pn(9))) <p(9) = Pm(d) < p(9).
Combining this bound with (13) we get

Pm(¢) < min (p(¢),p(0)) for all ¢* < ¢ < —¢~(p(0)).
(15)

The combination of (14) and (15) completes the proof. W
Lemma 3: If ¢* < —€(0)/2 and ¢*(0) > 0, then
P (¢) < min(p(¢), p(0)) V¢ € [~¢(0),0].

Proof. This proof is identical to that of Lemma 2 and hence
omitted. |

(16)

The next result generalizes Example 1 to convex objects.
Lemma 4: Let O be convex with degree of asymmetry £(O).
If x§ is such that <5 ) < |¢*[< 7. then

) (w,r)ep* <0, and

ii) |<’LU, 7’><1>|2 (Lfs;n L) \sin(;&j /2)| ,
where L = |®, | and

®y = {9 € ®(xg): 00" > 0,p(9)
We consider p(0) = 0 when 0 ¢ @ (xg).

Proof. Claim i): If 0 ¢ ® (x§) then w(¢)¢* < 0 for all
ped (x 5) From the definition of (4) we therefore have
that (w,r)s¢* < 0.

Consider the case where 0 € ® (xg) and ¢* > 0, so that

#(0) <0 and ¢+ (0) > 0.

> p(0)}.



We define the extended mirrored proximity scan
Pmext(¢): 10,67 (0)] — Ry as
_ Jpm(d) if0<¢<—67(0),
pm,ext((b) - {0 if —¢_(0) <¢§¢+(O) (17)

We divide the integral in (4) into two terms:

0 ¢"(0)
wrje= [ w@p@nst [ wom@a

We rewrite the first term through a temporary change of
variable from ¢ — ¢ = —

/:(0 ?1o = /¢> (0

O
. / (—w0(®))pm(S)( — dé)

)p(=0)(— do)

¢+ (0)
= —[) W(¢)p7rz,ext(¢)d¢7

where we use the definitions of p,,(¢) and py, eqs(¢) in
the above transformation. Given this modified first term, we
rewrite (w,r)e:

#T(0)
(w, e = / 0(6) (0(0) — pmcar(6)) A6, (18)

By construction of p, eq:(¢) in (17) and Lemma 2, for the
domain of the integral in (18) we have

W(d)) S 0 and p(¢)) _prn,ewt(¢) Z 0

Therefore, when ¢* > 0 then (w,r)e < 0. An identical
argument for the case ¢* < 0 leads to the conclusion that
(w,rye > 0. Therefore, these two cases imply the first claim.

Claim 47): We focus on the case where ¢* > €(0)/2 > 0
and 0 € @ (xg). We rewrite (18) by rewriting p(¢) as

p(¢) = max(p(¢) — p(0),0) + min(p(¢), p(0)),
to get an upper bound on the negative quantity (w,r)g:
¢*(0)
e = [ (o) max(p(e) ~p(0).0)
. + min(p(¢), p(0)) — Pm,eat(¢)] dd
-/ " () maxo(6) - p(0), 06

6 (0)
n / w() (min(p(6), p(0) — Pun,eat (6)] dp
0

By Lemma 2, the second integral is non-positive, so that

- / w(9) (p(6) — p(0)) dg.

This expression captures the intuition that the green region
in Figure 3 defines a lower bound for [(w, r)e|.

By definition of ®,, p(¢) — p(0) > 0 for ¢ € D,
However, p(¢)—p(0) = 0 cannot hold since that would imply

O is non-convex. The smallest we can make this difference
given that O must be convex is when O corresponds to a wall
over & with proximal angle as the center of interval &
and proximal distance d*. An improved bound is therefore

plo) —p(0) > X0 Im) s3]

where ¢,, is the center of interval ®, . In turn

cos(¢ — dy,) — cos(L
worjo< [ w<¢>< &~ dm) (2)>d¢

d*
(L —sin L) sin(¢yy,) (20)
T2 d*
- (L —sin L) sin(¢*/2)
- 2 a7
where we use the facts that ¢,,, > ¢*/2 and sin is monotonic

on [0,7/2].

Using identical arguments for the cases where ¢* <
—€(0)/2 and 0 ¢ @ (x§), the proof of claim ii) is
complete. ]

C. Main Result

The characterization of (w,r)s, and therefore w, in Sec-
tion VI-B leads to the main result.

Theorem 2: Consider a convex object O with degree of
asymmetry €(Q) and mobile robot with pose x, pose dynam-
ics in (1), and control (2)-(3). Let the relative pose at time
t be x4 (t) = (s(t),d*(t),0(t)). If €(O)/2 < |0(0)|< 7/2
and d*(0) > 0 then d*(t) > 0 for all t > 0.

Proof. The quantity L in Lemma 4 monotonically increases
with decrease in d* up to some finite value. Therefore, for
e > 0 smaller than this finite value there exists df > 0 such
that d* < dj = L —sinL >e. By Lemma 4, if d* < df
then |(w, r)g|d* = |w|d* > £ sin (<TO> and fw > 0.

Also by Lemma 4, |(w,r)e|— oo as d* — 0, so that
for « > 0, v — 0. Given v., « and €, there exists ? >0
and d§ < df such that v < Zsin (<) for all d* < d3.
Therefore, for d* small enough, v < 1.5|w|d*.

The two paragraphs above and assumptions of this Theo-
rem establish that the conditions for Theorem 1 are met, so
that h(z(t)) > 0, where h is given in (8). By assumption,
h(z(0)) > 0. Therefore, for d* small enough, h(z(t)) can
never approach zero, so that d*(¢) can never approach 0. W

VII. SIMULATIONS

This section presents simulations of a wheeled mobile
robot navigating using 2D LiDAR in an environment with
obstacles. Figure 4 depicts this environment along with the
trajectories resulting from various initial conditions. The
robot successfully avoids the obstacles from multiple initial
conditions, without requiring explicit knowledge of either
d* or ¢* for any obstacle. Moreover, some trajectories
demonstrate that the controller also avoids non-convex and
multiple obstacles, beyond current guarantees.
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Fig. 4: Top-view of simulated trajectories involving a mobile robot
navigating near obstacles (dark blue) without collision. The initial
positions are shown using the blue triangles with initial orientations
indicated by black arrows.

We use MuJoCo [19] to simulate a custom mobile robot
and range sensor. This mobile robot is modeled as a rigid
body with two attached wheels that rotate about a common
horizontal axis. The wheels accept wheel speed commands
w, and w;, where the subscripts stand for right and left
respectively. Given the control law in (2) and (3), the wheel
speeds are simply

wr =04+ w, and w; = v — w,

which ignores the robot wheel base (0.6m) or wheel radii
(0.2m). The effect is that the achieved v and w are scaled
versions of the commanded ones, leaving the theory intact.

The LiDAR sensor is 0.6m ahead of the center of the
wheel axis. The sensor has a 360° field of view with angular
resolution of one degree and a maximum range of 2m.
Since the angular resolution is constant, the integral in (4)
is implemented as a dot product between the vector of
proximity values from the range sensors and a vector of
weights defined by (5) at integer values of angles in degrees.
The robot starts at a collision-free location and follows the
control laws given by (2) with « = 1 and v, = 1m/s and (2)
with weights in (5). The actual angular velocity is saturated
at 2 rad/s. The simulator physics updates at 500Hz, but the
sensor information is updated at only 12.5Hz.

VIII. DISCUSSION & FUTURE WORK

This paper proposes a method for guaranteed collision
avoidance of convex obstacles by a mobile robot. Simula-
tions support the claim. The controller is computationally
inexpensive and avoids reliance on feature engineering or
learning from data. The work also presents new ideas for
modeling and analyzing sensor-object interaction.

a) Limitations: First, the claims rely on the relative
robot heading being outside an interval, which cannot be
a priori ensured. For initial conditions inside the interval,
collision may occur. Second, it is not clear how to compute
or set the values of d*; and d*,. Third, the guarantees do not
address dynamics with bounds on acceleration. A dynamic
safety filter that ensures that v < 1.5|w|d* given commanded
w in (3) may be used, but the controller would no longer be
end-to-end. Finally, the guarantees do not apply to moving

or multiple obstacles. However, the use of proximity creates
an implicit selection mechanism where the robot responds
most to the nearest obstacle. This may explain the ability to
avoid all obstacles seen in Figure 4.

b) Future Work: Future work aims at investigating
methods to modify or tune the controller to achieve desired
specifications on minimum distances and to meet bounds on
linear speed change. Experimental validation is also planned.
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