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Abstract—The preservation of connectivity in mobile robot the overall potential becoming unbounded (generatinggelar

networks is critical to the success of existing algorithms éssigned  control effort due to the gradient) whenever a new edge is
to achieve various goals. The available connectivity conot added

algorithms mainly work through preservation of existing edges . S ..
in the network. A link may be deleted if distributed decision Another centralized method for maintaining connectivity

making determines that the edge is not a cut-bridge. A contrter ~ @mongst a group of mobile robots is to maximize the second
is presented which allows edges to be broken in a continuous smallest eigenvalue of the graph Laplacian [7], when the
manner without higher-level decision making. The controler is  edge strengths are non-increasing functions of the distanc
based on maximization of the second smallest eigenvalue dfet between robots. The resulting graph is always completely

graph Laplacian. The controllers are designed for holononi . . . .
robots, and are extended for implementation on non-holonoic connected, as seen in the simulation results[in [7]. This

wheeled mobile robots. Finally, the performance of the exteded Method is effective for solving rendezvous problems, amd ca
controllers are demonstrated experimentally. be extended to other applications [1].

The main contribution of this paper is the development
of a centralized connectivity controller which maintaibsit

Multi-robot networks has been an active area of researgbes not increase the global connectivity until the network
for several years. Such systems afford an inexpensive ggdcompletely connected. Edges may be broken under the
robust method to achieve certain coverage tasks or coopéf@tuence of additional control objectives (such as explora
tive missions. Several of the algorithms that solve tasksgus or coverage) without losing global connectivity and withou
multi-robot networks assume that the network is connedtedreeding any higher-level decision making. We consider for-
all times, so that any two robots can communicate and shai@tion control and collision avoidance as the additionsisa
information, even if through several ‘hops’. The problem ofo be achieved. We then extend these controllers in order to
maintaining connectivity in mobile robot networks has thugcilitate implementation on non-holonomic wheeled mebil
been receiving increasing attention. robots (WMRs) and then present the results of experiments.

A good review of different methods to control and maintaiConnectivity controllers that prevent edge deletions ar-co
connectivity can be found i [1]. The connectivity can bgerge to complete networks limit the set of formations that
maintained in a centralized or decentralized manner. A%an be commanded. The controllers we present allow a larger
obvious method of maintaining connectivity is to preservéet of formations to be achieved, where this set of formation
the edges present in the network for all timé [2]-[4]. Mangan be modified using a parameter in the control law.
decentralized connectivity preserving methods utilizeag-v
ation of this.

It is clear that in many cases edges may be deletedin this section we give a brief recount of concepts from
without losing global connectivity, and several attemmsen graph theory used to model the connectivity of a mobile robot
been made to allow for this behaviour. To the best of oumetwork.
knowledge, all rely on discrete decision making in addition A weighted grapltz is a tuple consisting of a set of vertices
to motion control. The authors ihl[5],1[6] propose algorithmV” (also called nodes) and a functid¥i, that is
to decide if edges may be deleted while still ensuring a G=(V,W)

spanning subgraph exists, based on local estimates of \ev[ﬁ}erev = {1,..., N} denoted the set of nodes. The function
network topology.

The edges are usually preserved using unbounded artifictméI: V x Vx [y — [y s used to compute the weights of

. . : e edges i, such that
potential functions, which suffer from the phenomenon o 9 o
Wij (t) = W(L], t); (1)
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If po—p1 > 1, theny’(x) may be small even whem < x < 0
p2, unlike as seen in Figufd 1. One solution is to normalize
the inputsxz and parameterg;, po through division byps.
One of the advantages of bump functions is that they are
smooth objects and can thus be differentiated as many tinbeé
as required. If we take the distanég between two robots as

0 o2 08 1
x [m]
Fig. 2: A2(£) maximizing controller

ection range o, = 0.70m. Assume that two robots
) . A can detect each other perfectly if they are a distance of
the input toy, we obtain a smooth weighting;; = v(d;) p1 = 0.20m. or smaller away. Suppose a second-smallest-

from full _connectivity to no connec_tivity fqr any two robots eigenvalue-maximizing control law such as the one given
as seen in Figurl 1. The edge weights give rise to the grqﬂﬁm is applied on each of the robots; that is, the control

Laplacian € R defined as law for the k" robot will be the gradient of the potential
—w;;(t) if i £ function
Lij(t) = L B p o .
Doppi Wik(t) i Q= d(x) =logdet (P L(x)P)™ " :=logdet (M(x))
The Laplacian gives us a measure of the connectivity of theherex; denotes the position vectary, y.) of robotk. The
graphG since the number of connected components in tentroller for thek! robot reads
graph is equal to the number of zero eigenvalues.ofhus, ¢ L, OM
for the graph to be connected, at most one eigenvalue of Tk = _6—:%()() =tr (M —(X)>
L can be zero. The second smallest eigenvalpel) thus
becomes an indicator of connectivity in the graph.
The LaplacianL can be converted to a matrixt €
RN-IXN=1 whose eigenvalues are the largdst- 1 eigen-
values of L. The matrix M is given by

Bxk

We simulate this control law with the first robot com-
manded to remain at the position = (0.5,0.5). This is
equivalent to the robot tracking any constant set point. The
behaviors of the remaining robots are illustrated in Figgire
The bold green curve is the circle of radigs around the

M="PTLP (2)  location of the first robot. We immediately notice that all of
whereP € RVXN-1 gatisfiesPT1 = 0 and PTP = Iy_,. the robots are forced into this circle under this control.law
Thus, the determinant af vanishes if and only if\,(L) This is because the connection strengths are maximized when
vanishes. each pair of robots is separated by no more than

This means that desired formations should lie completely
Il. M OTIVATION inside this circle. This could be a serious limitation, for

Consider a scenario where we would like a team of robadxample in tasks related to coverage. Thus, we see that
to stay connected with each other while performing sonm®nnectivity control based on second smallest eigenvalue
other task. This task might be to arrange themselves inn@aximization alone limits the success of achieving addélo
formation or to explore an area. These two requirements daghaviors.
be mathematically restated as bounding the second smallest
eigenvalue of the Laplacian away from zero while each
robot tracks either (possibly time varying) absolute oatiee The control goals to achieve in this paper are twofold.
positions. The first requirement is for the network of agents to not

One way to attack this problem is to come up wittose connectivity at any instant in time, provided they are
a connectivity controller based on maximization ®f(£) initialized connected. This amounts to keeping the second
and to add another controller that achieves the trackisgallest eigenvalue of the Laplacian matkix £) away from
aspect of the task. The downfall of this approach is thaero. In addition to this, it is desired that the controllerels
the connectivity control may conflict with the ability of thethe agents to a specified formation.
tracking controller to achieve the desired goal, or mayriest The maximum possible value of;(£) is achieved when
the set of robot positions that can be tracked. the graph is completely connected, however the connegtivit

Example. Consider five first-order robots, whose dynamicwhen agents achieve the desired formation may not corre-
are represented by the simple integrator, with a maximuspond to this value. The connectivity controller is active

IV. CONTROL DESIGN



and pulls the agents away from their desired positions. Thé V, with respect to the coordinates, andy,. of the k"
formation is not achieved. In order to make the objectivasbot, we find that

compatible with each other we reformulate the problem as 0 it D<a
follows: Given a desired formation how does one design a gy, oM . oo
connectivity preserving controller such that the agents ar D7 =< Bx)tr (M 8Tk) fa<D<a
lured towards the desired formation without losing connec- 0 if & <D
tivity? We attack the connectivity control problem first in )
section V-4, by coming up with a navigation function with oV 0 if D<o
parameters that can be modified to achieve any formation < = B(x)tr (M*lgﬂ) if a<D<a
control goal a posteriori. Oy 0 o ifa<D
In SectiongTV-A through IV-C we assume that the mobile 4=

robots possess the following kinematics where

X, = T; 3 ~2 2 2 =2

_ T , 9 B(x)=4(a o) (D2 ) 1o .

where x; € R? is the position of thei*® mobile robot (D2 _Q2)3

given by x; = (zi,y;). We then show how each of theProposition IV.1. Under the control law
controllers can be extended for implementation on non-
Tk = =V, Ve(x) 4)

holonomic wheeled mobile robots in Section TV-D.
the team of first-order robots with individual dynami@®

A. Connectivity Controller converges to the sef = {x € R2Y : det (M(x)) > al,

The connectivity controller must maintain connectivitynd the graphGG whose nodes the robots represent stays
while possessing some flexibility so that attraction to ggnnected for all time.

desired formation can be simultaneously achieved by anothe _ ) ) )
controller to be designed later. The measure of connegtivit ~ PToof: The first statement is straightforward once we
that we used is the second smallest eigenvali(@) of the (@ke the derivative of the potential function. along the
graph Laplacianc, or equivalently the smallest eigenvaludrajectory of the systeni¥3), yielding
A(M) of the matrix M, defined as in equatiofil(2). Ve = Vi Vo(x)i
We sta.lr'F the design of the cgnnectivity contr_o!ler by _ —(Vch(x))T V. Vi(x)
parametrizing the space over which the connectivity con- B
troller is active. This is achieved by sandwiching the fisret Which is smaller than zero whenewést (M(x)) < a.
det (M) by two scalarsy and . Consequently, the second statement follows the fact that

—1 _ 2N .
o < det (M) = det (PTL(x)P) < a the level setsV,7'([0,7]) = {x€R* :V,(x) <~} of

V.(x) are positively invariant. [ |

This defines a subse$ of the total configuration space o ) )
IIY ,R2N where the connectivity controller is active. Theé3- Connectivity Preserving Formation Controller
connectivity controller will ensure the lower bound is In this section, we develop on the connectivity controller
never reached, once the robots are startedxine R*™ : presented in SectidnIVAA by adding a formation controller o
det (M(x)) > a}. On the other hand, in the complement ofop of it. We define a quadratic potential functigy (x; ) for
this subsetS, the connectivity controller will not be active. each robot, with a minimum located at the desired position

These bounds immediately correspond to bounds(oW) x;4. The sum of the contributions of each robot gives rise to
once the determinant is seen as the product of the eigenthk formation potential functiori/;.

ues. In other words, a lower bound> 0 on the determinant 1

also bounds the second smallest eigenvalue of the graph Vik = §<Xk — Xkd, Xk — Xkd)
Laplacian away from zero. Similarly the numberK NV—! N

corresponds to an upper threshold for the second smallest Vi = Z Vin

eigenvalue. The absolute upper bouid'~! on a exists p

because of the very nature of the graph Laplacian.
The aim of the controller will be to never let the robot
reach a configuration wherket M < « and be unresponsive

where the bracket§, -) represents the usual Euclidean inner
roduct of vectors. For convenience, we define

wheneverdet M > a. We address this problem through the N ={je{l,..N}: j#k andd;r < p}
following potential functionV,(x) [8]: which is the index set of neighbors of robatWe now show
D(x) := det (M(x)) an important property of the connectivity control law.
V(D) = (min 0 D? — a2\’ Proposition 1V.2. The instantaneous direction of motion of
N n " D? — o2 each roboti under the control

This function blows up whenever the determinant approaches Ti=—Vx Ve ®)
the lower bound and is zero whenever the determinantissa positive combination of the vectaxs — x;, wherej €
greater than the upper bound. Upon taking partial derigativ\;.



In particular, for eachk, the velocity vector of agenit Owij _ Owij Odij _ Owij xi — x;

points into the convex hull, GH), of the set of vertice¥’. Ov; — Ody Oxi  9dy;  dy
(9’[1}1']' o 6wij 6du o (9’[1}1']' Yi —Yj

Proof: = =
We define the symmetric matrit’/ € RV*N as yi Odij Jy;  Odij  dij
.. . i if —4iandn =17 thus
A (myn) = A (n,m) =4 9 "m=randn= -
0  otherwise oo, | _ 5 [xj - xz}
Owy; | — Y . .
where w;; is defined as in[{1). This corresponds to the Dy, LY — v

adjacency matrix qfa graph consisting of_the §dkheobots, wheres,; > 0, since Bw?]: < 0. To compute the control for

but the only possible non-zero edge weightuig. We can h 9di;

construct a graph Laplaciah® from A% in the standard ¥ robot, we use the fact that

way, which has the property that Y oL N oLk
8xk o

N N
Li-j = 2w:; -U'UT T = Z Z i
g Oz = j>i 2k Oz

wherev € RN with its £** component given by i g g SLid
since L/ = L7 and &= = 0 wheneverk # i, k # j.

—1/V2 it k=i Therefore, the control v’éctdEI(S) is computed as
o =<1/V2  if k= o (M-LpT 2L p
0 otherwise = —B(x) r ox;
It should be noted that we recover the original graph Lapla- tr MflPTaa—yLiP

cian, £, by the expression N 1T AL

AN = —B(x)
oy 2 | (Pt
i=1 j>i N
The partial derivatives o.”” can be expressed as = —B(x) Z 270 {yﬂ yl]

OLY 28wij T J J !

= Z2—UV . . L. . . .
oxy, oxy, which is clearly a positive combination of the displacement
oL owij vectors from robot to the robotsj. Moreover,j € A; since
Do = 25, Y therwise2% = 0 and hencej,; = 0
Y Y otherwisezz = 0 and hencej;; = 0.

[ ]
In the rest of the subsection, we shall assume that the
ntrol law for each robot is given by

We take the inverse\=! > 0 of the matrix M > 0
defined in[(2) and express it via its eigenvalue dec:ompcnsitigO

N
M7 =3 D T = = (keVx Velx) + By T Vi) (6)
1=2 ! for positive gainsk., ks > 0. The next proposition states a
wherew; € RV, for eachl. We calculate, consensus-like behavior of the robots under this contwl la
” N-1
_ oLY 1 Ow;; Proposition IV.3. Suppose the control effort for each robot
1pT _ ST i pT,,, T
o <M P oxy, P> o <; urui 2 Oz, Prov P) k is given by(@). Then the average position of the robots
5 No1 B converge to the desired average position. In other words,
=2 ;}ij tr (Z —ulu;‘rPTU(PTU)T> 1 Y 1 Y
Tk =1 tlL)H;O N Z Xk(t) = N Zxkd
W N—-1 1 Sw k=1 k=1
=2—2L N " —(u/ PTv)? = 27—~
oxy, ; A (i Pv) T gy Proof: Take the Lyapunov function candidaté =
and similarly, Ve(x)+Vy(x) > 0 and take its derivative along the solutions
L 5 of the system[(3).
tr <M1PT —— P) = 2752 _ N oM 2
Tk Yk V==Y [kcﬁ(x)tr (M—l—) +ky (z), — $kd):|
f
where~y;; > 0. Now, take the vector 1 Ay,
|t (MpTLEp al M ?
i 2 =3 e (MG k- |
tr (M-1PToL2 p Pt Yk

OYk
dw,; which is equal to zero only when the expressions in the
= 25 [gﬁ;j square terms are zero for &l Since the same arguments
Byk holds for the second square term in this expressign (
We have the relations component), we concentrate on the first square term.




Using the identitytr(AB) + tr(AC) = tr (A(B + C)), Remarkl. Theoren{IV1 provides a way to move the robots
N M into the convex hull defined by the desired formation while
Z [kcﬂ(x)tr (M‘1—> +ky (v —xkd)] maintaining connectivity. Even though the claims of the
k=1 Oz, theorem are weaker, in any simulation, the robots converge
N M N to the desired formatiorx,, provided it is selected such that

= Z keB(x)tr <M1W> + Z ki (xr — Tra) the det (M(x4)) > a.
k
k=1 N k:]\; Remark2. The control due to connectivity becomes un-
_ oM bounded aslet M — 0. Finite errors in formation yield
_ 1 oM _
= ke (x)tr <M Z axk> T Zk-f (% = Zra) finite control effort, hence even if the desired formation is
=1 =t disconnected, the network will never become disconnected.

N
= Zkf (T — Ta) C. Connectivity Preserving Formation Controller with Col-
k=1 lision Avoidance

where we have used the a”ti'symmetfy%f with respect e can add yet another potential function,(z) , de-
to the differentiated variable to write down the last eqyali signed to introduce collision avoidance behavior, to work

This completes the proof. B in collaboration with the existing ones. By this way, we

Theorem IV.1. Suppose the control effort for each agent €an prevent that the robots from colliding with each other
is given by(B). Let V; denote the vertex set for the desiredvhile they move towards the desired formation. We use the
formation. Then the agents converge to a Eetontained in avoidance (potential) functions as defined]in [8] by

the convex hulCH(V;) of the desired formation. 2 —r2)\°
X . . Vm‘j = | min 0, S (7)
Proof: We take the same Lyapunov function candidate :

_ S _ dide a3, —r?
as in the proof of Propositidn TM.3 and compute its derivativ,

| th luti 13 luding that th ii IWhere d;; is the Euclidean distance between robotand
aong the solutions o [13). conciuding that the posiiive , 7 and R define the avoidance region and sensing region,
invariant set the agents reach is the set of configurati

Sspectively The potential functions are designed sueh th
2N . . . .
x € R*" where for alli, both the following conditions hold if the robots are started away from the avoidance region
koB(x)tr <M1 3/\4) +Ey (25— i) =0 Q; = {a:_: [l —_:z:jH <r}, they never enter this region.
Ox; The sensing region, on the other hand, given By =
_,OM {z :||z; — z;|| < R}, is the region where robatcan sense
1 s — ) — J
e (x)tr <M Y ) kg (yi = Yia) =0 the presence of robgt
Sinces(x) < 0, this is equivalent to the statement that the an- "€ sum of the pairwise potentials] (7) between rokiots
_1aM _,am\]17 andj constitute the total avoidance potential function
gle between the vector%tr (M 18—%_) tr (/\/l ! )}

Bmi N N
and[z; — x4 yi — yia]” is 7 rad. Due to Propositioh T2, Va(z) = Z Z lvm-j
the former always points int6H(V'), so this is only possible i=1 j#i,j=1 2
if for eachi, x; € CH(V;) (see Figuré13). Thus the form of the control law for robgt with the

B collision avoidance term would be
Tk = — (kcvxl'VC(X) + kaxi Vi (X) +kaVx, Va (X)) (8)

wherek,, k¢, andk, are positive gains.

D. Extension to Wheeled Mobile Robots

In the case of non-holonomic wheeled mobile robots the
kinematics are modeled by the nonlinear ordinary diffaegnt

equations
Iy = vk cos (0f)
yk = Vg sin (Gk) (9)
9k = Wk

wherex, € R andy, € R are the Cartesian coordinates,
0x € [0,27) is the orientation of thé:'" robot with respect
to the world frame andy, w; are the linear and angular
velocity inputs, respectively. We would like the controdie

) _ N - _ developed so far to work with this system dynamics, rather
Fig. 3: If an agentr, is outside the convex hull of the desiredpap, the first-order integratorl (3).

formation (dashed red lines), the formation controller &/&  The jdea will be to turn the robot to the desired orientation
connectivity controller cannot cancel each other. dictated by the direction of the controller derived for rebo
with dynamics[(B) based on any potential functign




< ov oV )
0rq = arctans

—_— 10

aykv afEk ( ) 60
Define the orientation erret, = 6, —60;q. Let us also define
the desired velocity vector to be

(v v
Tkd ‘= axka ayk

Note that the desired orientati®h, is the angle this vector
makes with the world:-axis. Assuming thafeg, | # 7, we
have the following result.

(11)

Proposition IV.4. All of the convergence results presente:
so far hold for the non-holonomic dynamics as giver{@
if the following controller is applied

= —kp cos (eek) ||de|| 0 10 20 30 40 50 60 70

(12) t [sec]
(x))

Uk

W = —kgeg
o ’ (@) det (M
with gainsk,, k¢ > 0.

Proof: Let us take the time derivative of the potentia
functionV,,;, = V + %fozl egk, whereV is the potential
function used to derive any controller for robots with first
order integrator dynamics. Then,

anh XN:

k=1

x [m]

0 10 20 30 40 50 60 70
Robot 1
2 = = = Robot 2
Robot 3

8V tené
&Ck e Uk 0, €0,

>

8xk

k=

1

ov
[ k, cos (eq, ) || Tkal| (— cos (0r)

+ —V sin
oYk

N

= Z {—kp cos? (eg, ) ||7kal|* — kaegk} <0

k=1

(9k)) - keegk}

(13)

y [m]

0 10 20 30 40 50 60 70

(b) = — y coordinates for each robot

with equality only if ||7.q[| = eg, = 0, for all k. But this Fjg. 4: Experiment where Robat moves in a circle, while

is only the case if the states are in the desired set. The Iggfhots1 — 3 avoid collisions and maintain connectivity.
equality in [I3) is obtained by the observing that

ov av .
(a—xk cos (0) + o sin (Gk))

_ <(8_V 3_V) +(cos (6), sin (9k>>>

Oy Oyy,

we mean that they have been implemented using the
procedure in Sectiop TVAD.

In the first experiment, one robot is commanded to move
with constant linear velocity).3m/s and angular velocity

0.25rad/s so that it moves in a circle. The remaining robots
run controller[[8), with parameters given in Tadle I. Notatth
B the formation control gair; is set to zero. The other robots
move in reaction to the motion of Robot until they finally
settle into positions such thaliet M > & (Figures[4h and
The connectivity control is demonstrated using an expeH). We omit the plot fory position due to space constraints.
mental setup consisting of four iRobot Creates. The kinem&the brief motion att = 46s is due to collision avoidance.
ics of the Creates are given Hyl (9), where the inputs are tlhis demonstrates how connectivity can be maintained above
desired linear and angular velocitieg, w;,. Each robot has a desired value without preference to any particular neééwor
a linux-based Gumstix Verdex microcontroller board, whictopology.
we program in C++. The position feedback is obtained usingIn the second experiment, all the robots are tasked with
a VICON motion tracking system. The VICON system hasonverging to a formation, while maintaining connectivity
sub-millimeter accuracy with a data rate foHz. and avoiding collisions (Usind¥8)). The initial configuicat
The controllers presented in Sectionl IV are implementésl such that each robot must pass near the centroid of the
in experiments corresponding to different scenarios. Whelesired formation if only the formation control were active
we refer to controllers developed in Sectigns TV-A throughnsuring that collisions may occur if without the collision

= HdeH COS €9,

V. EXPERIMENTAL IMPLEMENTATION



TABLE |: Parameters used in the experiments

Parameter Exp1l Exp2 Exp3 Exp4
ke 1.0 1.0 1.0 1.0
ky 0.0 1.0 0.0 1.0

a 0.1 1.0 0.1 0.1
Ky 5.0 5.0 5.0 5.0
@ 20 1 2.0 1.0
a 0 0 0 0
p1 [m] 0.7 0.7 0.7 0.7
p2 [m] 2.3 2.3 2.3 2.3
R [m] 0.7 1.0 0.7 0.7
r [m] 0.4 0.45 0.4 0.4

60
t [sec]

(@) det (M(x))

Robot 1

= = =Robot 2
Robot 3
 Robot 4

y [m]

Initial
Final
Desired

x [m]

(b) Implicit plot

Fig. 5: Experiments with four Creates performing connectiv

ity control, formation control and collision avoidance.

avoidance terms. Notice in figufe]5b that Rob8tand 4

VI. CONCLUSION

In this paper we have presented a connectivity control
method for a mobile network based on maximization of the
second smallest eigenvalug(L£) of the graph Laplaciar.
This can be achieved by maximizing a measure of connectiv-
ity given by the determinant of a matrixt = PTLP. The
connectivity is increased away from zero whenever it iswelo
a certain threshold. In addition, the connectivity cont@)
can be integrated into a previous collision-avoiding fatiora
controller [8], with similar convergence properties, po®d
the desired formation has a value dét (M) above the
threshold used in our control. The set of formations that can
be tracked using our connectivity control is larger tharstho
which disallow edge deletions or maximiZe(£) till the
theoretical limit of V.

We have shown how to extend the controllers in order to be
able to implement them on non-holonomic wheeled mobile
robots. Experiments which demonstrate the propertiesef th
controllers were provided.

The experiments show the convergence of the mobile
robots to desired positions in the formation while mairtain
ing connectivity and avoiding collisions. This behavior is
stronger than what Theordm [V.1 promises and thus presents
a future avenue of research.
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initially move in a straight line and then move in a circular
path due to collision avoidance. We see that the steady state
position errors of the robots are small, and are a resultef th
dead-zone in actuation. The connectivity increases fraen th
initial small value, as seen in figufel5a. Note that the final
value ofdet M(x) is less than the maximum possible value
of 64. Also note that the connectivity decreases as the robots
pull away from each other to reach their desired positions in
the formation.
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