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Abstract—The preservation of connectivity in mobile robot
networks is critical to the success of existing algorithms designed
to achieve various goals. The available connectivity control
algorithms mainly work through preservation of existing edges
in the network. A link may be deleted if distributed decision
making determines that the edge is not a cut-bridge. A controller
is presented which allows edges to be broken in a continuous
manner without higher-level decision making. The controller is
based on maximization of the second smallest eigenvalue of the
graph Laplacian. The controllers are designed for holonomic
robots, and are extended for implementation on non-holonomic
wheeled mobile robots. Finally, the performance of the extended
controllers are demonstrated experimentally.

I. I NTRODUCTION

Multi-robot networks has been an active area of research
for several years. Such systems afford an inexpensive and
robust method to achieve certain coverage tasks or coopera-
tive missions. Several of the algorithms that solve tasks using
multi-robot networks assume that the network is connected at
all times, so that any two robots can communicate and share
information, even if through several ‘hops’. The problem of
maintaining connectivity in mobile robot networks has thus
been receiving increasing attention.

A good review of different methods to control and maintain
connectivity can be found in [1]. The connectivity can be
maintained in a centralized or decentralized manner. An
obvious method of maintaining connectivity is to preserve
the edges present in the network for all time [2]–[4]. Many
decentralized connectivity preserving methods utilize a vari-
ation of this.

It is clear that in many cases edges may be deleted
without losing global connectivity, and several attempts have
been made to allow for this behaviour. To the best of our
knowledge, all rely on discrete decision making in addition
to motion control. The authors in [5], [6] propose algorithms
to decide if edges may be deleted while still ensuring a
spanning subgraph exists, based on local estimates of the
network topology.

The edges are usually preserved using unbounded artificial
potential functions, which suffer from the phenomenon of
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the overall potential becoming unbounded (generating a large
control effort due to the gradient) whenever a new edge is
added.

Another centralized method for maintaining connectivity
amongst a group of mobile robots is to maximize the second
smallest eigenvalue of the graph Laplacian [7], when the
edge strengths are non-increasing functions of the distance
between robots. The resulting graph is always completely
connected, as seen in the simulation results in [7]. This
method is effective for solving rendezvous problems, and can
be extended to other applications [1].

The main contribution of this paper is the development
of a centralized connectivity controller which maintains,but
does not increase the global connectivity until the network
is completely connected. Edges may be broken under the
influence of additional control objectives (such as exploration
or coverage) without losing global connectivity and without
needing any higher-level decision making. We consider for-
mation control and collision avoidance as the additional tasks
to be achieved. We then extend these controllers in order to
facilitate implementation on non-holonomic wheeled mobile
robots (WMRs) and then present the results of experiments.
Connectivity controllers that prevent edge deletions or con-
verge to complete networks limit the set of formations that
can be commanded. The controllers we present allow a larger
set of formations to be achieved, where this set of formations
can be modified using a parameter in the control law.

II. BACKGROUND

In this section we give a brief recount of concepts from
graph theory used to model the connectivity of a mobile robot
network.

A weighted graphG is a tuple consisting of a set of vertices
V (also called nodes) and a functionW , that is

G = (V,W )

whereV = {1, ..., N} denoted the set of nodes. The function
W : V × V ×R+ → R+ is used to compute the weights of
the edges inG, such that

(1)wij(t) =W (i, j, t);

If wij(t) = 0, then there is no connection between nodes
i and j. We obtain the edge weights using bump functions,
commonly used as gluing objects of differential geometry:

ψ(x) =















1 if x ≤ ρ1
exp (− 1

ρ2−x
)

exp (− 1

ρ2−x
)+exp ( 1

ρ1−x
)

if ρ1 ≤ x ≤ ρ2

0 if ρ2 ≤ x
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Fig. 1: Bump function

If ρ2−ρ1 > 1, thenψ′(x) may be small even whenρ1 < x <
ρ2, unlike as seen in Figure 1. One solution is to normalize
the inputsx and parametersρ1, ρ2 through division byρ2.
One of the advantages of bump functions is that they are
smooth objects and can thus be differentiated as many times
as required. If we take the distancedij between two robots as
the input toψ, we obtain a smooth weightingwij = ψ(dij)
from full connectivity to no connectivity for any two robots,
as seen in Figure 1. The edge weights give rise to the graph
LaplacianL ∈ R

N×N defined as

Lij(t) =

{

−wij(t) if i 6= j
∑

k 6=i wik(t) if i = j

The Laplacian gives us a measure of the connectivity of the
graphG since the number of connected components in the
graph is equal to the number of zero eigenvalues ofL. Thus,
for the graph to be connected, at most one eigenvalue of
L can be zero. The second smallest eigenvalueλ2(L) thus
becomes an indicator of connectivity in the graph.

The LaplacianL can be converted to a matrixM ∈
R

N−1×N−1, whose eigenvalues are the largestN − 1 eigen-
values ofL. The matrixM is given by

(2)M = PTLP
whereP ∈ R

N×N−1 satisfiesPT1 = 0 andPTP = IN−1.
Thus, the determinant ofM vanishes if and only ifλ2(L)
vanishes.

III. M OTIVATION

Consider a scenario where we would like a team of robots
to stay connected with each other while performing some
other task. This task might be to arrange themselves in a
formation or to explore an area. These two requirements can
be mathematically restated as bounding the second smallest
eigenvalue of the Laplacian away from zero while each
robot tracks either (possibly time varying) absolute or relative
positions.

One way to attack this problem is to come up with
a connectivity controller based on maximization ofλ2(L)
and to add another controller that achieves the tracking
aspect of the task. The downfall of this approach is that
the connectivity control may conflict with the ability of the
tracking controller to achieve the desired goal, or may restrict
the set of robot positions that can be tracked.

Example.Consider five first-order robots, whose dynamics
are represented by the simple integrator, with a maximum
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Fig. 2: λ2(L) maximizing controller

detection range ofρ2 = 0.70m. Assume that two robots
can detect each other perfectly if they are a distance of
ρ1 = 0.20m. or smaller away. Suppose a second-smallest-
eigenvalue-maximizing control law such as the one given
in [1] is applied on each of the robots; that is, the control
law for the kth robot will be the gradient of the potential
function

φ(x) = log det (PTL(x)P)−1 := log det (M(x))−1

wherexk denotes the position vector (xk, yk) of robotk. The
controller for thekth robot reads

τk = − ∂φ

∂xk
(x) = tr

(

M−1 ∂M
∂xk

(x)

)

We simulate this control law with the first robot com-
manded to remain at the positionx1 = (0.5, 0.5). This is
equivalent to the robot tracking any constant set point. The
behaviors of the remaining robots are illustrated in Figure2.
The bold green curve is the circle of radiusρ1 around the
location of the first robot. We immediately notice that all of
the robots are forced into this circle under this control law.
This is because the connection strengths are maximized when
each pair of robots is separated by no more thanρ1.

This means that desired formations should lie completely
inside this circle. This could be a serious limitation, for
example in tasks related to coverage. Thus, we see that
connectivity control based on second smallest eigenvalue
maximization alone limits the success of achieving additional
behaviors.

IV. CONTROL DESIGN

The control goals to achieve in this paper are twofold.
The first requirement is for the network of agents to not
lose connectivity at any instant in time, provided they are
initialized connected. This amounts to keeping the second
smallest eigenvalue of the Laplacian matrixλ2(L) away from
zero. In addition to this, it is desired that the controller lures
the agents to a specified formation.

The maximum possible value ofλ2(L) is achieved when
the graph is completely connected, however the connectivity
when agents achieve the desired formation may not corre-
spond to this value. The connectivity controller is active



and pulls the agents away from their desired positions. The
formation is not achieved. In order to make the objectives
compatible with each other we reformulate the problem as
follows: Given a desired formation how does one design a
connectivity preserving controller such that the agents are
lured towards the desired formation without losing connec-
tivity? We attack the connectivity control problem first in
section IV-A, by coming up with a navigation function with
parameters that can be modified to achieve any formation
control goal a posteriori.

In Sections IV-A through IV-C we assume that the mobile
robots possess the following kinematics

(3)ẋi = τi

where xi ∈ R
2 is the position of theith mobile robot

given by xi = (xi, yi). We then show how each of the
controllers can be extended for implementation on non-
holonomic wheeled mobile robots in Section IV-D.

A. Connectivity Controller

The connectivity controller must maintain connectivity
while possessing some flexibility so that attraction to a
desired formation can be simultaneously achieved by another
controller to be designed later. The measure of connectivity
that we used is the second smallest eigenvalueλ2(L) of the
graph LaplacianL, or equivalently the smallest eigenvalue
λ(M) of the matrixM, defined as in equation (2).

We start the design of the connectivity controller by
parametrizing the space over which the connectivity con-
troller is active. This is achieved by sandwiching the function
det (M) by two scalarsα and ᾱ.

α ≤ det (M) = det (PTL(x)P) ≤ ᾱ

This defines a subsetS of the total configuration space
ΠN

i=1R
2N where the connectivity controller is active. The

connectivity controller will ensure the lower boundα is
never reached, once the robots are started in{x ∈ R

2N :
det (M(x)) ≥ α}. On the other hand, in the complement of
this subsetS, the connectivity controller will not be active.

These bounds immediately correspond to bounds onλ(M)
once the determinant is seen as the product of the eigenval-
ues. In other words, a lower boundα > 0 on the determinant
also bounds the second smallest eigenvalue of the graph
Laplacian away from zero. Similarly the numberᾱ ≤ NN−1

corresponds to an upper threshold for the second smallest
eigenvalue. The absolute upper boundNN−1 on ᾱ exists
because of the very nature of the graph Laplacian.

The aim of the controller will be to never let the robots
reach a configuration wheredetM < α and be unresponsive
wheneverdetM > ᾱ. We address this problem through the
following potential functionVc(x) [8]:

D(x) := det (M(x))

Vc(D) =

(

min

{

0,
D2 − ᾱ2

D2 − α2

})2

This function blows up whenever the determinant approaches
the lower bound and is zero whenever the determinant is
greater than the upper bound. Upon taking partial derivatives

of Vc with respect to the coordinatesxk and yk of the kth

robot, we find that

∂Vc
∂xk

=















0 if D ≤ α

β(x)tr
(

M−1 ∂M
∂xk

)

if α < D < ᾱ

0 if ᾱ ≤ D

∂Vc
∂yk

=















0 if D ≤ α

β(x)tr
(

M−1 ∂M
∂yk

)

if α < D < ᾱ

0 if ᾱ ≤ D

where

β(x) = 4

(

ᾱ2 − α2
) (

D2 − ᾱ2
)

(D2 − α2)
3 D2 < 0.

Proposition IV.1. Under the control law

(4)τk = −∇xk
Vc(x)

the team of first-order robots with individual dynamics(3)
converges to the setE = {x ∈ R

2N : det (M(x)) ≥ ᾱ},
and the graphG whose nodes the robots represent stays
connected for all time.

Proof: The first statement is straightforward once we
take the derivative of the potential functionVc along the
trajectory of the system (3), yielding

V̇c = ∇xVc(x)ẋ

= − (∇xVc(x))
T ∇xVc(x)

which is smaller than zero wheneverdet (M(x)) < ᾱ.
Consequently, the second statement follows the fact that

the level setsV −1
c ([0, γ]) =

{

x ∈ R
2N : Vc(x) ≤ γ

}

of
Vc(x) are positively invariant.

B. Connectivity Preserving Formation Controller

In this section, we develop on the connectivity controller
presented in Section IV-A by adding a formation controller on
top of it. We define a quadratic potential functionVfk(xk) for
each robotk, with a minimum located at the desired position
xkd. The sum of the contributions of each robot gives rise to
the formation potential function,Vf .

Vfk =
1

2
〈xk − xkd,xk − xkd〉

Vf =

N
∑

i

Vfk

where the brackets〈·, ·〉 represents the usual Euclidean inner
product of vectors. For convenience, we define

Nk = {j ∈ {1, ...N} : j 6= k anddjk < ρ2}
which is the index set of neighbors of robotk. We now show
an important property of the connectivity control law.

Proposition IV.2. The instantaneous direction of motion of
each roboti under the control

(5)τi = −∇xi
Vc

is a positive combination of the vectorsxj − xi, wherej ∈
Ni.



In particular, for eachk, the velocity vector of agentk
points into the convex hull, CH(V ), of the set of verticesV .

Proof:
We define the symmetric matrixAij ∈ R

N×N as

Aij(m,n) = Aij(n,m) =

{

wij if m = i andn = j

0 otherwise

where wij is defined as in (1). This corresponds to the
adjacency matrix of a graph consisting of the sameN robots,
but the only possible non-zero edge weight iswij . We can
construct a graph LaplacianLij from Aij in the standard
way, which has the property that

Lij = 2wijvv
T

wherev ∈ RN with its kth component given by

vk =











−1/
√
2 if k = i

1/
√
2 if k = j

0 otherwise

It should be noted that we recover the original graph Lapla-
cian,L, by the expression

L =
N
∑

i=1

N
∑

j>i

Lij

The partial derivatives ofLij can be expressed as

∂Lij

∂xk
= 2

∂wij

∂xk
vvT

∂Lij

∂yk
= 2

∂wij

∂yk
vvT

We take the inverseM−1 > 0 of the matrix M > 0
defined in (2) and express it via its eigenvalue decomposition

M−1 =

N
∑

l=2

1

λl
ulu

T
l

whereul ∈ R
N , for eachl. We calculate,

tr

(

M−1PT ∂L
ij

∂xk
P

)

= tr

(

N−1
∑

l=1

1

λl
ulu

T
l 2
∂wij

∂xk
PT vvTP

)

= 2
∂wij

∂xk
tr

(

N−1
∑

l=1

1

λl
ulu

T
l P

T v(PT v)T

)

= 2
∂wij

∂xk

N−1
∑

l=1

1

λl
(uTl P

T v)2 = 2γij
∂wij

∂xk

and similarly,

tr

(

M−1PT ∂L
ij

∂xk
P

)

= 2γij
∂wij

∂yk
whereγij > 0. Now, take the vector

τ ijk =





tr
(

M−1PT ∂Lij

∂xk
P
)

tr
(

M−1PT ∂Lij

∂yk
P
)





= 2γij

[

∂wij

∂xk
∂wij

∂yk

]

We have the relations

∂wij

∂xi
=
∂wij

∂dij

∂dij
∂xi

=
∂wij

∂dij

xi − xj
dij

∂wij

∂yi
=
∂wij

∂dij

∂dij
∂yi

=
∂wij

∂dij

yi − yj
dij

thus
[

∂wij

∂xi
∂wij

∂yi

]

= δij

[

xj − xi
yj − yi

]

whereδij ≥ 0, since ∂wij

∂dij
≤ 0. To compute the control for

kth robot, we use the fact that

∂L
∂xk

=

N
∑

i=1

N
∑

j>i

∂Lij

∂xk
=

N
∑

j 6=k

∂Lkj

∂xk

sinceLij = Lji and ∂Lij

∂xk
= 0 wheneverk 6= i, k 6= j.

Therefore, the control vector (5) is computed as

τi = −β(x)





tr
(

M−1PT ∂L
∂xi

P
)

tr
(

M−1PT ∂L
∂yi

P
)





= −β(x)
N
∑

j





tr
(

M−1PT ∂Lij

∂xi
P
)

tr
(

M−1PT ∂Lij

∂yi
P
)





= −β(x)
N
∑

j

2γijδij

[

xj − xi
yj − yi

]

which is clearly a positive combination of the displacement
vectors from roboti to the robotsj. Moreover,j ∈ Ni since
otherwise∂wij

∂dij
= 0 and henceδij = 0.

In the rest of the subsection, we shall assume that the
control law for each robot is given by

(6)τk = − (kc∇xi
Vc(x) + kf∇xi

Vf (x))

for positive gainskc, kf > 0. The next proposition states a
consensus-like behavior of the robots under this control law.

Proposition IV.3. Suppose the control effort for each robot
k is given by(6). Then the average position of the robots
converge to the desired average position. In other words,

lim
t →∞

1

N

N
∑

k =1

xk(t) =
1

N

N
∑

k=1

xkd

Proof: Take the Lyapunov function candidateV =
Vc(x)+Vf (x) > 0 and take its derivative along the solutions
of the system (3).

V̇ = −
N
∑

k=1

[

kcβ(x)tr

(

M−1∂M
∂xk

)

+ kf (xk − xkd)

]2

−
N
∑

k=1

[

kcβ(x)tr

(

M−1 ∂M
∂yk

)

+ kf (yk − ykd)

]2

which is equal to zero only when the expressions in the
square terms are zero for allk. Since the same arguments
holds for the second square term in this expression (y-
component), we concentrate on the first square term.



Using the identitytr(AB) + tr(AC) = tr (A(B + C)),
N
∑

k =1

[

kcβ(x)tr

(

M−1 ∂M
∂xk

)

+ kf (xk − xkd)

]

=

N
∑

k=1

kcβ(x)tr

(

M−1∂M
∂xk

)

+

N
∑

k=1

kf (xk − xkd)

= kcβ(x)tr

(

M−1
N
∑

k=1

∂M
∂xk

)

+

N
∑

k=1

kf (xk − xkd)

=

N
∑

k=1

kf (xk − xkd)

where we have used the anti-symmetry of∂M
∂xk

with respect
to the differentiated variable to write down the last equality.
This completes the proof.

Theorem IV.1. Suppose the control effort for each agenti
is given by(6). Let Vd denote the vertex set for the desired
formation. Then the agents converge to a setE contained in
the convex hullCH(Vd) of the desired formation.

Proof: We take the same Lyapunov function candidate
as in the proof of Proposition IV.3 and compute its derivative
along the solutions of (3), concluding that the positively
invariant set the agents reach is the set of configurations
x ∈ R

2N where for alli, both the following conditions hold

kcβ(x)tr

(

M−1∂M
∂xi

)

+ kf (xi − xid) = 0

kcβ(x)tr

(

M−1∂M
∂yi

)

+ kf (yi − yid) = 0

Sinceβ(x) < 0, this is equivalent to the statement that the an-

gle between the vectors
[

tr
(

M−1 ∂M
∂xi

)

tr
(

M−1 ∂M
∂xi

)]T

and [xi − xid yi − yid]
T is π rad. Due to Proposition IV.2,

the former always points intoCH(V ), so this is only possible
if for each i, xi ∈ CH(Vd) (see Figure 3).
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Fig. 3: If an agentx1 is outside the convex hull of the desired
formation (dashed red lines), the formation controller andthe
connectivity controller cannot cancel each other.

Remark1. Theorem IV.1 provides a way to move the robots
into the convex hull defined by the desired formation while
maintaining connectivity. Even though the claims of the
theorem are weaker, in any simulation, the robots converge
to the desired formation,xd, provided it is selected such that
the det (M(xd)) ≥ ᾱ.

Remark 2. The control due to connectivity becomes un-
bounded asdetM → 0. Finite errors in formation yield
finite control effort, hence even if the desired formation is
disconnected, the network will never become disconnected.

C. Connectivity Preserving Formation Controller with Col-
lision Avoidance

We can add yet another potential function,Va(x) , de-
signed to introduce collision avoidance behavior, to work
in collaboration with the existing ones. By this way, we
can prevent that the robots from colliding with each other
while they move towards the desired formation. We use the
avoidance (potential) functions as defined in [8] by

(7)Vaij =

(

min

{

0,
d2ij − R2

d2ij − r2

})2

where dij is the Euclidean distance between robotsi and
j, r andR define the avoidance region and sensing region,
respectively. The potential functions are designed such that
if the robots are started away from the avoidance region
Ωij = {x : ‖xi − xj‖ ≤ r}, they never enter this region.
The sensing region, on the other hand, given byDij =
{x : ‖xi − xj‖ ≤ R}, is the region where roboti can sense
the presence of robotj.

The sum of the pairwise potentials (7) between robotsi
andj constitute the total avoidance potential function

Va(x) =

N
∑

i=1

N
∑

j 6=i,j=1

1

2
Vaij

Thus the form of the control law for robotk with the
collision avoidance term would be

(8)τk = − (kc∇xi
Vc(x) + kf∇xi

Vf (x) + ka∇xi
Va(x))

wherekc, kf , andka are positive gains.

D. Extension to Wheeled Mobile Robots

In the case of non-holonomic wheeled mobile robots the
kinematics are modeled by the nonlinear ordinary differential
equations

(9)
ẋk = vk cos (θk)

ẏk = vk sin (θk)

θ̇k = ωk

wherexk ∈ R and yk ∈ R are the Cartesian coordinates,
θk ∈ [0, 2π) is the orientation of thekth robot with respect
to the world frame andvk, ωk are the linear and angular
velocity inputs, respectively. We would like the controllers
developed so far to work with this system dynamics, rather
than the first-order integrators (3).

The idea will be to turn the robot to the desired orientation
dictated by the direction of the controller derived for robots
with dynamics (3) based on any potential functionV



(10)θkd = arctan2

(

∂V

∂yk
,
∂V

∂xk

)

Define the orientation erroreθk = θk−θkd. Let us also define
the desired velocity vector to be

(11)τkd :=

(

∂V

∂xk
,
∂V

∂yk

)

Note that the desired orientationθkd is the angle this vector
makes with the worldx-axis. Assuming that|eθk | 6= π

2 , we
have the following result.

Proposition IV.4. All of the convergence results presented
so far hold for the non-holonomic dynamics as given in(9)
if the following controller is applied

(12)vk = −kp cos (eθk) ||τkd||
ωk = −kθeθk

with gainskp, kθ > 0.

Proof: Let us take the time derivative of the potential
function Vnh = V + 1

2

∑N

k=1 e
2
θk

, whereV is the potential
function used to derive any controller for robots with first-
order integrator dynamics. Then,

(13)

dVnh
dt

=
N
∑

k=1

[

∂V

∂xk
ẋk +

∂V

∂yk
ẏk + eθk ėθk

]

=

N
∑

k=1

[

−kp cos (eθk) ||τkd||
(

∂V

∂xk
cos (θk)

+
∂V

∂yk
sin (θk)

)

− kθe
2
θk

]

=
N
∑

k=1

[

−kp cos2 (eθk) ||τkd||2 − kθe
2
θk

]

≤ 0

with equality only if ‖τkd‖ = eθk = 0, for all k. But this
is only the case if the states are in the desired set. The last
equality in (13) is obtained by the observing that

(

∂V

∂xk
cos (θk) +

∂V

∂yk
sin (θk)

)

=

〈(

∂V

∂xk
,
∂V

∂yk

)

, (cos (θk), sin (θk))

〉

= ‖τkd‖ cos eθk

V. EXPERIMENTAL IMPLEMENTATION

The connectivity control is demonstrated using an experi-
mental setup consisting of four iRobot Creates. The kinemat-
ics of the Creates are given by (9), where the inputs are the
desired linear and angular velocitiesvk, ωk. Each robot has
a linux-based Gumstix Verdex microcontroller board, which
we program in C++. The position feedback is obtained using
a VICON motion tracking system. The VICON system has
sub-millimeter accuracy with a data rate of100Hz.

The controllers presented in Section IV are implemented
in experiments corresponding to different scenarios. When
we refer to controllers developed in Sections IV-A through
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ᾱ

(a) det (M(x))

0 10 20 30 40 50 60 70
−2

−1

0

1

2

x 
[m

]
 

 

0 10 20 30 40 50 60 70
−2

−1

0

1

2

t [sec]

y 
[m

]

Robot 1
Robot 2
Robot 3
Robot 4

(b) x− y coordinates for each robot
Fig. 4: Experiment where Robot4 moves in a circle, while
Robots1− 3 avoid collisions and maintain connectivity.

IV-C, we mean that they have been implemented using the
procedure in Section IV-D.

In the first experiment, one robot is commanded to move
with constant linear velocity0.3m/s and angular velocity
0.25rad/s so that it moves in a circle. The remaining robots
run controller (8), with parameters given in Table I. Note that
the formation control gainkf is set to zero. The other robots
move in reaction to the motion of Robot4, until they finally
settle into positions such thatdetM ≥ ᾱ (Figures 4a and
4b). We omit the plot fory position due to space constraints.
The brief motion att = 46s is due to collision avoidance.
This demonstrates how connectivity can be maintained above
a desired value without preference to any particular network
topology.

In the second experiment, all the robots are tasked with
converging to a formation, while maintaining connectivity
and avoiding collisions (Using (8)). The initial configuration
is such that each robot must pass near the centroid of the
desired formation if only the formation control were active,
ensuring that collisions may occur if without the collision



TABLE I: Parameters used in the experiments
Parameter Exp 1 Exp 2 Exp 3 Exp 4

kc 1.0 1.0 1.0 1.0
kf 0.0 1.0 0.0 1.0
ka 0.1 1.0 0.1 0.1
Kθ 5.0 5.0 5.0 5.0
ᾱ 20 1 2.0 1.0
α 0 0 0 0

ρ1 [m] 0.7 0.7 0.7 0.7
ρ2 [m] 2.3 2.3 2.3 2.3
R [m] 0.7 1.0 0.7 0.7
r [m] 0.4 0.45 0.4 0.4
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Fig. 5: Experiments with four Creates performing connectiv-
ity control, formation control and collision avoidance.

avoidance terms. Notice in figure 5b that Robots3 and 4
initially move in a straight line and then move in a circular
path due to collision avoidance. We see that the steady state
position errors of the robots are small, and are a result of the
dead-zone in actuation. The connectivity increases from the
initial small value, as seen in figure 5a. Note that the final
value ofdetM(x) is less than the maximum possible value
of 64. Also note that the connectivity decreases as the robots
pull away from each other to reach their desired positions in
the formation.

VI. CONCLUSION

In this paper we have presented a connectivity control
method for a mobile network based on maximization of the
second smallest eigenvalueλ2(L) of the graph LaplacianL.
This can be achieved by maximizing a measure of connectiv-
ity given by the determinant of a matrixM = PTLP . The
connectivity is increased away from zero whenever it is below
a certain threshold. In addition, the connectivity control(4)
can be integrated into a previous collision-avoiding formation
controller [8], with similar convergence properties, provided
the desired formation has a value ofdet (M) above the
threshold used in our control. The set of formations that can
be tracked using our connectivity control is larger than those
which disallow edge deletions or maximizeλ2(L) till the
theoretical limit ofN .

We have shown how to extend the controllers in order to be
able to implement them on non-holonomic wheeled mobile
robots. Experiments which demonstrate the properties of the
controllers were provided.

The experiments show the convergence of the mobile
robots to desired positions in the formation while maintain-
ing connectivity and avoiding collisions. This behavior is
stronger than what Theorem IV.1 promises and thus presents
a future avenue of research.
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