
Stability analysis and controller synthesis using
single-hidden-layer ReLU neural networks

Pouya Samanipour and Hasan A. Poonawala

Abstract— This paper presents algorithms to solve anal-
ysis and controller synthesis problems for dynamical sys-
tems modeled as a recurrent single-hidden-layer rectified
linear unit neural network (ReLU NN), or equivalently, a
piecewise affine dynamical system. Such models are in-
teresting since they may arise through the use of mod-
ern machine learning methods for system identification,
or as closed-loop solutions in certain classes of model
predictive control (MPC) problems. A key idea in the pro-
posed approach is to use piecewise affine Lyapunov func-
tions parametrized as ReLU neural networks, and similarly
parametrized controllers. This compatible representation
between the Lyapunov function and the dynamics simpli-
fies the automation of analysis of and controller synthesis
for learned models. Our method of verifying a candidate
Lyapunov function is faster than methods based on mixed
integer programming. We ‘learn’ controllers and Lyapunov
functions using both weight updates and network architec-
ture search, without gradients. We demonstrate the pro-
posed algorithm on examples involving learned models,
explicit MPC controllers, and constrained controller synthe-
sis.

I. INTRODUCTION

MODERN machine learning has made fitting complex
functions to large amounts of data a realistic task to

accomplish [1]. This ability is increasingly finding applications
in control and dynamical systems. Two obvious applications
are in system identification, where the right-hand side of the
dynamics models are learned from data [2]–[7], and analysis,
where Lyapunov functions are ‘learned’ [8]–[11].

If we are to increasingly model dynamical systems using
over-parametrized models like neural networks, we require
methods to analyze such models, and to possibly synthesize
controllers from them. The potential complexity of such mod-
els suggests that the methods we develop must be amenable
to automatic, and preferably efficient, computations.

Automatic methods for Lyapunov-based analysis and syn-
thesis must deal with the fact that Lyapunov-based methods
require solving a constraint satisfaction problem at infinite
states [12]. One approach to doing so is to reformulate
these infinite constraints involving states into finite con-
straints involving the parameters of the Lyapunov function

Pouya Samanipour and Hasan A. Poonawala are
with the Department of Mechanical Engineering, Uni-
versity of Kentucky, Lexington, KY 40506, USA.
samanipour.pouya,hasan.poonawala@uky.edu

This work was supported by the Department of Mechanical Engineer-
ing at the University of Kentucky.

and dynamical system. This method leads to (often convex)
constrained optimization problems that yield valid Lyapunov
functions [13]–[16] or controllers [15] when feasible. These
methods are, however, parametrization-specific. Section II
mentions related work in detail.

These optimization-based methods may be extended to
piecewise versions [17] allowing analysis of complicated mod-
els. The work of automatically stitching together Lyapunov
functions and stability conditions at the boundaries of these
pieces has so far proved either algorithmically or computa-
tionally difficult [17], [18].

An alternative approach to dealing with infinite constraints
is inspired by supervised machine learning [19], where a
model that works on an infinite input set may be learned from
a finite dataset. This idea leads to sampling-based methods
for ‘learning’ Lyapunov functions [?], [8]–[11], [20]. Unlike
standard machine learning, in Lyapunov analysis, we require
that the stability conditions hold at all states, even when
learned using finite states. This requirement forces the use
of a verification step after training. Again, Section II reviews
the literature in detail.

The advantage of the learn-then-verify approach using neu-
ral networks is that it can handle complex dynamics models
and Lyapunov functions (like multi-layer neural networks)
automatically. The disadvantage is that the verification step
for most combinations of dynamics model and Lyapunov
functions – if a step exists – is often expensive and returns
only one out of possibly many counterexamples. Section II
provides details.

In this paper, we focus on the stability analysis of
continuous-time dynamical systems where the vector field
is given by a single-hidden-layer rectified linear unit neural
network (ReLU NN). Existing methods for computational
Lyapunov analysis applicable to such systems focus on the
binary nature of the ReLU activation. Formulating verification
problems that explicitly feature these binary variables can lead
to expensive algorithms. For example, the use of mixed integer
linear programming is common, which is NP-hard.

The main idea in this paper is to exploit the continuous
piecewise affine nature of ReLU NNs to design less expensive
algorithms. We exploit the piecewise nature by preferring to
enumerate the regions defined by the neurons, which will be
fewer than the combinations one obtains when associating each
neuron with a binary variable. We exploit the affine nature
by using Farkas’ lemma to eliminate quantifiers on the state
without conservatism in the resulting conditions.

A. Contributions

1) We show how to formulate a single-hidden-layer rectified
neural network (ReLU NN) as a piecewise affine function,
and to check if it is a valid Lyapunov function using
enumeration and linear programming. This procedure is
fully automated. The main insight is to view the hidden
layer neurons as a hyperplane arrangement.

2) We rigorously formulate the search for outer layer
weights based on Lyapunov stability as a convex con-
strained optimization problem; the hidden layers are
fixed. We use the inhomogenous form of Farkas’ Lemma
to eliminate quantifiers involving the state. This elimina-
tion is exact (lossless) and, therefore, less conservative
compared to methods involving polynomial functions.

3) If stability conditions are violated in some states, we
propose that one should add neurons to the Lyapunov
function that partition the regions containing those states,
and show how to choose them using new criteria. Thus,
our method can consider increasingly expressive Lya-
punov functions.

4) We extend the analysis method into a synthesis method
for systems where the input enters linearly.

These innovations together lead to stability analysis and con-
troller synthesis procedure that handles systems with 100s
of regions in seconds. However, improvements are necessary
to manage 1000s of regions, which easily occur in higher
dimensions.

II. RELATED WORK

In this section, we review various approaches to automati-
cally searching for Lyapunov functions, which can be grouped
into the two categories below. We also briefly explain how our
work relates to these approaches.

A. Mathematical Optimization

Theorems of Alternatives [15], [21]–[23] are used to convert
Lyapunov stability conditions involving quantifiers on the state
into quantifier-free constraints. Which particular theorem is
applied by a method depends on the parametrizations of the
dynamical systems and Lyapunov function.

The sums-of-squares-based analysis is widely used for poly-
nomial systems [24], [25]. A good amount of work focuses on
homogeneous Lyapunov functions for homogeneous dynami-
cal systems. [26]. Most remaining work has focused on stabil-
ity analysis for switched and hybrid dynamical systems [27],
[28]. These works include [16], [17], [29]–[31].

Common [27], multiple [32], or piecewise [29] quadratic
Lyapunov functions are used to design switching rules [33]–
[38] between affine or linear dynamics modes. Recent work
in [18] reports that synthesis using PWQ Lyapunov functions
may not be practical beyond a small number of cells.

Piecewise linear (PWL) Lyapunov functions were studied as
an alternative to piecewise quadratic (PWQ) functions in [39]
and [17]. A few methods attempt to find piecewise linear
Lyapunov functions for piecewise affine systems [17], [40]–
[42] and piecewise linear systems [43].

The ability to convert Lyapunov-based analysis of piecewise
affine (PWA) dynamical systems into convex optimization
problems has motivated attempts to automate the search for
PWQ and PWL Lyapunov functions [17], [30], [31], [42], [44].
These works observe that an automated partitioning scheme
may enable analysis of systems for which using the same
partition as the dynamics for the PWQ or PWL Lyapunov
function fails to produce a valid Lyapunov function. They use
the optimal variables to identify which cells to refine and then
divide these cells into two or more cells, typically along the
longest edge. Despite this broad work in the analysis of PWA
systems, only recently has their representation using ReLU
neural networks been explored (see Section II-B).

B. Learning From Finite Samples

Several methods are inspired by the intuitive idea that
if we make a candidate Lyapunov function satisfy stability
conditions at a sufficient number of finite state samples, the
stability conditions may be satisfied at all points in a region
of interpolation between these samples. To ensure that this
‘generalization’ happens, these approaches search for a coun-
terexample, a state where the conditions fail, hoping that none
will be found. The differences between various learning-from-
samples methods lie in what tools are available to implement
a search for a counterexample and how this counterexample
is used.

The most common approach for finding a counterexample
is to find the state at which the derivative of the Lya-
punov function is maximum. If this derivative is greater than
zero, then the state is a counterexample. For ReLU NNs
and piecewise affine dynamical systems, this search is often
implemented as a mixed integer linear program [43], [45].
Instead of manually derived optimization problems that drive
the automatic search for a counterexample, some research
directions use satisfiability modulo theory (SMT) solvers [46],
[47]. These methods have been applied to dynamics that are
piecewise constant [48], set-valued [49], nonlinear [9], [50],
[51] or uncertain dynamics [5].

One approach for using the counterexample is to add it to
the training samples [8]–[10], [45], [50] and repeat the learning
process. A second approach uses the counterexample to prune
the set of parameters in which a valid Lyapunov function may
be found [11], [52], [53]. Either a Lyapunov function is found
in the remaining set, or the set is pruned to emptiness, and
no Lyapunov function exists for the system in the considered
class.

III. PROBLEM DESCRIPTION AND PAPER OUTLINE

Consider a controlled dynamical system of the form

ẋ = NNReLU(x, θ
′
x) +Bu, (1)

where x ∈ Rn is the state, NNReLU(x, θ
′
x) denotes a rectified

neural network with parameters θ′x, and u ∈ Rp is the control
input. Such models may be learned from trajectory data or
an existing dynamics model in a different parametrization.
Section IV provides details on rectified neural networks.

A controller for (1) of the form NNReLU(x, θu) will yield
a closed-loop of the form

ẋ = NNReLU(x, θx). (2)

We would like to choose parameters θu of the controller
so that the origin of (2) is asymptotically stable, or simply
analyze systems for which dynamics and controller parameters
are given. Furthermore, we focus on Lyapunov functions
that are also rectified neural networks, because they afford
development of automated algorithms. These goals lead to
three problems:

1) Problem 1: Verify whether a given candidate Lyapunov
function of the form NNReLU(x, θV) is a valid function
certifying asymptotic stability of the origin of (2).

2) Problem 2: Find a valid Lyapunov function of the form
NNReLU(x, θV) certifying asymptotic stability of the
origin of (2).

3) Problem 3: Find a state-feedback law of the form
NNReLU(x, θu) that asymptotically stabilizes (1).

In section IV we highlight that rectified neural networks
are continuous piecewise functions. Section V uses this fact
to formulate a solution to Problem 1 (verification), based on
linear programming. Section VI formulates the Lyapunov con-
ditions into equivalent conditions that do not have quantifiers
on the state. Section VII uses these conditions to propose an
algorithm that solves Problem 2 (search), and Section VIII
extends it further to propose a solution to Problem 3 (controller
synthesis). Finally, we present examples in Section IX, discuss
limitations in Section X, and conclude the paper.

IV. RECTIFIED NEURAL NETWORKS AS CONTINUOUS
PIECEWISE AFFINE FUNCTIONS

This section develops the notation we will use when for-
mulating stability conditions. The main point is that rectified
neural networks are continuous piecewise affine functions,
and we will formulate stability conditions by converting the
former to the latter. We refer to the standard representation of
piecewise affine functions (see Section IV-B) as an explicit
parametrization, while single-hidden-layer ReLU NNs (see
Section IV-C) are an implicit parametrization of (continuous)
piecewise affine functions.

Notation: The indices of elements of a set S form the set
I(S). We use the bold symbol xS to denote a set of variables
{xi}i∈I(S), and xI to denote a set of variables {xi}i∈I .

We denote the convex hull of S by conv (S), the interior
of S by Int (S), the boundary of S by ∂S, and closure of S
by S. The convex closure conv (S) is simply conv (S). Let
Bϵ(x) = {y ∈ Rn: ∥y − x∥ < ϵ, an ϵ-ball at x.

Let I be a set of indices. Given a matrix E, EI denotes a
matrix formed by stacking the ith rows of E, for i ∈ I . The
transpose of matrix A is AT .

For v, u ∈ Rn, v ⪰ u ⇐⇒ vi ≥ ui for 1 ≤ i ≤ n.
The symbols ⪯, ≻, and ≺ imply the same element-wise rule
corresponding to ≤, >, and < respectively.

Let Bm ⊂ Rm = {−1, 1}m, the set of m-dimensional
vectors whose elements are −1 or 1. The vector 1m ∈ Bm
has all elements equal to unity. The vector 0m ∈ Rm has all
elements equal to zero.

A. Partitions and Refinements

A partition P is a collection of subsets {Xi}i∈I(P), where
Xi ⊆ Rn, n ∈ N, and Int (Xi) = Xi for each i ∈ I(P).
Furthermore, Int (Xi)∩Int (Xj) = ∅ for each pair i, j ∈ I(P)
such that i ̸= j. We refer to ∪i∈I(P)Xi as the domain of
P , which we also denote by Dom(P). We also refer to the
subsets Xi in P as the cells of the partition. We assume that
there exists a neighborhood of x that intersects with only a
finite number of cells in P , for each x ∈ Dom(P).

Let P = {Yi}i∈I and R = {Zj}j∈J be two partitions of a
set S = Dom(P) = Dom (R). A partition R is a refinement
of P if Zj ∩ Yi ̸= ∅ implies that Zj ⊆ Yi. We denote the set
of refinements of a partition P as Ref(P).

B. Piecewise Affine Functions

We parameterize a piecewise affine function PWA(x) by a
partition P = {Xi}i∈I(P) and a collection of matrices AP =
{Ai}i∈I(P) and vectors aP = {ai}i∈I(P), where Xi = {x ∈
Rn:Eix+ ei ⪰ 0}. We may then explicitly write PWA(x) as

PWA(x) = Aix+ ai, if Eix+ ei ⪰ 0. (3)

Note that a generic piecewise affine function may not be
continuous unless we appropriately constrain the parameters
Ai, ai, Ei, and ei [17], [40].

C. Single-Hidden-Layer ReLU NNs

A single-hidden-layer ReLU neural network with parame-
ters θ = (W,H, b, c) defines a map from x ∈ Rn to output
NNReLU(x, θ) ∈ Ro:

NNReLU(x, θ) = Wσ+.(Hx+ b) + c, (4)

where W ∈ Ro×m, H ∈ Rm×n, b ∈ Rm, c ∈ Ro×1, and the
function σ:R → R is the activation function. We choose the
activation as the rectified linear activation σ+ given by

σ+(x) = max(x, 0). (5)

The period in the notation σ+.(v) in (4) implies that we apply
this function to a vector v ∈ Rm in an element-wise manner
to produce another vector in Rm.

The pair (Hi, bi) – the ith row of H and the ith element
of b – together represent a single neuron in the hidden layer
of the ReLU neural network with parameter θ . The reflection
of a neuron (Hi, bi) is the neuron (−Hi,−bi).

We refer to the pair (H, b) as the (hidden) neurons of the
network. The matrix W and vector c denote the outer layer
weights, since they define the linear combination of the hidden
layer outputs that produce the output of the network.

To distinguish between networks, we may add a subscript
to the parameters of a network. For example, θx which
corresponds to (Wx, Hx, bx, cx).

Consider two networks with parameters θ1 and θ2 respec-
tively that have the same input dimension but possibly different
output dimensions, say o1 and o2. We define the weighted
combination θ3 of the two networks as

θ3 = M1θ1 ⊕M2θ2 = (W3, H3, b3, c3), (6)

where M1 ∈ Ro3×o1 and M2 ∈ Ro3×o2 for some o3 ∈ N, and

W3 =
[
M1W1 M2W2

]
, c3 = M1c1 +M2c2, (7)

H3 =

[
H1

H2

]
, and b3 =

[
b1
b2

]
. (8)

We use this operation to define a neural network that is the sum
of the output of two other networks or to insert the neurons
of one network into another.

D. The Partition Due To Neurons
The neurons (H, b) of a single-hidden-layer rectified neural

network NNReLU(x, θ) define a hyperplane arrangement in
Rn, and equivalently a partition of Rn into polyhedra. We
denote this partition as Pθ.

Given parameters H ∈ Rm×n and b ∈ Rm, we define the
function svθ:Rn → Rm as

svθ(x) = sign.(Hx+ b), (9)

where sign is the usual function with range {1, 0,−1}, and the
period again denotes element-wise application of a function
to a vector. This function is similar to the sign vector defined
in [54]. It is piecewise constant over Rn.

Consider a relation R on X given by

x1Rx2 =⇒ svθ(x1) = svθ(x2)

This relation can be shown to be an equivalence relation. Let
Gθ = {Yk}k∈I(Gθ) be the set of equivalence classes of X under
R. This construction makes Gθ a simplicial complex; it is not,
however, a partition in our sense.

The partition Pθ will be formed by the closure of the open
cells of Gθ. We can collect these open cells by noting that
every entry of svθ(x) for x in such a cell must be non-zero.
In other words, the points in these cells do not lie in any of
the hyperplanes defined by (H, b). Consider the set κ(G) of
indices given by

κ(Gθ) = {k ∈ I(Gθ):x ∈ Yk =⇒ (svθ(x))i ̸= 0∀ 1 ≤ i ≤ m}.

Then,
Pθ =

{
Yk

}
k∈κ(Gθ)

. (10)

Henceforth, we will refer to the ith element of Pθ as Xi. To
each Xi we can associate the vector svθi ∈ Bm, which is the
vector svθ(x) for any x ∈ Int (Xi).

Note that constructing elements of partition Pθ through the
closure of open cells of Gθ ensures that even points in the
closed cells of Gθ belong to Dom(Pθ).

E. Converting NNReLU(x) to PWA(x)

We now represent NNReLU(x, θ) as a piecewise affine
function using the partition Pθ and the vector svθi associated
with each cell Xi ∈ Pθ.

We convert each svθi ∈ Bm into two diagonal matrices
Sθ
i , D

θ
i ∈ Rm×m, whose jth diagonal terms are given by(

Sθ
i

)
jj

=
(
svθi

)
j

and(
Dθ

i

)
jj

= σ+

((
svθi

)
j

)

respectively, where σ+ = max(x, 0).
We can now describe all points satisfying in the polyhedron

Xi ∈ Pθ as

Xi = {x ∈ Rn:Sθ
i H x+ Sθ

i b ⪰ 0}, (11)

and therefore the function NNReLU(x, θ) as an explicit piece-
wise affine function over the partition Pθ:

NNReLU(x, θ) = WDθ
iH x+WDθ

i b+ c,

if Sθ
i H x+ Sθ

i b ⪰ 0. (12)

The equation has the same form as (3).

V. RELU NEURAL NETWORKS AS CANDIDATE
LYAPUNOV FUNCTIONS

We use candidate Lyapunov functions of the form

V (x) = NNReLU(x, θV) = wV σ+ (HV x+ bV) + cV . (13)

A candidate Lyapunov function must be positive definite [12],
i.e., V (0) = 0 and V (x) > 0 when x ̸= 0. To be a valid
Lyapunov function certifying asymptotic stability of the origin
of a system, this candidate function must strictly decrease
along all solutions of the system (excluding the origin) [12].

Several methods check if these conditions hold at all states
given a particular choice of parameters for the Lyapunov
function. These methods suggest using mixed integer linear
programming (MILP) or formal verification (SMT solvers).
These methods are computationally expensive.

This section argues that working with the piecewise nature
of the ReLU NN function is a better approach. Specifically,
enumerating all pieces and using linear programming to verify
the desired conditions can be effective.

A. The Partition Associated With Stability Conditions

The dynamics function NNReLU(x, θx) and NNReLU(x, θV)
define (possibly different) partitions Pθx and PθV . The Lya-
punov functions and dynamics vector field may not be affine
functions over the cells of either partition. However, they will
be affine functions for cells in a partition that is a common
refinement of both partitions.

We can redefine both functions to have a partition identical
to this common refinement by combining their neurons, by
redefining the parameters θx and θV to be

θx ← θx ⊕ 0nθV , (14)

θV ← 0T
nθx ⊕ θV . (15)

These redefined parameters now have the same neurons, but
the redefined outer layer weights ensure that corresponding
networks still produce the same output as before (see Sec-
tion IV-C). Under this redefinition Pθx = PθV .

For the rest of this paper, we assume that θx and θV have
been redefined to have identical partitions. We will refer to
this common partition as PθV , which has an index set IθV .

B. Stability Conditions For A Single Cell

When V (x) is differentiable at x, and the dynamics ẋ =
f(x) are continuous, stability may be assessed through the
condition that the Lie derivative LfV of V along f(x) be
negative definite or negative semi-definite for all x in some
region X ∋ 0:

LfV = ⟨∇V, f(x)⟩ < 0, (16)

where ∇V is the gradient of V (x) and ⟨·, ·⟩ is the usual inner
product.

At a state x where V (x) is differentiable, let the affine
Lyapunov function be V (x) = pTx + q, and the dynamics
be ẋ = Ax+ a. The Lyapunov stability condition (16) at this
state is

pT (Ax+ a) < 0. (17)

Since the Lyapunov functions and dynamics we consider are
piecewise affine, the parameters involved in condition (17) are
identical for all states in connected cells.

These parameters, using (12), for each i ∈ IθV are:

pTi = wV D
θV
i HV , (18)

qi = wV D
θV
i bV , (19)

Ai = WxD
θV
i HV , and (20)

ai = WxD
θV
i bV . (21)

The dynamics and Lyapunov function for x ∈ Xi are

V (x) = pTi x+ qi, and

ẋ = AT
i x+ ai.

If a cell Xi is defined by the constraints Eix+ei ≥ 0, then
we can compactly represent the condition at all states in Xi

through the quantified condition

Eix+ ei ⪰ 0, x ̸= 0 =⇒ pTi (Aix+ ai) < 0. (22)

Similarly, ensuring positivity of V (x) on Xi leads to condition

Eix+ ei ⪰ 0, x ̸= 0 =⇒ pTi x+ qi > 0. (23)

For each cell, we can check (22) and (23) using linear
programming. Specifically, we would compute the maximum
of pTi (Aix+ ai) and minimum of pTi x + qi over the set
{x ∈ Rn:Eix+ ei ⪰ 0}, and compare these optimum values
to zero.

Note that (22) is not enough by itself for x ∈ ∂Xi, due to the
non-differentiability of V (x) there. Theorem 4 shows that all
required conditions are eventually checked when checking (22)
for all cells in PθV .

C. Enumerating All Cells In A Partition

We use the incremental enumeration algorithm from [55]
to enumerate all the vectors svθi created by (HV , bV). This
algorithm was shown to take less time than the well-known
reverse search algorithm [56]. The algorithm in [55] poten-
tially requires solving a large number of linear programs. A
key step in ensuring low running times for this enumeration
is to avoid allocating new memory for each instance of the

linear program, and to instead reuse the memory allocated for
the first linear program.

Let the complexity of solving a linear program in d variables
and µ constraints be lp(µ, d). Consider m neurons in Rn. The
potential number of cells in such an arrangement [55] is

ζ(m,n) =

n∑
i=0

(
m

i

)
. (24)

Let Cm be the set of cells in any given arrangement. The
complexity of enumerating these cells using the incremental
enumeration algorithm in [55] is O(|Cm|mlp(m,n)).

D. Complexity of Verifying A Candidate Lyapunov
Function

For each cell, Xi ∈ PθV , the complexity of implementing
each of the two linear programs in Section V-C is lp(m,n).
Given that we will enumerate Cm cells, the complexity for
verifying the Lyapunov candidacy and stability conditions is
O(|Cm|lp(m,n)).

VI. QUANTIFIER-FREE LYAPUNOV STABILITY
CONDITIONS

In this section, we present sufficient conditions on the
parameters θV = (wV , HV , bV , cV) that determine when a
given function is a candidate Lyapunov function, and when
a candidate Lyapunov function is a valid Lyapunov function
certifying asymptotic stability of the origin. We assume that
cells of θV is combined with θx using the procedure in Sec-
tion V-A). Section VII-D describes modifications that verify
other closed-loop properties.

A key idea is that we remove the quantifiers in (22)
and (23). This step allows us to check conditions over multiple
regions simultaneously, without resorting to mixed integer
formulations. Our quantifier-free conditions are equivalent
to the original stability conditions. By contrast, quantifier-
free conditions derived from applying the S-Lemma [22] to
piecewise quadratic Lyapunov functions are sufficient but not
necessary [17]. Note that we do not claim that our conditions
are necessary for verifying asymptotic stability.

A. Positive Definiteness of V(x)

The condition V (0) = 0 is equivalent to

wV max .(bV , 0) + cV = 0 (25)

To ensure that V (x) is positive definite, we require that no cell
contains the origin in its interior, otherwise the affine function
for such a cell must be negative in a neighborhood of the
origin. We can do so by ensuring that HV , bV contains n
independent hyperplanes passing through the origin, and their
reflections. We distinguish between cells that contain x = 0
on the boundary and those that do not, similar to the approach
by Johansson in [17]. Let

I linθV = {i ∈ IθV : 0 ∈ ∂Xi}, (26)

IaffθV
= {i ∈ IθV : 0 /∈ ∂Xi}. (27)

Depending on whether a cell contains the origin on the
boundary or not, we use the following results to ensure the
sign definiteness of such explicit piecewise affine functions.

Lemma 1 (Lemma 4.7 [17]). The following are equivalent
1) Ex ⪰ 0, Ex ̸= 0 =⇒ pTx > 0.
2) ∃v ≻ 0 such that ET v = p.

To convert the conditional statement Gx + g ⪰ 0 =⇒
pTx+ q ≤ 0 into a condition without quantifiers, we use the
following result shown in [40]:

Lemma 2 (Lemma 8 [40]). Let the set {x ∈ Rn:Gx+g ⪰ 0}
be non-empty, where G ∈ Rl×n, g ∈ Rl for some l ∈ N. Let
p ∈ Rn and q ∈ R. Then, the following are equivalent

1) Gx+ g ⪰ 0 =⇒ pTx+ q ≤ 0.
2) ∃v ∈ Rl, v ⪰ 0 such that GT v+p = 0 and gT v+q ≤ 0.

When we apply these results to (13), we use its corre-
sponding explicit representation as a piecewise affine function,
similar to (3) or (12):

V = wV D
θV
i (HV x+ bV) if SθV

i HV x+ SθV
i bV⪰0.

The resulting combined set of conditions for positivity of V (x)
when x ̸= 0 leads to the following result.

Lemma 3. Consider a function V (x) as defined in (13). If
there exist µi ∈ Rm for each i ∈ IθV such that

µT
i S

θV
i HV − wV D

θV
i HV = 0, ∀i ∈ I linθV , (28)

µi ≻ 0, ∀i ∈ I linθV , (29)

µT
i S

θV
i HV − wV D

θV
i HV = 0, ∀i ∈ IaffθV

, (30)

µT
i S

θV
i bV − wV D

θV
i bV ≤ 0, ∀i ∈ IaffθV

, (31)

µi ⪰ 0, ∀i ∈ IaffθV
, (32)

then V (x) is strictly positive for x ̸= 0.

Proof. This result is a straightforward application of Lem-
mas 1 and 2 to a strict positivity constraint applied piecewise
for all the regions in partition PθV defined by the ReLU
Lyapunov NN with parameters θV . ■

B. Lyapunov Stability Conditions For Multiple Cells

Given parameters θx and θV , we may obtain a set of
conditions that verify asymptotic stability of a dynamical
system by combining conditions that determine the candidacy
of the Lyapunov function with the conditions that determine
the decrease of the Lyapunov function along solutions, for each
cell. We assume the neurons of the dynamics and Lyapunov
function have been combined as Section V-A describes.

Combining the quantifier-free version of condition (22) for
all cells in PθV , where the constants are given in (18)-(21)
leads to our main result.

Theorem 4. Consider a dynamical system of the form (2), and
a candidate Lyapunov ReLU neural network function V (x) of
the form (13). We assume that the neurons of the associated
networks have been combined as described in Section V-A,
and use variables defined in (18)-(21). If the parameters θV

of V (x) satisfy conditions (25), (28)-(32), and the following
conditions

HT
V S

θV
i νi +AT

i pi = 0, ∀i ∈ I linθV , (33)

νi ≻ 0, ∀i ∈ I linθV , (34)

HT
V S

θV
i νi +AT

i pi = 0, ∀i ∈ IaffθV
, (35)

bTV S
θV
i νi + aTi pi < 0, ∀i ∈ IaffθV

, and (36)

νi ⪰ 0, ∀i ∈ IaffθV
, (37)

then the origin x = 0 is asymptotically stable.

Proof. Condition (25) ensures that V (0) = 0 and condi-
tions (28)-(32) ensure that V (x) is positive definite (see
Lemma 3). Together, they ensure that V (x) is a candidate
Lyapunov function.

We must show that conditions (33)-(37) imply that the
Lyapunov function decreases along solutions of the dynamical
system (2).

For points in the interior of cells Xi ∈ PθV , this decrease
is given by the Lie derivative LfV which is equal to an affine
function of the form on the left-hand side of (17). If i ∈ I linθV
and conditions (33) and (34) are satisfied, then condition (22)
is true for cell Xi. Similarly if i ∈ IaffθV

and conditions (35)-
(37) are satisfied, then condition (22) is true for cell Xi.
Condition (22) being true implies that the Lie derivative is
negative at all points in Int (Xi).

For points on the boundary of cells, the gradient of V (x) is
not defined and so the Lie derivative is not defined. Instead,
we must use the set-valued versions of these quantities which
are the Clarke generalized gradient [57]–[59] and Clarke
generalized derivative respectively [58], [60]. These objects
exist for the case where the Lyapunov function and dynamics
are parametrized as ReLU NNs, since they are Lipschitz
continuous. As shown in Proposition 3.2 in [59], the rate
of decrease of the Lyapunov function along solutions of
a dynamical system is upper-bounded by the maximum of
the Clarke generalized derivative. We use the notation from
both [58] and [59], and [59] provides the proof.

Let the mode function I(x):RN → IθV be given by [59]

I(x) = {i ∈ IθV :x ∈ Xi}, (38)

where Xi ∈ PθV . Clearly, this function enumerates which cells
x belongs to. This function is single-valued on the interior of
cells in PθV and set-valued on boundaries between cells.

The Clarke generalized gradient ∂V (x) is given [58] by

∂V (x) = conv

(
lim
k→∞

∇V (xk):xk → x, xk /∈ NV

)
,

where NV ⊂ Rn is a set of measure zero where ∇V (x) is not
defined. For the piecewise affine function of the form (13), the
function ∂V (x) reduces to

∂V (x) = conv
(
{pi}i∈I(x)

)
,

where pi for Xi is given by (18).
The Clarke generalized derivative V̇F for a differential

inclusion ẋ ∈ F (x) is given [58] by

V̇F (x) =
{
pT f : p ∈ ∂V (x), f ∈ F (x)

}
.

When F (x) is a singleton for all x ∈ Rn, say F (x) = f(x),
as is in our case, this condition reduces to

V̇F (x) =
{
pT f(x): p ∈ ∂V (x)

}
. (39)

If the conditions (33)-(37) hold, then by Lemmas 1 and 2,
we may conclude that pTi (A

T
i x + ai) < 0 for all x ̸= 0,

x ∈ Xi ∈ PθV , for each i ∈ IθV . This enumeration over
all i ∈ IθV ensures that this condition is checked at x for
each i ∈ I(x). Therefore, we may conclude that pT f < 0 for
all p ∈ ∂V (x), at each x ̸= 0, where f is the single-valued
dynamics at x. From (39) we can conclude that V̇F (x) < 0
at each x ̸= 0. In turn, from Proposition 3.2 in [59], we may
conclude that V̇ (t) < 0 almost everywhere along solutions
of the dynamical system, so that the origin of (2) is (locally)
asymptotically stable. ■

C. Summary

To summarize, we have derived exact quantifier-free condi-
tions on the parameters θV of a candidate Lyapunov function
V (x) that when satisfied allows us to conclude that it is a valid
Lyapunov function certifying that the origin of a dynamical
system of the form (2) is asymptotically stable. In the next
sections, we use these conditions to propose new algorithms
to search for a Lyapunov function using sequential convex op-
timization, and to synthesize controllers for controlled systems
of the form (1).

VII. ALGORITHMS FOR STABILITY ANALYSIS

This section proposes an algorithm for finding Lyapunov
functions of the form (13) that verify stability properties of
the origin of dynamical systems of the form (2). We exploit
the idea that the role of the hidden neurons parametrized by
(HV , bV) defines a partition, while the output layer weights
wV defines a function over that partition. This idea leads to
an iterative approach based on alternating between a) choosing
the weights wV and cV of the output layer of the ReLU NN
Lyapunov function for a given set of neurons using numerical
optimization, and b) adding new neurons based on the results
of this optimization. We use optimization problem OptθV in
Section VII-A to choose wV and cV , wherein HV , bV are
fixed. If the optimal value is non-zero, we use the solution to
insert new neurons into the Lyapunov ReLU neural network.
In effect, we reformulate the non-convex optimization prob-
lem typically solved using gradient descent as an alternation
between convex optimization and neural architecture search.

A. ‘Learning’ Outer-Layer Weights

The conditions in Theorem 4 allow us to search for a
Lyapunov function V (x) given (HV , bV) using linear pro-
gramming. If this linear program is feasible, we verify the
asymptotic stability of the origin. What should we do when it
is infeasible? We solve this problem by introducing slack vari-
ables for some of the constraints, and changing the objective
function to the sum of the norms of these slack variables.

For each i ∈ IθV , we introduce slack variables si for
constraints (33) and (35), and slack variables ti for (36). We
then define the objective function JHV ,bV (wV , cV) given by

JHV ,bV (wV , cV) =
∑

i∈IHV ,bV

∥si∥22 + ∥ti∥22. (40)

The optimization problem OptθV that implements a search for
wV given fixed (HV , bV) is

min
wV ,cV ,µi,νi,si,ti

JHV ,bV (wV , cV) (41)

s.t. wV max .(bV , 0) + cV = 0, (42)

HT
V S

θV
i µi − pi = 0, ∀i ∈ I linθV , (43)

µi ⪰ ϵ11, ∀i ∈ I linθV , (44)

HT
V S

θV
i µi − pi = 0, ∀i ∈ IaffθV

, (45)

bTV S
θV
i µi − qi + ϵ2 ≤ 0, ∀i ∈ IaffθV

, (46)

µi ⪰ 0, ∀i ∈ IaffθV
, (47)

HT
V S

θV
i νi +AT

i pi = si, ∀i ∈ I linθV , (48)

νi ⪰ ϵ21, ∀i ∈ I linθV , (49)

HT
V S

θV
i νi +AT

i pi = si, ∀i ∈ IaffθV
, (50)

ϵ2 + bTV S
θV
i νi + aTi pi ≤ ti, ∀i ∈ IaffθV

(51)

νi ⪰ 0, ∀i ∈ IaffθV
, (52)

where ϵ1 > 0 and ϵ2 > 0. The variables pi, qi, Ai, and ai are
defined in (18)-(21). The optimization problem OptθV in (41)-
(52) contains several variables, of which wV and cV are most
important, and the rest are related to establishing properties of
the function V (x). We state the following result:

Lemma 5. The optimization problem OptθV in (41)-(52) is
always feasible.

Proof. This result is by construction. By including n neurons
in HV , bV that have no bias terms and correspond to indepen-
dent vectors in Rn, along with their reflections, we ensure that
there exists a choice for wV that makes V (x) positive definite.
Therefore constraints (42)-(47) will always be feasible by
themselves. The remaining constraints are always feasible for
any value of wV due to the use of slack-like variables si and
ti. Therefore OptθV is always feasible. ■

While OptθV is always feasible, we desire the optimal value
to be zero, due to Theorem 4. The next section describes
how we continue searching for a valid ReLU NN Lyapunov
function when the optimal value of OptθV is non-zero.

B. Adding Neurons
In this work, we add neurons (Hnew, bnew) such that they

define hyperplanes that split cells Xi ∈ PθV for which slack
variables si or ti in the solution to OptθV are non-zero. This
process is based on the idea that we need to refine such cells,
as presented in [17], [42], [44]. The approach here is simpler
than in [42], [44].

Consider two index sets Is and It, where

Is = {i ∈ IθV : si ̸= 0}, and
It = {i ∈ IθV : ti ̸= 0}.

At least one of these sets is non-empty when OptθV has non-
zero optimal value. These index sets lead to the following rules
for refining cells:

1) If Is is not empty, split all cells in Is.
2) Otherwise, split all cells in It.
If i ∈ Is, we simply choose the neurons to be

(Hnew, bnew) =
(
wV S

θV
i HV , wV S

θV
i bV

)
(53)

and its reflection. The reason is that if i ∈ Is, then the
hyperplane Hnewx+bnew = 0 may divide Xi into two regions
where V̇ < 0 for one and V̇ > 0 for the other. Adding these
two neurons may allow the algorithm to modify the Lyapunov
function on exactly one of these regions.

If i ∈ It, we simply choose the neurons to be

(Hnew, bnew) =

((
WxS

θV
i bV

)T

, 0

)
(54)

and its reflection. The reason is that i ∈ It implies pTi ai > 0,
which needs to be reduced. By adding (aTi , 0) and (−aTi , 0)
as neurons, the algorithm may be able to modify pi for this
cell (or subsets of it) to p′i = pi − ϵai. If this modification
happens, (p′i)

Tai < pTi ai, achieving the desired reduction.
These choices are well-motivated but do not provide any

a priori guaranteed improvements. Each added neuron is
designed to allow modifications of V (x) for a specific cell,
but they can also cause changes to V (x) in other cells. We are
currently unable to analyze this phenomenon. Therefore, we
cannot even guarantee that the added neurons will change the
candidate Lyapunov function. Empirically, refinements appear
to lead to improvements, as also seen in our examples and
also in [42], [44].

C. Our Search Algorithm
Algorithm 1 describes the algorithm resulting from these

choices. We can show the following properties.

Proposition 6. Algorithm 1 is sound.

Proof. The algorithm terminates only when OptθV has an
optimal value of zero. By Theorem 4, the candidate Lyapunov
function V (x) is therefore a valid Lyapunov function certify-
ing asymptotic stability of the origin. ■

Algorithm 1 is non-terminating. If we attempt to use Al-
gorithm 1 to find a Lyapunov function for the origin of the
harmonic oscillator, it will not terminate, and instead will
indefinitely insert neurons after every iterate of optimization.

For the case where ϵ2 = 0, corresponding to certifying
only stability of the origin, Algorithm 1 will fail to find one,
implying that it is not complete.

Computational Complexity.: The optimization problem
OptθV is a quadratic program. Let there be m neurons in
θV . Then there are a total of m+n+ |Cm|(2m+n) variables
and 1+2|Cm|(m+n) constraints, where n is the dimension of
the state and |Cm| are the number of cells in the arrangement
defined by θx.

The parameters wV and cV introduce m+n variables. Each
cell Xi ∈ PθV introduces 2m + n variables and 2m + 2n

Algorithm 1 Verifying Stability using Lyapunov ReLU NNs
Require: NNReLU(x, θx), ϵ1 > 0, ϵ2 ≥ 0
Ensure: ReLU NN Lyapunov function V (x) that verifies the

origin is (asymptotically) stable.
θV ← 0T

nθx {Initialize network with neurons of θx}
JHV ,bV (wV , cV)←∞
while JHV ,bV (wV , cV) ̸= 0 do

Solve OptθV .
Is ← {i ∈ IθV : si ̸= 0}
It ← {i ∈ IθV : ti ̸= 0}
for i ∈ Is do

Compute (Hnew, bnew), add to (HV , bV) (see Section
VII-B)

end for
if Is = ∅ then

for i ∈ It do
Compute (Hnew, bnew), add to (HV , bV) (see Sec-
tion VII-B)

end for
end if

end while
return V (x) = wV σ+.(HV x+ bV).

constraints, with one more variable ti and two more constraints
if i ∈ IaffθV

.
Despite the formulation as a convex optimization problem,

solving it is not fast for large m. In the worst case, |Cm| can
have ζ(m,n) cells (see (24)) which is super-polynomial [55].

D. Extensions To Other Closed-Loop Properties
The discussion so far has focused on asymptotic stability.

The extension to properties such as stability, exponential
stability, and ultimate boundedness are straightforward.

1) Stability: We simply choose ϵ2 = 0.
2) Exponential Stability: We may show exponential stability

by requiring that V̇ ≤ −αV for some α > 0. This constraint
implies that for each cell Xi ∈ IHV ,bV , we need

pT (Ax+ a) < −αpTx, or
(
pTA+ αpT

)
+ pTa < 0.

The constraints in our optimization-based algorithms barely
change, with the linear dynamics matrix being modified from
A to A + αI . We must either choose α through some side
information, or use some procedure to search for it. We may
use methods inspired by bisection algorithms, however, we do
not pursue this further here.

3) Ultimate Boundedness: In some cases, we may need to
show ultimate boundedness to some set X0 containing the
origin, instead of asymptotic stability. For example, when
models are learned from data, the vector field at the origin
may be non-zero, even if small. Instead of adding a correction
term, which would be added to the vector field at all states, we
may show the ultimate boundedness of the learned dynamics.

If the set X0 is characterized by the constraint Ex+ e ≥ 0,
then we can add (E, e) to the neurons (HV , bV). The enu-
meration algorithm in [55] will enumerate all subsets of X0,

and we can ignore these sets when constructingthe Lyapunov
decrease conditions (48)-(49).

4) Convex Lyapunov Functions: If we constrain the outer
weights wV of the Lyapunov ReLU neural network to satisfy
wV ⪰ 0, then the Lyapunov function will be convex.

VIII. ALGORITHMS FOR CONTROLLER SYNTHESIS

Recall that we wish to find a controller of the form u(x) =
NNReLU(x, θu), where θu = (Wu, Hu, bu, cu), for a system
of the form (1). The resulting closed loop will be

ẋ = NNReLU(x, θx), where
θx = θ′x ⊕Bθu.

We again choose candidate V (x) = NNReLU(x, θx).
With these choices, we may represent the dynamics terms

Ai and ai in the stability condition (22) for each cell in θV as

Ai = (Wx +BWu)D
θV
i HV , and (55)

ai = (Wx +BWu)D
θV
i bV . (56)

For synthesis, we minimize the same objective as in (40).
We may then derive stability conditions for verifying asymp-
totic stability of the controlled closed-loop that are identical
to those in Theorem 4, except the affine dynamics are now
given by (55) and (56) instead of (20) and (21). As a
result, we will obtain a nearly identical optimization problem
Optsynth(HV , bV) to OptθV , except that the constraints are
now bilinear in the optimization variables, with additional
variable Wu. This bilinearity arises because the terms Ai and
ai in (55) and (56) depend on the optimization variables.

We use alternate convex search (ACS) [61] to solve this
optimization problem with bilinear constraints. Each convex
problem arises by keeping either wV or Wu fixed, at the
value of the solution from the previously solved optimization
problem. Therefore, we obtain a nested iterative algorithm,
where the inner optimization finds local minima for the
bilinear problem Optsynth(HV , bV), and the outer optimiza-
tion enables the insertion of nodes so that the local optima
may have value zero. This algorithm is nearly identical to
Algorithm 1, except that we solve Optsynth(HV , bV) using
ACS, instead of OptθV using quadratic programming.

A. Constrained Controller Synthesis
The proposed framework makes it easy to include polytopic

constraints on the controller u = NNReLU(x, θu). Since
these constraints are affine in u, they are in turn piecewise
affine in x. If we use the neurons in the candidate Lyapunov
neural network to define the controller, then we simply require
that over each cell Xi ∈ PθV , an additional set of affine
inequalities in x hold, which is a routine step in our approach.

IX. EXAMPLES

We present four examples that demonstrate the performance
of the search for a ReLU NN Lyapunov function proposed in
Section VII. In addition, we present one example for the syn-
thesis of a constrained controller as presented in Section VIII.
We use the Mosek optimization package and Julia v1.6

Example Enumeration
time (sec)

Computation
time (sec)

Neurons Regions Verified
property

1 27.0 75.23 347 356 LAS
2 3.85 17.79 134 492 LAS
3 2.15 29.87 64 926 LAS
4 0.93 1.07 26 160 LAS
5 11.35 208.10 216 904 LS

TABLE I: Summary of examples of applying the proposed
methods. LS: Local stability; LAS: Local Asymptotic Stability.

to implement all computations, using a computer with a 2.6
GHz processor and 16 GB RAM. The values of ϵ1 and ϵ2 are
set to 1 and 0.001 respectively. We use a tolerance of 10−8

when checking if a number is non-zero. Table I summarizes
the performance of Algorithm 1 and its extension to controller
synthesis on the examples below.

Example 1 (MPC). We consider the control policy derived
for a discrete-time linear dynamical system using Model
Predictive Control, similar to [11], with dynamics

xt+1 =

[
1 1
0 1

]
xt +

[
1
0.5

]
ut. (57)

The MPC problem features the stage-wise quadratic cost
xT
t xt + u2

t , actuator constraints |u| < 4, and state constraint
∥x∥∞ < 5. We use the MPT3 toolbox in Matlab to obtain
an explicit controller. We verify the stability of this explicit
MPC controller when applied to the system

ẋ =

[
0 100
0 0

]
x+

[
75
50

]
u, (58)

which produces the discrete-time dynamical system in (57)
under a discretization time of 0.01 seconds. Figure 1 depicts
the level sets of the Lyapunov function found by Algorithm 1.

While we find a Lyapunov function in Example 1, we
encountered examples related to explicit MPC where the
number of regions and neurons involved become too large to
manage in our implementation.

Example 2 (Wheeled vehicle path following). The wheeled
vehicle path following is another typical nonlinear example in
the literature. We used the kinematic model as follows [5]:

ḋe = νsin(θe), (59)

θ̇e = ω − νκ(s)cos(θe)

1− deκ(s)
.

In (59) state variables are θe, the angle error, and de, the
distance error, and the control is ω. We used the NN controller
designed in [5], and assumed that the target path is a unit
circle, κ(s) = 1. We identified the closed-loop dynamic
within ∥x∥∞ ≤ 0.8 with 50 neurons using single-hidden layer
ReLU. The Lyapunov function was obtained by applying the
verification method to the identified dynamics. In verification,
we exclude a neighborhood of the origin corresponding to
the constraint ∥x∥∞ ≤ 0.005. Figure 2 depicts the region of
attraction and the vector fields. The results demonstrate that
the region of attraction obtained by our proposed method is
less conservative than that of the NN Lyapunov function in [5].

Fig. 1: Depiction of the closed-loop dynamics (arrows) and
the level sets (curves) of the Lyapunov function verifying
asymptotic stability of the origin for Example 1.

Example 3 (Saturated PID Control). We consider a spring-
mass system driven by a PID control under saturation. This
example is inspired by a similar one in [62]. The dynamics of
the position x with input F is

mẍ+ kx = F, where
F = sat (−Kpx−Kdẋ−Kiy, 4) ,

ẏ = x, and

sat(x, α) =

α if x ≥ α,

−α if x ≤ −α, or
x otherwise .

The parameter values are m = 0.1 Kg, k = 2 N/m, Kp = 24
N/m, Kd = 3.2 Ns/m and Ki = 44 N s2/m.

Note that we can implement sat(Hx,α) as σ+(Hx) −
σ+(−Hx)−σ+(Hx−α)−σ+(−Hx−α), which is a ReLU
NN with 4 neurons.

Example 4 (4D Problem). We consider a version of a 4D
problem from [62]. Our version has also two dynamics modes
but is continuous. We also allow the boundary to be an affine
subspace that does not pass through the origin. The method
from [62] is inapplicable to it.

ẋ = Ax−Wσ+.
([
1 0 0 0

]
x− 0.1

)
, where

W =
[
1 0 0 0

]T
, and

A =

−3.01 1.0 1.0 1.0
1.0 −3.01 1.0 1.0
1.0 1.0 −3.01 1.0
1.0 1.0 1.0 −3.01

 .

Example 5 (Inverted Pendulum). We approximate the un-
controlled dynamics of a simple pendulum using a single-
hidden-layer ReLU neural network with 20 neurons. Moreover,
We employed the constrained ReLU controller, |u|≤ 4, as

Fig. 2: Depiction of the closed-loop dynamics (arrows) and
the region of attraction (curves) of NN [5] and the presented
verification method. The Lyapunov function verifying asymp-
totic stability of the origin for Example 2.

Fig. 3: Depiction of the level sets of the Lyapunov function
verifying the stability of the origin and its comparison with
LQR [9], and NN [5] for Example 5.

presented in VIII as a state feedback controller. The state-
space dynamics of the pendulum are[

ẋ1

ẋ2

]
=

[
x2

− c
mx2 − gl2 sin(x1)

]
+

[
0
1

ml2

]
u

where m = 0.15 kg, l = 0.5 m, c = 0.1Ns/rad, and
g = 9.81 m/s2 [10]. We use the ADAM optimization algorithm
provided by the Optim package in Julia, with a learning
rate of 1e−4, on 10000 samples with batch size 3000. We
do the control synthesis and stability analysis on the region
corresponding to ∥x∥∞ ≤ 4, excluding a neighborhood of the
origin corresponding to the constraint ∥x∥∞ ≤ 0.1. Figure 3
depicts the region of attraction found by Algorithm 1. In
addition, we compared this region to LQR [9], NN method
[5]. The region of attraction is less conservative than the LQR
and NN; however, this method is not designed to maximize it.

X. DISCUSSION AND FUTURE WORK

We have presented examples to demonstrate successful
applications of our automated approach to stability verification
and controller synthesis. We see an advantage to our methods
when the piecewise affine dynamics (closed-loop or otherwise)
have more than a few modes. However, the neurons of the
Lyapunov function create additional pieces in the partition
we must enumerate. We can handle hundred of regions, but
not thousands. Below, we discuss the challenges that exist in
making this algorithm useful for a wider set of problems.

Limitations: The proposed solution relies on the piecewise
affine nature of the dynamics. For some dynamical systems, a
good approximation of the vector field using a ReLU NN may
require a large number of neurons, making our optimization-
based search and synthesis method intractable.

Our method to add neurons is heuristic; the effect on
future iterations is unknown. Adding neurons increases the
expressiveness of the network, which should aid the search
for a valid Lyapunov function, but this claim is not formal.

The bilinear nature of the optimizations used for controller
synthesis implies that this procedure is less reliable than
the analysis algorithm. However, this bilinearity is largely
unavoidable when simultaneously searching for controllers and
Lyapunov-based certificates.

Future Work: This work presents a few clear avenues for
future work. First, the characterization of dynamical systems
and closed-loop properties for which a piecewise affine Lya-
punov function must exist will guide the application of the
proposed methods [39]. Second, our algorithm may benefit
from allowing other methods to change the hidden neurons
beyond only adding neurons heuristically. Third, we formu-
late stability conditions based on a halfspace representation
of the cells of the partitions associated with the dynamics
and Lyapunov function ReLU NNs. Finally, the algorithm
focuses on continuous dynamical systems, which polynomial
methods may also handle. The piecewise nature suggests that
these methods will provide greater value for discontinuous
dynamics or controllers, for which analysis and synthesis are
difficult [18]. Automating the more involved technical issues
is likely feasible [42], but possibly challenging [57]–[59].

XI. CONCLUSION

This paper introduces a computational framework to verify
and search for single-layer ReLU NN Lyapunov functions
that verify properties of piecewise affine dynamical systems
potentially represented as single-layer ReLU NN dynamical
systems. We also extend this search procedure to enable
controller synthesis. The design of our algorithms makes them
sound by construction. Furthermore, we avoid the need to train
networks using gradient descent. Inspired by refinement-based
approaches, we instead increase the number of neurons in the
network, thereby increasing its complexity.

While the algorithms are sound, several features are po-
tentially computationally expensive, and the performance of
the algorithm for searching for Lyapunov functions is not
well characterized. Despite these challenges, this work points
to promising automated algorithms for analyzing dynamics
models learned from data and even synthesizing controllers for

them. We anticipate that the potential for optimized implemen-
tations, and the relentless advance of computational power, to
be factors in favor of such methods.

REFERENCES

[1] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning,
ser. Adaptive computation and machine learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org/

[2] L. Breiman, “Hinging hyperplanes for regression, classification, and
function approximation,” IEEE Transactions on Information Theory,
vol. 39, no. 3, pp. 999–1013, 1993.

[3] A. Toriello and J. P. Vielma, “Fitting piecewise linear continuous
functions,” European Journal of Operational Research, vol. 219, no. 1,
pp. 86–95, 2012.

[4] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[5] R. Zhou, T. Quartz, H. D. Sterck, and J. Liu, “Neural lyapunov control
of unknown nonlinear systems with stability guarantees,” in Advances
in Neural Information Processing Systems, 2022. [Online]. Available:
https://openreview.net/forum?id=QvlcRh8hd8X

[6] J.-N. Lin and R. Unbehauen, “Canonical piecewise-linear approxima-
tions,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 39, no. 8, pp. 697–699, 1992.

[7] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dy-
namical systems with gaussian mixture models,” IEEE Transactions on
Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[8] H. Ravanbakhsh and S. Sankaranarayanan, “Learning lyapunov (poten-
tial) functions from counterexamples and demonstrations,” in Proceed-
ings of Robotics: Science and Systems, Cambridge, Massachusetts, July
2017.

[9] Y.-C. Chang, N. Roohi, and S. Gao, “Neural lyapunov control,”
in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. dé Buc, E. Fox, and R. Garnett, Eds.,
vol. 32. Curran Associates, Inc., 2019.

[10] S. M. Richards, F. Berkenkamp, and A. Krause, “The lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Proceedings of The 2nd Conference on Robot Learning,
ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan,
J. Peters, and J. Morimoto, Eds., vol. 87. PMLR, 29–31 Oct 2018, pp.
466–476.

[11] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning lyapunov functions for piecewise affine systems with neural
network controllers,” arXiv preprint arXiv:2008.06546, 2020.

[12] H. Khalil, Nonlinear Systems, ser. Pearson Education. Prentice Hall,
2002.

[13] S. Boyd, V. Balakrishnan, E. Feron, and L. ElGhaoui, “Control system
analysis and synthesis via linear matrix inequalities,” in 1993 American
Control Conference, June 1993, pp. 2147–2154.

[14] S. Prajna and A. Papachristodoulou, “Analysis of switched and hybrid
systems - beyond piecewise quadratic methods,” in Proceedings of the
American Control Conference., vol. 4, June 2003, pp. 2779–2784.

[15] S. Prajna, P. A. Parrilo, and A. Rantzer, “Nonlinear control synthesis by
convex optimization,” IEEE Transactions on Automatic Control, vol. 49,
no. 2, pp. 310–314, Feb 2004.

[16] M. Johansson and A. Rantzer, “Computation of piecewise quadratic Lya-
punov functions for hybrid systems,” IEEE Transactions on Automatic
Control, vol. 43, no. 4, pp. 555–559, Apr 1998.

[17] M. Johansson, “Piecewise linear control systems,” Ph.D. dissertation,
Lund University, 1999.

[18] E. Treadway and R. B. Gillespie, “Vector field control methods for
discretely variable passive robotic devices,” IEEE Transactions on
Robotics, vol. 37, no. 2, pp. 375–389, 2021.

[19] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT
Press, 2010.

[20] M. Korda, “Stability and performance verification of dynamical systems
controlled by neural networks: algorithms and complexity,” IEEE Con-
trol Systems Letters, vol. 6, pp. 3265–3270, 2022.

[21] O. L. Mangasarian, Nonlinear Programming, ser. Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1994.

[22] I. Polik and T. Terlaky, “A survey of the s-lemma,” SIAM Review, vol. 49,
no. 3, pp. 371–418, 2007.

http://www.deeplearningbook.org/
https://openreview.net/forum?id=QvlcRh8hd8X

[23] A. Papachristodoulou and S. Prajna, “On the construction of lyapunov
functions using the sum of squares decomposition,” in Proceedings of
the 41st IEEE Conference on Decision and Control., vol. 3, 2002, pp.
3482–3487 vol.3.

[24] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing sostools:
a general purpose sum of squares programming solver,” in Proceedings
of the 41st IEEE Conference on Decision and Control, 2002., vol. 1,
Dec 2002, pp. 741–746 vol.1.

[25] J. Anderson and A. Papachristodoulou, “Advances in computational
lyapunov analysis using sum-of-squares programming,” Discrete &
Continuous Dynamical Systems - B, vol. 20, p. 2361, 2015.

[26] R. Sepulchre and D. Aeyels, “Homogeneous lyapunov functions and
necessary conditions for stabilization,” Mathematics of Control, Signals
and Systems, vol. 9, no. 1, pp. 34–58, 1996.

[27] D. Liberzon, J. P. Hespanha, and A. Morse, “Stability of switched
systems: a lie-algebraic condition,” Systems & Control Letters, vol. 37,
no. 3, pp. 117 – 122, 1999.

[28] R. Goebel and R. Sanfelice, Hybrid Dynamical Systems: Modeling,
Stability, and Robustness. Princeton University Press, 2012.

[29] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
systems: A survey of recent results,” IEEE Transactions on Automatic
Control, vol. 54, no. 2, pp. 308–322, Feb 2009.

[30] J. Oehlerking, H. Burchardt, and O. Theel, “Fully automated stability
verification for piecewise affine systems,” in Hybrid Systems: Compu-
tation and Control, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 741–745.

[31] R. Iervolino, F. Vasca, and L. Iannelli, “Cone-copositive piecewise
quadratic Lyapunov functions for conewise linear systems,” IEEE Tran.
on Automatic Control, vol. 60, no. 11, pp. 3077–3082, 2015.

[32] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,” IEEE Transactions on Automatic
Control, vol. 43, no. 4, pp. 475–482, April 1998.

[33] M. A. Wicks, P. Peleties, and R. A. DeCarlo, “Construction of piecewise
Lyapunov functions for stabilizing switched systems,” in Proceedings of
1994 33rd IEEE Conference on Decision and Control, vol. 4, Dec 1994,
pp. 3492–3497 vol.4.

[34] S. Pettersson and B. Lennartson, “Stabilization of hybrid systems using
a min-projection strategy,” in Proceedings of the 2001 American Control
Conference, vol. 1, 2001, pp. 223–228 vol.1.

[35] T. Hu, L. Ma, and Z. Lin, “Stabilization of switched systems via com-
posite quadratic functions,” IEEE Transactions on Automatic Control,
vol. 53, no. 11, pp. 2571–2585, Dec 2008.

[36] P. Bolzern and W. Spinelli, “Quadratic stabilization of a switched affine
system about a nonequilibrium point,” in Proceedings of the 2004
American Control Conference, vol. 5, June 2004, pp. 3890–3895.

[37] T. Soga and N. Otsuka, “Quadratic stabilizability for polytopic uncer-
tain continuous-time switched linear systems by output feedback,” in
Proceedings of the American Control Conference, June 2010, pp. 3920–
3925.

[38] L. Hetel and E. Bernuau, “Local stabilization of switched affine sys-
tems,” IEEE Transactions on Automatic Control, vol. 60, no. 4, pp.
1158–1163, April 2015.

[39] F. Blanchini, “Nonquadratic Lyapunov functions for robust control,”
Automatica, vol. 31, no. 3, pp. 451 – 461, 1995.

[40] H. A. Poonawala, N. Lauffer, and U. Topcu, “Training classifiers for
feedback control with safety in mind,” Automatica, vol. 128, 2021.

[41] H. A. Poonawala, N. Lauffer, and U. Topcu, “Training classifiers for
feedback control,” in 2019 American Control Conference (ACC), July
2019, pp. 4961–4967.

[42] H. A. Poonawala, “Stability analysis of conewise affine dynamical sys-
tems using conewise linear lyapunov functions,” IEEE Control Systems
Letters, pp. 1–1, 2020.

[43] H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example guided
synthesis of neural network lyapunov functions for piecewise linear
systems,” in 2020 59th IEEE Conference on Decision and Control
(CDC). IEEE, 2020, pp. 1274–1281.

[44] H. A. Poonawala, “Stability Analysis Via Refinement Of Piece-wise
Linear Lyapunov Functions,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 1442–1447.

[45] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-
stable neural-network control,” 2021.

[46] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking. Springer, 2018, pp. 305–343.

[47] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337–340.

[48] R. Alur, S. Kannan, and S. La Torre, “Polyhedral flows in hybrid
automata,” in International Workshop on Hybrid Systems: Computation
and Control. Springer, 1999, pp. 5–18.

[49] P. Prabhakar and M. G. Soto, “Counterexample guided abstraction re-
finement for stability analysis,” in International Conference on Computer
Aided Verification, 2016, pp. 495–512.

[50] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis
of lyapunov neural networks,” IEEE Control Systems Letters, vol. 5,
no. 3, pp. 773–778, 2020.

[51] D. Ahmed, A. Peruffo, and A. Abate, “Automated and sound synthesis
of lyapunov functions with smt solvers,” in Tools and Algorithms for
the Construction and Analysis of Systems, A. Biere and D. Parker, Eds.
Cham: Springer International Publishing, 2020, pp. 97–114.

[52] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning lyapunov functions for hybrid systems,” in Proceedings of
the 24th International Conference on Hybrid Systems: Computation and
Control, 2021, pp. 1–11.

[53] M. Farsi, Y. Li, Y. Yuan, and J. Liu, “A piecewise learning framework
for control of unknown nonlinear systems with stability guarantees,” in
Learning for Dynamics and Control Conference. PMLR, 2022, pp.
830–843.

[54] T. Geyer, F. D. Torrisi, and M. Morari, “Efficient mode enumeration
of compositional hybrid systems,” in International Workshop on Hybrid
Systems: Computation and Control. Springer, 2003, pp. 216–232.

[55] M. Rada and M. Cérný, “A new algorithm for enumeration of cells
of hyperplane arrangements and a comparison with avis and fukuda’s
reverse search,” SIAM Journal on Discrete Mathematics, vol. 32, no. 1,
pp. 455–473, 2018.

[56] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
applied mathematics, vol. 65, no. 1-3, pp. 21–46, 1996.

[57] J. Cortes, “Discontinuous dynamical systems,” IEEE Control Systems
Magazine, vol. 28, no. 3, pp. 36–73, June 2008.

[58] M. Della Rossa, A. Tanwani, and L. Zaccarian, “Smooth approxi-
mation of patchy Lyapunov functions for switched systems,” IFAC-
PapersOnLine, vol. 52, no. 16, pp. 364–369, 2019.

[59] R. Baier, L. Grüne, and S. F. Hafstein, “Linear programming based
Lyapunov function computation for differential inclusions,” Discrete &
Continuous Dynamical Systems - B, vol. 17, p. 33, 2012.

[60] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth
analysis and control theory. Springer Science & Business Media, 2008,
vol. 178.

[61] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization
with biconvex functions: a survey and extensions,” Math Meth Oper Res,
pp. 373–407, 2007.

[62] G. O. Berger and S. Sankaranarayanan, “Counterexample-guided com-
putation of polyhedral lyapunov functions for hybrid systems,” arXiv
preprint arXiv:2206.11176, 2022.

Pouya Samanipour Pouya Samanipour is a
PhD student in the Department of Mechani-
cal Engineering at the University of Kentucky.
He received a Bachelor’s degree in Electrical
Engineering from Imam Khomeini International
University, Qazvin, Iran in 2011, and a Master’s
degree in Electrical Engineering from Iran Uni-
versity of Science and Technology, Tehran, Iran
in 2015. The current focus of his research toward
a PhD degree is the stability analysis of PWA
dynamics and neural networks.

Hasan A. Poonawala Hasan A. Poonawala is
an Assistant Professor in the Department of
Mechanical Engineering at the University of Ken-
tucky. He holds a Master’s degree in Mechani-
cal Engineering from the University of Michigan
(2009), and a Ph.D. in Electrical Engineering
from the University of Texas at Dallas (2014). His
research expertise spans mechatronics, vision-
based motion control, and classifier-in-the-loop
systems. His current research focuses on con-
trolling robotic systems using high-dimensional

sensor data, machine learning, and control theory.

	Introduction
	Contributions

	Related Work
	Mathematical Optimization
	Learning From Finite Samples

	Problem Description And Paper Outline
	Rectified Neural Networks As Continuous Piecewise Affine Functions
	Partitions and Refinements
	Piecewise Affine Functions
	Single-Hidden-Layer ReLU NNs
	The Partition Due To Neurons
	Converting NNReLU(x) to PWA(x)

	ReLU Neural Networks As Candidate Lyapunov Functions
	The Partition Associated With Stability Conditions
	Stability Conditions For A Single Cell
	Enumerating All Cells In A Partition
	Complexity of Verifying A Candidate Lyapunov Function

	Quantifier-Free Lyapunov Stability Conditions
	Positive Definiteness of V(x)
	Lyapunov Stability Conditions For Multiple Cells
	Summary

	Algorithms For Stability Analysis
	`Learning' Outer-Layer Weights
	Adding Neurons
	Our Search Algorithm
	Extensions To Other Closed-Loop Properties
	Stability
	Exponential Stability
	Ultimate Boundedness
	Convex Lyapunov Functions

	Algorithms For Controller Synthesis
	Constrained Controller Synthesis

	Examples
	Discussion And Future Work
	Conclusion
	References
	Biographies
	Pouya Samanipour
	Hasan A. Poonawala

