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Preserving Strong Connectivity in Directed
Proximity Graphs

Hasan A. Poonawala, and Mark W. Spong, Fellow, IEEE

Abstract—This paper proposes a method to maintain the strong
connectivity property of a mobile robot ad hoc network in the
presence of disturbances or additional control goals. Each robot
has a communication range modeled by an n-dimensional sphere
centered at the robot. The spheres for different robots may have
different radii, resulting in a directed communication network.
The work is based on two concepts. The first is the structure of the
Perron vector for reducible stochastic matrices. The second is the
design of nonlinear controllers that ensure that two robots remain
within a certain distance of each other despite disturbances. The
results are supported by analysis and simulations.

I. INTRODUCTION

Multi-robot systems have been proposed as an effective
solution to perform various tasks in remote or inhospitable
conditions. The scenario proposed involves multiple robots
that cooperate to achieve some task.

It is typical to assume that the multiple robots can exchange
information through communication. The robots are equipped
with wireless communication devices, and hence the robots
form a mobile ad-hoc communication network. A simple
model for the communication links in such a network is one
where an edge exists from one robot to another if the Euclidean
distance between the robots is smaller than the communication
radius of the former robot. Since the edge weights of the result-
ing graph depend on the distance between the corresponding
nodes, the graph arising from such a mechanism is often called
a proximity graph.

Several algorithms that enable teams of multiple robots to
complete a task implicitly assume that the communication net-
work formed by the robots is suitably connected. Specifically,
any robot in the network should be able to send information to
any other robot in the network. This ability to exchange infor-
mation is often crucial to the cooperation and coordination of
the robots [1]. Some distributed optimization and estimation
problems also require that the directed communication graphs
involved possess suitable connectivity properties [2], [3].

The topology of a proximity graph depends on the positions
of the robots. As the robots move, the graph topology will
change, and the connectivity properties that various algorithms
rely on may be lost. This phenomenon gives rise to the
connectivity control problem. In the next two subsections,
we briefly outline the related work on connectivity control in
directed and undirected graphs, and the contributions towards
this topic in this paper.
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A. Related Work

Very little work has been presented to address the issue of
maintaining strong connectivity in dynamic directed proximity
graphs. In [4], a combinatorial approach is taken, noting
that the estimation of minimum spanning subgraphs is NP-
hard, and hence suboptimal spanning subgraphs are obtained.
No control method is proposed. In [5], the authors aim to
artificially balance the graph, and then extend the gradient-
based control in [6] to keep the real part of the algebraic
connectivity λ2(L) non-zero, thus guaranteeing preservation
of strong connectivity. The work assumes that each robot is
responsible for maintaining only its out-edges, and not the in-
edges. As a result, in certain cases edges can only be preserved
by allowing the agents to increase their communication radius.

The problem of maintaining connectivity for undirected
networks has received much attention. A rather thorough
review can be found in [7]. Early methods preserved the initial
edges for all time, with the option of preserving any new edges
that are formed. An improvement involved estimating which
edges are critical to maintaining connectivity and which are
not, and only preserving those critical edges [8]. The set of
critical edges is fixed for all time. Later works were interested
in making the connectivity independent of the initial graph
topology. Such methods proposed controlling the algebraic
connectivity of the network instead of the individual edges.
The set of edges at some time t = T may be completely
different from those existing at the initial time t = 0, under
such control methods. A significant connectivity increasing
method was proposed by [9] and modified in [6], [10], [11] to
allow link deletions in a smooth manner. A similar method was
proposed in [12] and modified in [13], [14]. Another advantage
of these works is that the robots can move continuously,
without needing to stop, assess the connectivity and compute
a connectivity-preserving motion.

Our goal is to achieve the performance of these latter works
for the case of preserving strong connectivity in directed com-
munication networks. We want to allow the graph topology to
change arbitrarily whenever this would not lead to loss of
strong connectivity. If loss of some edges may lead to loss of
strong connectivity, we want to maintain strong connectivity
by preserving these edges without preserving a large number
of additional edges.

While we focus on edges that depend on Euclidean distances
in this paper, our method can be extended to communication
models involving more complex functions of the robot posi-
tions [15] (see Section V).



2

B. Contributions

We propose a method of maintaining strong connectivity
for the communication network formed by mobile robots.
The method involves two contributions. First, we design a
control law that can ensure that any two cooperating robots
always remain within a certain distance from each other. This
guarantee holds even if multiple pairs of robots must remain
within a certain distance from each other, and each robot’s
dynamics is driven by an additional bounded control term or
bounded disturbance terms. Second, we show how to use the
the Perron vector of an irreducible stochastic graph matrix to
decide which inter-robot distances must be preserved.

II. PRELIMINARIES

A. Directed Graphs

A directed graph G = (V,E) is a tuple consisting of a set
of vertices V (also called nodes) and a set of edges E (also
called links). If there are N nodes, then we can label them
using integers from 1 to N , so that V can be identified with
the set {1, 2, . . . , N}. An edge e ∈ E is an ordered pair (i, j),
which indicates that a connection exists that starts at node i
and ends at node j, where i, j ∈ V . More precisely, the edge
(i, j) is an out-edge for node i and an in-edge for node j.

When edges in a directed graph have the property that
(i, j) ∈ E implies (j, i) ∈ E, the graph is said to be
undirected. In this case, an edge (i, j) can also be viewed as
an unordered pair. Undirected graphs can be viewed as special
cases of directed graphs. Thus, in this paper, a graph refers to
a directed graph unless specified.

We can define two neighbor sets for each node i ∈ V . These
are the set of out-neighbors denoted by N out

i and the set of
in-neighbors denoted by N in

i . If a directed edge (i, j) exists,
then node j is an out-neighbor of node i, and node i is an
in-neighbor of node j. Formally,

(1)N out
i = {j ∈ V : (i, j) ∈ E}, and

(2)N in
i = {j ∈ V : (j, i) ∈ E}.

For an undirected graph, N out
i = N in

i = Ni.
Definition 1. A path is a sequence of edges such that if an
edge in the path ends at node i, then the next edge in the
sequence starts at node i.

Thus, a path begins on some node i and ends on some other
node j (or possibly i), while passing through intermediate
nodes as dictated by the edges in the sequence. The paths in
the graph give rise to notions of connectivity in a graph. The
notion of connectivity differs between directed and undirected
graphs.

Definition 2. An undirected graph G is connected if a path
exists between any two nodes.

Directed networks have multiple definitions of connectiv-
ity [16]:

Definition 3. A directed graph G is weakly connected if a path
exists from any node to any other node when the direction of
each edge in the path is disregarded.

For clarity, a path will be called a directed path when the
directions of the edges must be respected.

Definition 4. A directed graph G = (V,E) is quasi-strongly
connected if there exists a node v ∈ V such that a directed
path exists from any node u ∈ V to v.

Definition 5. A directed graph G is strongly connected if a
directed path exists from any node to any other node.

B. Mobile Robot Networks
Consider a team of N mobile robots. The configuration

of the ith robot is given by qi ∈ Rn. We can stack the N
configurations of the N robots together in an obvious way to
obtain the configuration of the team q ∈ RNn.

The robots are assumed to have first order dynamics given
by

(3)q̇i = uci + uei .

where uci ∈ Rn is a control term to be designed and uei ∈ Rn
is a bounded vector representing additional control objectives
and/or disturbances.

We wish to model the communication network G formed
by this team of mobile robots. The nodes V of the network
are the robots, and edges E in the network correspond to
the ability of the robots to send information to other robots.
Robot i is able to send information to any other robot within
a distance of Ri from the center of the robot. Let the distance
between the ith and jth robot be dij = dji. Thus, if dij < Ri,
then robot i can send information to robot j. In other words
(i, j) ∈ E if and only if dij = ‖qi − qj‖< Ri, where i, j ∈
V = {1, 2, . . . , N}. A graph obtained in this way is often
referred to as a proximity-graph.

The configuration q of the mobile robot team and the
parameters Ri, i ∈ {1, 2, . . . , N} determine the directed
proximity graph G. The directed graph G is not a fixed graph,
but rather is dynamic because it depends on the time-varying
state q(t). The dynamic nature of the graph motivates the
problem statement defined in the next section.

We make two assumptions about the sensing capabilities of
the robots:
A1 The ith robot can measure the relative location of any

robot inside its communication range defined by the
sphere of radius Ri.

A2 If robot j can receive information from robot i, then robot
j can estimate the direction towards robot i (in the body
frame of robot j).

III. CONTROL PROBLEM

Consider a team of N robots with communication radii Ri,
i ∈ {1, 2, . . . , N}. Let the dynamics of the ith robot be given
by (3). Let the configuration of the team be q ∈ RNn and
the corresponding directed graph at any time t be G(q(t)).
Let t0 be some time instant, such that G(q(t0)) is strongly
connected.
Control problem:
Let there exist some M ∈ R where 0 < M < ∞ such
that ‖uei (t)‖< M ∀i ∈ {1, 2, . . . , N} and ∀t ≥ t0. Design a
feedback control uci (t) ∈ Rn for the robots such that G(q(t))
is strongly connected for all t ≥ t0.
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IV. ALGEBRAIC CONNECTIVITY

In this section, we show how algebraic graph theory can
be used to decide which edges of a strongly connected graph
must be preserved in order to preserve strong connectivity.

A. Graph Matrices
Given a directed graph G = (V,E), we can assign a weight

wij to each edge (j, i) ∈ E. Once the edge weights wij are
defined, the adjacency matrix Aw(G) = {aij} ∈ RN×N is
given by

(4)aij =

{
wij if (j, i) ∈ E, or
0 otherwise.

Note that the non-zero entries of the ith row correspond to
the edges directed towards node i, which are the in-edges of
i. It is also possible to define the ith row based on out-edges,
however we do not use that formulation.

If for all i, j ∈ V , wij = wji then the graph is said to be
undirected, and the graph matrices will be symmetric. If there
are two nodes such that wij 6= wji then the graph is called a
directed graph, or digraph for short.

The Laplacian Lw(G) ∈ RN×N of a directed graph can be
derived from the adjacency matrix Aw(G) and is given by

(5)Lw(G) = Dw(G)−Aw(G).

where Dw(G) is a diagonal matrix whose ith diagonal element
is
∑N
j=1 wij . Due to the definition of Aw, the matrix Lw is

often known as the in-Laplacian, however we do not refer to
it as such in the paper. The Laplacian Lw(G) always has an
eigenvalue at 0, corresponding to a right eigenvector given by

1√
N

1N , where 1N ∈ RN , 1N = [1, . . . , 1]T .
The remaining eigenvalues of Lw may be complex, and are

ordered based on their absolute value. Let the ith smallest
eigenvalue of a matrix A be denoted by λi(A). The second
smallest eigenvalue of Lw(G) is denoted by λ2(Lw). In the
case of undirected graphs, it is called the Fiedler value of the
graph [17].

Note that we will henceforth drop the subscript w from
these matrices, since in the rest of the paper we assume that
all matrices are constructed using wij unless specified.

We can create a non-negative row-stochastic [18] matrix
S ∈ RN×N , by using the transformation

(6)S = IN − εL
where IN is the identity matrix of size N and ε > 0 is a
sufficiently small number. This transformation was used in [1],
with a view to analysis of discrete-time consensus protocols.
It turns out that the same matrix is useful in the estimation of
λ2(L) [19]. Assuming that each edge weight wij is bounded
above by 1, then selecting ε ≤ 1/N ensures S is non-negative.

We define the weights of the directed graph by using bump
functions. In particular, we choose the weights to be wij =
ψ(0,Rj)(dij), where ψ : R+ → [0, 1] is given by

ψ(ρ1,ρ2)(x) =


1 if x ≤ ρ1,

exp (− 1
ρ2−x

)

exp (− 1
ρ2−x

)+exp ( 1
ρ1−x

)
if ρ1 < x < ρ2, or

0 if ρ2 ≤ x.
(7)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

x

 

 

ψ(x)

ψ’(x)

Fig. 1. Bump function for ρ1 = 0.2m and ρ2 = 0.7m

One of the advantages of bump functions is that they are
smooth objects and can thus be differentiated as many times
as required. If we take the distance dij between two robots
as the domain of ψ(ρ1,ρ2)(x), we obtain a smooth weighting
wij = ψρ1,ρ2(dij) from full connectivity to no connectivity
for any two robots, as seen in Figure 1.

The choice for ψ above is motivated by the communication
model we use. However, the results in the remainder of this
section are valid for any edge weights that are positive and
bounded. Given such a bound, one can choose ε in (6) to
ensure that S is non-negative even for dynamic state-dependent
graphs.

B. Algebraic Connectivity for Directed Graphs

For an undirected graph to be connected, at most one
eigenvalue of its graph Laplacian L can be zero. The second
smallest eigenvalue λ2(L) thus becomes a measure of con-
nectivity in the graph. Note that for an undirected graph, L is
symmetric so that all its eigenvalues are real.

In the case of directed graphs, the matrices A and L need
not be symmetric, and λ2(L) may be complex. The magnitude
of λ2(L) does not give us any information about whether the
graph is strongly connected or not. However, it does indicate
whether the network is quasi-strongly connected (and therefore
weakly connected) or not. This property is due to the following
theorem derived from results in [20]:

Theorem IV.1 ([20]). Consider a directed graph G with
Laplacian L as defined in (5). The graph G is quasi-strongly
connected if and only if |λ2(L)|> 0

For undirected networks, λ2(L) can be used to determine
connectivity. Techniques to estimate λ2(L) in a decentralized
manner [9] and use this estimate for connectivity control [6],
[10], [11], [14] have been proposed, as mentioned earlier. For
balanced networks (sum of rows and columns of A are equal),
G is strongly connected if and only if Re(λ2(L)) > 0. There-
fore, if a directed network is balanced, then the magnitude of
the real part of λ2(L) can be used as a measure of strong
connectivity [5].

In this section, we show how a left eigenvector of S can be
used to determine connectivity of the graph. First, we define
the notion of reducible and irreducible matrices.

Definition 6 ([21]). A matrix M ∈ RN×N is reducible if there
exists a permutation matrix P ∈ RN×N such that P−1MP is
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upper block triangular.

Definition 7 ([21]). A matrix M ∈ RN×N is irreducible if it
is not reducible.

The following theorem yields a test for strong connectivity
in the case of directed networks:

Theorem IV.2 ([21]). A directed graph G is strongly con-
nected if and only if its adjacency matrix A is irreducible.

This property also extends to the matrix S:

Lemma IV.3. Consider a directed graph G with adjacency
matrix A and matrix S ∈ Rn×n defined by (6). If G is strongly
connected, then S is irreducible.

Proof: See Appendix.
Since S ∈ RN×N is row-stochastic, there exists at least one

left eigenvector γ ∈ RN such that

(8)γT = γTS.

If S is obtained from a strongly connected graph, then it is
irreducible, as shown in Lemma IV.3. The Perron-Frobenius
Theorem [18], [22] states that if S is irreducible then the
entries of γ are strictly positive. Also, γ is unique (up to a
scale factor).

However, what we require is a result in the opposite
direction. Given γ, can we say anything about the connectivity
of G? One answer is provided by the following lemma.

Lemma IV.4 (Lemma 2.28 [16]). For a directed graph G with
Laplacian matrix L, there exists a positive vector ω ∈ RN ,
ω > 0 such that ωTL = 0 if and only if G is a disjoint union
of strongly connected subgraphs.

Lemma IV.5. Let G be a weakly connected graph with a
stochastic matrix S as defined in (6). Then, S has a positive
left eigenvector γ > 0 such that γTS = γT if and only if G
is strongly connected.

Proof: Let G be strongly connected. Then, A is irre-
ducible by Theorem IV.2 and hence so is S by Lemma IV.3.
By the Perron Frobenius Theorem, S has a unique strictly
positive left eigenvector corresponding to its spectral radius.
Since S is a stochastic non-negative matrix, its spectral radius
is 1. Thus, there exists γ > 0 such that γTS = γT .

Let S have a positive left eigenvector γ > 0 such that
γTS = γT . We can derive

(9)

γTS = γT

⇒ γT (IN − εL) = γT

⇒ γT − εγTL = γT

⇒ γTL = 0.

where L is the graph Laplacian of G. By Lemma IV.4, G
must be a disjoint union of strongly connected graphs. This
statement implies that G consists of components (disjoint
subgraphs) that are strongly connected. However, since G is
weakly connected, it contains only one component. Thus G
must be strongly connected.

Corollary 1. Let G be a directed graph with graph Laplacian
L and stochastic matrix S. Then, G is strongly connected if
and only if λ2(L) 6= 0 and there exists γ ∈ RN such that
γTS = γT and γ > 0.

C. Measure of Connectivity

The previous subsection develops a condition that yields
a binary answer to whether a directed graph (that is not
necessarily balanced) is strongly connected or not. Sup-
pose that λ2(L) 6= 0 and G is strongly connected. Then,
mini∈{1,2,...,N} γi could be used to measure how close the
graph is to losing strong connectivity, due to Corollary 1. In
this subsection, We will show that the ratios of the elements
of γ are more useful.

Let γi be the ith component of γ. Then, we can compute

(10)µij =
γi
γj

+
γj
γi
,

for all pairs i, j ∈ V where i 6= j. Due to the Perron-Frobenius
theorem, if G is strongly connected then µij are non-zero and
finite ∀ i, j ∈ V . The quantities µij are functions of the state
q, and are time varying.

When G is not strongly connected, S is reducible and hence
γ is not necessarily unique or strictly positive. The structure
of γ for reducible stochastic matrices will enable us to use
the ratio of the entries of γ for irreducible matrices to indicate
which edges should be preserved.

We can introduce the following definitions

Definition 8. Two nodes i,j of a directed graph are weakly
connected to one another if there exists a directed path from
i to j or a directed path from j to i.

Definition 9. Two nodes i,j of a directed graph are connected
to one another if there exists a directed path from i to j and
a directed path from j to i.

We can define the binary relation C̄ such that for two nodes
i, j ∈ G, iC̄j if and only if i and j are weakly connected. One
can show that C̄ is an equivalence relation.

Definition 10. A component of a directed graph G is the set
of nodes in an equivalence class of V under C̄.

There are two kinds of components: weakly connected
components and strongly connected components. They are
defined as follows.

Definition 11. A strongly connected component is a compo-
nent in which every pair of nodes is connected.

Definition 12. A weakly connected component is a component
in which at least two nodes are not connected.

The components of a directed graph are effectively disjoint
subgraphs of G. That is, there are no edges between two nodes
located in two distinct components of a graph. We can also
partition a graph based on sets of nodes that are connected to
each other. This partition is achieved by defining the binary
relation

−→
C such that for two nodes i, j ∈ G, i

−→
C j if and only

if i and j are connected. Again, one can check that
−→
C is an
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equivalence relation. We can define the equivalence class [i]

of a node i ∈ V under the relation
−→
C as follows

Definition 13. The equivalence class [i] of a node i ∈ V under−→
C consists of all nodes j ∈ V such that i

−→
C j.

Let V̄ be the set of all equivalence classes of V under
−→
C .

We can now define three types of equivalence classes.

Definition 14. An equivalence class [i] ∈ V̄ is called a sink if
there is no directed edge (u, v) ∈ E such that u ∈ [i], v /∈ [i].

Definition 15. An equivalence class [i] ∈ V̄ is called a source
if there is no directed edge (u, v) ∈ E such that v ∈ [i], u /∈ [i].

Definition 16. An equivalence class [i] ∈ V̄ is called a center
if it neither a source nor a sink.

We are now in a position to describe the nature of γ based
on the types of equivalence classes defined above. Consider
the following result:

Lemma IV.6. Let G be a directed graph. Then, there exists
a left eigenvector γ of the matrix S associated with the
eigenvalue 1 with ith element γi such that

(11)γi > 0 if [i] is a source, and

γi = 0 otherwise.

Proof: A summary of the proof is that if G is not
strongly connected (and hence reducible), one can convert
S into a lower-triangular block diagonal stochastic matrix,
through permutation of the labels in V . Each diagonal block
corresponds to an equivalence class of V under

−→
C . The off-

diagonal blocks consist of edges between nodes in distinct
equivalence classes. Theorem 4.7 in [23] describes the space
of left eigenvectors associated with the eigenvalue 1 of such
a matrix, yielding the result.

We can extend Lemma IV.6 to the case of a graph with at
least one weakly connected component.

Lemma IV.7. If G is a directed graph with at least one
weakly connected component, then there exists at least one
equivalence class [i] ∈ V̄ that is a source, and there exists at
least one equivalence class [j] ∈ V̄ \{[i]} that is not a source.

Proof: By definition, a weakly connected component
must consist of more than one equivalence class under

−→
C .

Since the component is weakly connected, there must be at
least one directed edge (i, j) ∈ E such that node i or node j
belong to distinct equivalence classes.

Let all these equivalence classes be sources. Then, there
is no equivalence class with an in-edge. This conclusion
contradicts the conclusion that there must be at least one edge
between nodes in different equivalence classes. Therefore,
there must be at least one equivalence class in the weakly
connected component that is not a source. Due to similar
reasoning, there must be at least one equivalence class that
is a source.

D. Minimal connecting edge sets
If a graph G = (V,E) is strongly connected, then γ > 0.

Suppose that we delete some edges E0 ⊂ E, such that the
resulting graph G′ = (V,E − E0) has at least one weakly
connected component. We can use Lemma IV.7 to identify
some of the edges in E0.

Given a directed graph G = (V,E) that is not strongly
connected, we can define a minimal connecting edge set E′

as follows:

Definition 17. A minimal connecting edge set E′ of a graph
G = (V,E) is a set of edges such that (V,E ∪E′) is strongly
connected, and for any e ∈ E′, (V,E∪(E′−e)) is not strongly
connected.

If G(t) for t < T is strongly connected, and G(T ) has at
least one weakly connected component, then at t = T some
set of edges E0 were deleted from G(t) where t < T . The set
E0 must contain a minimal connecting edge set for the graph
G(T ). We can claim the following:

Lemma IV.8. Let G = (V,E) be a directed graph with
at least one weakly connected component. For any minimal
connecting edge set E′ of G, there exists at least one edge
(i, j) ∈ E′ such that [j] is a source and [i] is not a source.

Proof: Let the set of equivalence classes of V under
−→
C

be V̄ . Let V̄s be the set of sources in V̄ , and V̄ns = V̄ \V̄s.
Since G has at least one weakly connected component, V̄s and
V̄ns are non-empty, by Lemma IV.7. There is no edge in E
starting on a node belonging to an element of V̄ns and ending
on a node belonging to an element of V̄s.

Let E′ be a minimal connecting edge set of G. This implies
that G′ = (V,E ∪ E′) is strongly connected. If no edge
(i, j) ∈ E′ exists such that [i] ∈ V̄ns and [j] ∈ V̄s, then the
same holds for the the graph G′ with edge set E ∪ E′. This
conclusion implies that G′ is not strongly connected, which
is a contradiction. Therefore, there must be at least one edge
(i, j) ∈ E′ such that [j] is a source and [i] is not a source.

Lemmas IV.7 and IV.8 together suggest a method to identify
some of the edges that are critical to preserving strong
connectivity in a directed graph which is close to losing it.

Lemma IV.9. Let G(c) = (V,E) be a graph parametrized
continuously by c ∈ R such that G(c) is strongly connected
∀c > 0. Let S(c) be its row stochastic adjacency matrix with
Perron vector γ(c). Let G(0) be the subgraph of G(c) obtained
when c = 0, such that G(0) has at least one weakly connected
component. Let E0 be the subset of edges in E that are deleted
when c = 0. Let E′ ⊂ E0 be the set of edges belonging
to a minimal connecting edge set of G(0). Then there exists
(i, j) ∈ E′ such that µij →∞ as c→ 0+.

Proof: G(c) is strongly connected and hence γ(c) > 0.
When c = 0, the edges in E0 get deleted. The resulting graph
is no longer strongly connected, and has at least one weakly
connected component. Let (i, j) ∈ E′ be such that [i] is a
sink or center and [j] is a source. Such an edge exists by
Lemma IV.8. From Lemma IV.7 it follows that γi(0) = 0 and
γj(0) > 0. Thus, µij =∞ for γ(0). Since G(c) is continuous
in c, as c→ 0+, µij →∞.
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Suppose a node i ∈ V can compute or estimate γ [19],
[24]. Then, this node can compute µij for all i, j ∈ V . It can
then attempt to preserve all those edges (i, j) or (j, i) such
that j ∈ N out ∪ N in and µij � 2. Doing so will prevent
the directed graph from becoming a graph with at least one
weakly connected component. The construction of such an
edge-preserving control law is presented in the next section.

V. EDGE-PRESERVING CONTROL

In this section, we will consider a control law that preserves
selected directed edges in a directed graph. The edge weights
are monotonically decreasing functions of the distances, and
thus preserving edges is equivalent to ensuring that the corre-
sponding inter-robot distances remain within a certain bound.
The distance is symmetric in terms of the robot indices. This
symmetry implies that the control law is based on undirected
graphs and graph matrices. Even so, it can be applied to control
of directed graphs when an appropriate undirected graph is
constructed from this directed graph.

Consider a fixed undirected graph
←→
G = (V,

←→
E ). The

nodes V are the N robots with configurations qi ∈ Rn,
i ∈ {1, 2, . . . , N} and dynamics (3). For each (i, j) ∈ ←→E ,
we define real numbers Rij , lbij and ubij . The constant Rij
denotes the maximum allowable separation between robots i
and j. In other words, at any time t, we want dij(t) < Rij ,
for all edges (i, j) ∈ ←→E . The quantity dij(t) is the Euclidean
distance between the two nodes, given by

(12)dij(t) = ‖qi(t)− qj(t)‖.
A continuous control that achieves the constraint

dij(t) < Rij when Rij = δ for all (i, j) ∈ ←→
E was

proposed in [25]. The control law is of the form

(13)uci =
∑
j∈Ni

kij(dij(t))(qj(t)− qi(t)),

where kij(dij) is called the ‘edge-tension’ and is given by

(14)kij(dij) =
2δ − dij

(δ − dij)2
.

We can define the function νij as

νij(d) =


0 if d < lbij ,

1− exp

(
1−

(
d−lbij
ubij−lbij

)2
)

if lbij < d < ubij ,

1 if ubij < d,

(15)

which is a smooth monotonic function such that νij(lbij) = 0
and νij(ubij) = 1. The numbers lbij and ubij are chosen such
that 0 < lbij < ubij < Rij .

We propose a modified edge tension given by

(16)k̄ij(dij) = kij(dij)νij(dij)

where kij(dij) is given by

(17)kij(dij) =
2Rij − dij

(Rij − dij)2
.

The numbers lbij , ubij , and Rij can be determined at the
instant of time when it is decided that (i, j) or (j, i) must

be preserved. The procedure to choose these variables is
described in Section VI. Selecting them appropriately ensures
that k̄ij(t) = k̄ij(dij(t)) is continuous in time.

The modified edge tension results in a new control given
by

(18)

uci =
∑

(i,j)∈
←→
E

k̄ij(dij(t))(qj(t)− qi(t))

=
∑

(i,j)∈
←→
E

kij(dij(t))νij(dij(t))(qj(t)− qi(t)).

Consider the set D defined as

(19)D := {q ∈ RNn : dij < Rij ∀(i, j) ∈
←→
E }.

Theorem V.1. Consider an undirected graph
←→
G = (V,

←→
E )

with dynamics (3). Let the feedback uci be selected according
to (18). The external control uei (t) is unknown but bounded
for each i ∈ V . Then, for any solution q(t) of (3) with initial
condition q(t0) ∈ D,

q(t) ∈ D ∀t ≥ t0.

Proof: See Appendix.
Remark 1. The proof Theorem of V.1 relies on the fact that k̄ij
becomes unbounded exactly when dij = Rij , and is bounded
otherwise. Thus, the actual shape of k̄ij is irrelevant, allowing
a large set of functions to be used for preserving inter-robot
distances, as opposed to being restricted to the one in (17).

Note that the term (qj(t) − qi(t)) in (18) is simply the
negative gradient of dij scaled by a function of dij . This
structure has been use in the proof of Theorem (V.1). If the
edge weights of the directed graph are differentiable functions
of the positions of the robots, then the control in (18) can be
extended to such directed graphs.

VI. PROPOSED CONNECTIVITY CONTROLLER

In the previous section, we have shown how to ensure
that any two robots i and j remain within some desired
distance Rij of each other. This guarantee holds for any set
of additional bounded control terms uei and in spite of the fact
that multiple edges may be close to reaching their respective
limits on allowable separation.

In a directed graph G = (V,E), suppose that the directed
edge (i, j) must be preserved. In other words, dij(t) < Ri
must hold for all t > t0, where t0 is the initial time instant. If
(i, j) ∈ E or (j, i) ∈ E needs to be preserved, there is some
distance Rij <∞ such that dij must always be less than Rij .
Thus, (i, j) is included in the edge set

←→
Ec as an undirected

edge. We thus obtain an undirected graph
←→
Gc = (V,

←→
Ec ).

We select thresholds µoff ∈ R and µon ∈ R such that
2 < µoff < µon. These thresholds serve to decide if an edge
should be included in

←→
Ec . The edge set

←→
Ec varies with time,

and can be represented using a switching adjacency matrix←→
A c = {acij} ∈ RN×N . We assume that at the initial condition
q(t0), µij < µon for all i, j ∈ V , and therefore

←→
Ec = ∅. This

assumption implies that acij = 0 for all i, j ∈ V .
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The elements of
←→
Ac are modified using the following update

rule:

(20)acij =

{
1 if wij + wji > 0 and µij ≥ µon, or

0 if µij < µoff and dij < lbij ,

where µij is obtained from (10). Naturally,
←→
Ac is always a

symmetric matrix. With this definition of
←→
Ac , we can define←→

Ec at any time as
←→
Ec = {(i, j): acij = 1}. At a time instant

tsw when acij switches from 0 to 1, we can set the quantities
Rij , lbij and ubij as follows:

(21a)Rij =

{
max{Ri, Rj} if min{wij , wji} = 0, or

min{Ri, Rj} if min{wij , wji} > 0,

(21b)lbij = dij + (1− c)(Rij − dij), and

(21c)ubij = dij + c(Rij − dij),
where c ∈ (0.5, 1]. Equation (21) implies that k̄ij(dij(tsw)) =
0 by design. Thus, the control uci is never discontinuous in
time. When acij switches from 1 to 0, the value of these
quantities are irrelevant.

Note that the entries
←→
Ac are functions of time and may

switch at various time instants. At each instant of switching,
the quantities Rij , lbij and ubij are reset based on (21). Thus,
we have suppressed the fact that these quantities are piecewise
constant in time, as opposed to constants for all time.

If we only use µij to select edges
←→
Ec , then the resulting

closed loop system may still suffer a loss of strong connec-
tivity. If two robots i and j have identical communication
radii, then the edges (i, j) and (j, i) are identical and will
be broken simultaneously. The loss of two such edges could
lead to a situation where the two resulting components are
each strongly connected. As wij( = wji) approaches zero, µij
remains finite, and so (i, j) may not get included in

←→
Ec . This

means that this undirected edge will not be preserved.
In order to prevent this case, we modify the update rule (20)

as follows
(22)acij :

=

{
1 if wij + wji > 0 and (µij ≥ µon or |λ2(L)|< λm), or

0 if (µij < µoff and |λ2(L)|> λm)) and dij < lbij

where λm > 0 is some threshold that determines when all
edges must be included. It is possible to add a hysteresis effect
for the switching based on λm also.

We are now ready to state the main result related to the
perfomance of the control that preserves strong connectivity.

Theorem VI.1. Consider a directed mobile communication
network with dynamics of the ith robot given by

(23)q̇i(t) = uci (t) + uei (t),

where uei (t) is a bounded vector for all t. Let uci (t) be given
by

(24)uci (t) =
∑

(i,j)∈
←→
Ec

k̄ij(dij(t))(qj(t)− qi(t)),

where
←→
Ac (and hence

←→
Ec ) is updated according to (22) ,

parameters Rij , lbij and ubij are updated according to (21),

and k̄ij is given by (16). If the network is strongly connected
at some time t0 , then the network is strongly connected for
all t > t0.

Proof: Due to Corollary 1 and Lemma IV.9, the update
rule (22) ensures that the edge set

←→
Ec always contains edges

that must be preserved in order to maintain strong connectivity,
when the network is close to losing strong connectivity. By
Theorem V.1, the control (24) always ensures preservation of
edges in

←→
Ec . Thus, if the network is strongly connected at

t = t0, it is strongly connected for all t > t0.

A. Implementation of the proposed controller

Consider a directed edge (i, j) ∈ E, with distance dij be-
tween robots i and j satisfying the inequalities Rj < dij < Ri.
In other words, robot i can send information to robot j, but
robot j cannot send information to robot i. As mentioned
previously, the directed edge (i, j) ∈ E is also treated as an
undirected edge that must be included in

←→
Ec . As a result of

←→
Gc

being undirected, the control law for each robot will depend on
the positions of both its in-neighbors N in

i and out-neighbors
N out
i . In particular, (i, j) ∈ ←→Ec implies that the control terms

of both robots i and j include the term ±k̄ij(qj − qi). By
assumption A1, robot i can measure dij and qj − qi, and can
therefore implement a control which includes such a term.

Robot j must also compute the vector quantity k̄ij(qj − qi)
in order to include it in the control ucj . Robot j can obtain
the magnitude of this vector, given by dij k̄ij , from robot i,
because robot i can send information to robot j through edge
(i, j) ∈ E. Robot j would also need to know the direction
defined by qj − qi in order to compute k̄ij(qj − qi). Note that
robot j does not need to be able to send any information to
robot i. If assumption A2 holds, then robot j can measure the
required direction, and then compute the required vector quan-
tity. Unlike assumption A1, assumption A2 is not commonly
required in multi-robot coordination methods.

We suggest two sensing methods that may result in the
satisfaction of assumption A2 for practical systems. The first
is to use radio direction finding (RDF) techniques. These
techniques use a specialized receiver (different from the
transmitter) to estimate the direction from which received
communication signals are originating. A second method that
enables satsifaction of assumption A2 for a multi-robot team
is to equip all robots with omnidirectional sensors that have
a spherical sensing region defined by a radius Rs, where
Rs = maxi∈V Ri. The presence of such sensors immediately
implies that both robots forming a directed communication
edge (i, j) can measure both direction and magnitude of the
vector ±(qi − qj).

One may ask whether including the contribution to (24)
from the in-neighbours is necessary. We argue that it is
necessary, since a single agent i cannot unilaterally guarantee
the preservation of an edge (i, j) when arbitrary external
additional control terms uej are present. This situation is
encountered in a simulation involving 11 robots using a control
of the form

(25)uci =
∑

j∈N out
i

µij(qj − qi)
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Fig. 2. Simulation of 11 robots with velocities based on an external task
based control and the control (25) which is based on out-neighbors only. The
configuration corresponds to the moment before loss of strong connectivity.
A zoomed-in view of the critical link and nodes is presented in Figure 3.

along with an external input uei ∈ R2.
Figure 2 shows the positions and communication radii of the

11 robots implementing (25) with some additional task-based
control that is bounded on compact sets. This configuration
corresponds to a moment just before the loss of strong
connectivity. In Figure 3 we zoom in on the purple robot (close
to the origin). Note that we change colors of the remaining
robots for clarity. The critical edge is the edge from the purple
to the blue robot. Due to the weak link with the red robot, the
purple robot cannot move with arbitrary speed to the right.
The blue robot does not sense the purple robot, and hence is
free to move towards the right, due to the external task control
ve. Thus, the edge from the purple to the blue robot will be
broken, and the graph is no longer strongly connected. This
example demonstrates that both robots must be responsible
for preserving the critical edge when distrurbances exist, and
hence a control law of the form (24) is proposed.

VII. SIMULATION

We simulate four robots in R2 that are commanded with
velocities uci + uei where uci is given by (24), and uei is some
additional task-dependent velocity. The task velocities uei are
such that if the agents were to move according to uei alone,
the network would no longer be strongly connected. In fact,
the agents would become isolated from one another. The task
velocities are given by

ue1 =

[
−1.2
−1.2

]
− q1, u

e
2 =

[
−0.6

0

]
, ue3 =

[
0.6
0.6

]
, ue4 =

[
0

0.6

]
.

In Figure 4 we see that the initial condition is such that all
agents are connected to all other agents. Under the action of uci
given by (24), the agents reach equilibrium positions as seen
in Figure 5. These positions are such that the agents form a
network that is barely strongly connected, as seen from Figure
6 where the agents are located close to the communication
boundaries of other agents.

ve

Fig. 3. Zoomed-in view of Figure 2. Note that some robots and communi-
cation boundaries have been removed, and colors changed to enhance clarity.
The blue purple robot is stationary due to the weak links on either side (to
the red and blue robots). The blue robot does not sense the purple robot, and
hence does not assist in preservation of the critical link from the purple robot
to the blue robot. Ve is the blue robot’s additional task-based velocity.

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

y
[m

]

x [m ]

Fig. 4. Positions of the four robots at t = 0, denoted by squares. The
boundary of the circular communication region of each robot is indicated by
the circle.

A second simulation is presented where there are N = 9
robots. The initial condition Q(0) is given by

(26)Q(0)

=

[
0.56 0.42 0.70 0.92 1.03 1.09 1.07 0.90 0.85
1.91 1.27 1.01 0.99 1.05 1.22 1.41 1.72 1.96

]
,

where qi(0) is the ith column of Q(0). The radius Ri is given
by the ith element of the vector

(27)R̄

=
[
0.83 0.55 0.31 0.18 0.28 0.26 0.42 0.50 0.41

]
T .

The external control matrix Ue(t) is given by

Ue(t) =

[
−3 3 3 sin(0.5t) 0 −0.6 0 0 0 0
−3 3 3 cos(0.5t) 0 −0.5 0 0 0.4 0

]
,

(28)

where uei (t) is the ith column of Ue(t).
The initial configuration is seen in Figure 7. The graph

remains strongly connected, as indicated by the non-zero
values of mini∈{1,2,...,N} γi(t) and |λ2(L)| in Figure 8.
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Fig. 5. Trajectories x(t) and y(t) for the four agents. This plot shows that
the agents reach an equilibrium position.
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Fig. 6. Final positions of the four robots, denoted by squares. At equilibrium,
the robots form a chain such that the network is still strongly connected.

VIII. CONCLUSION

In this paper, we have proposed a method to preserve
distance limits between pairs of robots with single-integrator
dynamics, in the presence of additional bounded external
controls or disturbances. The analysis of the control law does
not require a fixed closed form potential function in order to
prove that the distance limits are never violated. The analysis
only depends on some edge-dependent nonlinear functions
possessing very general properties. This generality affords
great flexibility in designing such functions. In particular, we
do not need the functions to be defined in advance. This
enables us to define them in a way that avoids discontinuities
in the connectivity control.

The proposed edge-preservation method is combined with a
method to select which edges to preserve. The method of edge
selection is based on quantities derived from the Perron vector
of an irreducible stochastic matrix derived from the graph, as
well as the second smallest eigenvalue of the graph Laplacian.
Through an analysis of the the structure of the Perron vectors
of reducible matrices, we can show that edges that must be
preserved in order to maintain strong connectivity are always
selected.

The combination of the edge-preservation method and the
edge-selection method enables us to guarantee that the prox-
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Fig. 7. Initial positions of the nine robots at t = 0, denoted by squares. The
boundary of the circular communication region of each robot is indicated by
the circles centered at the squares.
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Fig. 8. Plots of mini∈{1,2,...,N} γi(t) and λ2(L). The quantity
mini∈{1,2,...,N} γi(t) becomes very small but remains non-zero for t ∈
[0, 0.5]. The network is not very close to losing strong connectivity during
the remaining duration of the simulation. The value of λ2(L) remains non-
zero during the entire simulation.

imity graph formed by the team of robots always remains
strongly connected.
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APPENDIX

A. Proof of Lemma IV.3

Proof: If the directed graph G is strongly connected, A is
an irreducible matrix [21]. The matrix S is of the form kA+
B where k is a non-zero scalar and B is a diagonal matrix.
Suppose that S is reducible. Then there exists a permutation
matrix P ∈ Rn×n such that PTSP is in upper block triangular
form. This fact implies that kPTAP +PTBP is upper block
triangular. Since B is diagonal, so is PTBP . Thus, PTAP
must also be upper block triangular, which contradicts the fact
that A is irreducible. Hence, S must be irreducible.

B. Proof of Theorem V.1

As a first step to analyzing the performance of (18), we
need to rewrite the equations of the robots in such a way that
the kth elements of all vectors qi are combined. This rewriting
was also done in [25]. We define the matrix Q ∈ Rn×N such
that the ith column of Q is qi. Let xk be the transpose of
the kth row of Q. Clearly, there are n such vectors. Let the
state of all N robots be denoted as q ∈ RnN . We can define
this vector in two ways. The first method consists of stacking
the N vectors qi. The second method involves stacking the n
vectors xi. We choose the second method.

Similarly, we define the matrices U c ∈ Rn×N and Ue ∈
Rn×N such that the ith column of U c is exactly uci and the
ith column of Ue is uei . Then, the transpose of the ith row of
U c is denoted by uc,i and the transpose of the ith row of Ue

is denoted by ue,i.
The N equations of the form

(29)q̇i = uci + uei

can be rewritten as the matrix equation

(30)Q̇ = U c + Ue,

which in turn can be written as the n equations

(31)ẋi = uc,i + ue,i.

The main point is that solutions of (29) and (31) will be
identical. The reason we want to rewrite these equations is
so that the following properties can be shown:

Proposition A.1. Given the control law uck defined in (18),

uc,k = −Lk̄xk,

where Lk̄ is the symmetric graph Laplacian obtained if the
edge weights of edge (i, j) ∈ ←→Ec is k̄ij .

Proof: The kth element of uci is denoted by uci,k. Simi-
larly, we can denote the kth element of qi as qi,k. Then,

(32)uci,k =
∑

(i,j)∈
←→
E

k̄ij(dij(t))(qj,k(t)− qi,k(t))

for each i ∈ {1, 2, . . . , N}. Due to the definition of xj , qi,j =

xj,i. Also, by definition of uc,k, we have that uci,k = uc,ki ,
where the latter is the ith element of uc,k. Thus, we can rewrite
the above equation as

(33)uc,ki =
∑

(i,j)∈
←→
E

k̄ij(dij(t))(xk,j(t)− xk,i(t))

for each i ∈ {1, 2, . . . , N}. The right hand side of (33) is
precisely the ith row of the vector Lk̄xk. By stacking the N
scalars uc,ki for each i ∈ {1, 2, . . . , N}, we obtain

uc,k = −Lk̄xk.

We now define edge potential functions as

(34)V ∗ij(q) =

∫ dij

0

sk̄ij(s)ds,
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where we have suppressed the dependence of k̄ij on Rij , lbij
and ubij respectively. These edge potentials can be summed
over all edges to obtain the overall potential function

(35)V ∗(q) =
∑

(i,j)∈E

V ∗ij(q).

Proposition A.2. Given the control law uck defined in (18),

uc,k = −(∇xkV ∗(q))T .

Proof: The partial derivative of V ∗(q) with respect to xk,i
(the ith element of xk) is exactly ∂V ∗(q)

∂qi,k
. First, note that

(36)
∂V ∗ij(q)

∂dij
= dij k̄ij(dij)

and

(37)
∂dij
∂qi

=
1

dij
(qi − qj)T .

Thus,

(38)
∂dij
∂qi,k

=
1

dij
(qi,k − qj,k),

implying that

(39)
∂V ∗ij
∂qi,k

= k̄ij(qi,k − qj,k).

We can compute ∂V ∗(q)
∂qi,k

as follows:

(40)

∂V ∗(q)

∂qi,k
=

∑
(i,j)∈

←→
E

∂V ∗ij
∂qi,k

=
∑

(i,j)∈
←→
E

k̄ij(qi,k − qj,k)

= −uci,k.

Thus, ∂V
∗(q)

∂xk,i
= ∂V ∗(q)

∂qi,k
is equal to the kth element of −uci ,

which in turn is the ith element of −uc,k. In short, the ith ele-
ment of ∂V

∗(q)
∂xk

is the ith element of −uc,k, which implies that
(∂V

∗(q)
∂xk

)T = −uc,k. Equivalently, uc,k = −(∇xkV ∗(q))T .
Clearly, Propositions A.1 and A.2 together imply that

Lk̄xk = (∇xkV ∗(q))T .

Lemma A.1. Consider a graph
←→
G = (V,

←→
E ) with dynamics

(3). Let the feedback uci be selected according to (18). The
external control uei (t) is unknown but bounded for each i ∈ V .
Consider the point q∗ = {q ∈ R2n : dij = Rij∀(i, j) ∈

←→
E }.

Then, for any solution q(t) of (3) with initial condition q(0) ∈
D if q(t) ∈ D for all t ∈ [t0, T ), then q(T ) 6= q∗.

Remark 2. Note that we are not yet claiming that the solution
q(t) remains in D. We are merely claiming that it cannot exit
D by passing through a specific point given by q∗.

Proof: We will prove the Lemma by the method of
contradiction. Let there be some T > t0 such that q(t) ∈
D∀t ∈ [t0, T ) and q(T ) = q∗. The value of the potential
function V ∗(q) along the solution q(t) is denoted by V ∗(t).
Consider the function V ∗(q) as a Lyapunov-like function.

V ∗(q) ≥ 0 ∀q ∈ D. The derivative of V ∗(t) along solutions
of (3) with control (18) is given by

(41)

V̇ ∗ =
∂V ∗

∂q
q̇

=

n∑
i=1

∂V ∗

∂xi
ẋi

=

n∑
i=1

xTi Lk̄ẋi

=

n∑
i=1

xTi Lk̄(−Lk̄xi + ue,i)

=

n∑
i=1

(−xTi L2
k̄xi + xTi Lk̄ue,i)

≤
n∑
i=1

(−‖Lk̄xi‖2 + ‖Lk̄xi‖‖ue,i‖)

≤
n∑
i=1

−‖Lk̄xi‖(‖Lk̄xi‖−‖ue,i‖).

Note that for convenience we have dropped the dependence
on time for each term in the equation above. Let g(i, t) be
given by

(42)g(i, t) = −‖Lk̄(t)xi(t)‖(‖Lk̄(t)xi(t)‖−‖ue,i(t)‖),
so that

(43)V̇ ∗(t) ≤
n∑
i=1

g(i, t).

Since the terms uei are bounded, we can bound the norms
ue,i by M ′ <∞. The bound on ue,i implies g(i, t) < 2(M ′)2

for all i ∈ {1, 2, . . . , n} and t ≥ t0. In turn
∑k
i=1 g(i, t) <

2k(M ′)2 for any k ∈ N. If ‖Lk̄xi‖> M ′ for any i ∈
{1, 2, . . . , n} then g(i, t) < 0. Thus, in order to show that V̇
becomes negative, it is sufficient to show that there is at least
one index i∗ such that limt→T g(i∗, t) < −2(n− 1)(M ′)2.

Let P ∈ RN×N−1 be any matrix such that PT1N = 0
and PTP = IN−1, where IN−1 is the identity matrix of size
N − 1. Let x ∈ RN be any vector. We can define xP = PTx,
and thus express x as

(44)x = PxP +

(
xT1N
N

)
1N .

Given a symmetric graph Laplacian L ∈ RN×N and the
vector x, we have that

(45)‖Lx‖≥ λ2(L)‖xP ‖.
We have assumed that q(T ) = q∗, implying that for each

edge (i, j) ∈ ←→E , we have that limt→T dij(t) = Rij . One
can show that ‖xPk (T )‖≥ Rij√

2n
> 0 for at least one index

k ∈ {1, 2, . . . , n}, where xPk (T ) = PTxk(T ). Let this index
be i∗.

Thus,

(46)
‖Lk̄xi∗‖≥ λ2(Lk̄)‖xPi∗‖
≥ λ2(Lk̄)

Rij√
2n
.
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We assume that
←→
G is connected, which implies that

λ2(Lk̄) > 0. For any undirected graph
←→
G , λ2(L(

←→
G )) is

a non-decreasing function of the edge weights [9]. Consider
the weighted symmetric graph Laplacian Lk̄,min where every
edge weight k̄ij is replaced by k̄min = min

(i,j)∈
←→
E
k̄ij . Now,

this matrix is converted to Lk̄ by increasing each edge weight.
This fact means that

(47)λ2(Lk̄) ≥ λ2(Lk̄,min).

However,

(48)λ2(Lk̄,min) = λ2(k̄minL1)

= k̄minλ2(L1),

where L1 is the graph Laplacian of
←→
G obtained when edge

weights are either zero or one. Thus, we can conclude that

(49)λ2(Lk̄) ≥ k̄minλ2(L1),

where λ2(L1) > 0 since
←→
G is connected. Due to the form

of the edge weights, for all edges (i, j) ∈ ←→E we have that
k̄ij(t) → ∞ as t → T . Since there are a finite number of
edges, it holds that limt→T k̄min(t)→∞.

From (46) and (49), we can conclude that as t→ T , the term
‖Lk̄xi∗(t)‖ becomes unbounded. Then, limt→T g(i∗, t) =
−∞, implying that there exists τ < T such that g(i∗, t) <
−2(n− 1)(M ′)2 ∀t ∈ [τ, T ]. Thus, V̇ ∗ ≤ 0 ∀t ∈ [τ, T ].

This conclusion contradicts the assumption that q(T ) = q∗,
since V ∗(q∗) is unbounded and clearly V ∗(t) ≤ V ∗(τ)∀t ≥ τ .
Thus, it is not possible for all the edges to be disconnected at
exactly the same instant.

Theorem V.1
Proof: Again, we use the method of proof by contra-

diction. Let there be some T > t0 where dij(T ) = Rij
for all edges (i, j) ∈ ←→E br,T ⊂

←→
E , where

←→
E br,T 6= ∅. If←→

E br,T =
←→
E then the analysis of the previous Lemma shows

that this situation cannot occur. Thus, let
←→
E −←→E br,T 6= ∅.

By definition of
←→
E br,T , it must hold that for all (i, j) ∈←→

E −←→E br,T , dij(T ) < Rij . Due to the definition of k̄ij(t),
it must hold that k̄ij(T ) < MT ∀(i, j) ∈

←→
E − ←→E br,T and

some positive number MT ∈ R.
Define the set Vbr,T as

Vbr,T =
{
i ∈ V : (i, j) ∈ ←→E br,T for some j ∈ V \{i}

}
.

(50)

Now, for any node i ∈ Vbr,T , we can partition its neighbor
set Ni derived from

←→
E into two neighbor sets N br

i and
N ′i = Ni − N br

i where the former is derived from the edge
set
←→
E br,T . The control uci can be partitioned into two terms

based on these two disjoint neighbor sets. That is,

uci =
∑
j∈N bri

k̄ij(t)(qj(t)− qi(t)) +
∑
j∈N ′i

k̄ij(t)(qj(t)− qi(t))

= uci,br + udi .

Thus, for any node i ∈ Vbr,T , we have dynamics

q̇i = uci + uei = uci,br + udi + uei (51)

= ūci + ūei (52)

where ūci = uci,br and ūei = udi + uei . The main point is that
‖udi ‖ is bounded, since for any j ∈ N ′i , (i, j) ∈ ←→E −←→E br,T .
Thus, ūei is also bounded.

The key idea is that the subgraph (Vbr,T ,
←→
E br,T ) has

dynamics (52) with control ūci of the form (18) where the
neighbors of i ∈ Vbr,T are determined by the edge set

←→
E br,T ,

not
←→
E . The term ūei is bounded. The control for robot i has

not changed, we have merely relabeled different terms in the
control.

We thus have a system that satisfies the conditions of
Lemma A.1, when the graph in question is (Vbr,T ,

←→
E br,T )

with control law ūci and external bounded term ūei . Lemma A.1
states that there cannot be some time T where dij(T ) = Rij
for all edges (i, j) ∈ ←→E br,T , assuming dij(t) < Rij for
t < T . However, this conclusion violates our assumption that
dij(T ) = Rij for all edges (i, j) ∈ Ebr,T . This contradiction
leads to the conclusion that q(t) ∈ D ∀t ≥ t0.
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