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Abstract

The preservation of connectivity in mobile robot networks is critical to the success of most existing algorithms

designed to achieve various goals. The most basic method to achieve this involves each agent preserving its edges

for all time. More advanced methods preserve a (minimum) spanning tree in the network. Other methods are based

on increasing the algebraic graph connectivity, which is given by the second smallest eigenvalueλ2(L) of the graph

LaplacianL that represents the network. These methods result in a monotonic increase in connectivity until the

network is completely connected. A continuous feedback control method was proposed which allows the connectivity

to decrease, that is, edges in the network may be broken. Thismethod requires global knowledge of the network. In

this paper we modify the controller to use only local information. The connectivity controller is based on maximization

of λ2(L) and artificial potential functions and can be used in conjunction with artificial potential based formation

controllers. The controllers are extended for implementation on non-holonomic wheeled mobile robots, and the

performance is demonstrated in experiment on a team of wheeled mobile robots.

I. I NTRODUCTION

The study of mobile-robot networks has been an active area ofresearch for over a decade. Such systems afford a

robust and inexpensive method for achieving certain coverage tasks or cooperative missions. Many algorithms for

achieving tasks using mobile-robot networks require that the network maintains connectivity. When the network is

connected, any two robots can communicate and share information, even if through several ‘hops’. The problem

of maintaining connectivity in mobile robot networks has thus been receiving increasing attention. This problem

becomes further complicated when the connectivity dependson the state of the system.

A good review of different methods to control the connectivity can be found in [1]. These methods may be either

centralized or decentralized. The key advantage of a decentralized method is that it can scale to large numbers of

robots. An obvious method of maintaining connectivity is topreserve the edges present in the network for all time

[2], [3]. Most decentralized methods to preserve connectivity utilize a variation of this idea. A notable exception
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is found in [4], where the authors propose algorithms to decide if edges may be deleted while still ensuring

a spanning subgraph exists, based on local estimates of the network topology. The edges are usually preserved

using unbounded artificial potential functions, which suffer from the phenomenon of the overall potential becoming

unbounded (generating a large control effort due to the gradient) whenever a new edge is added. This is overcome

using a hysterisis protocol. A method that uses bounded control to tackle this phenomenon is given in [5], however

edges are never broken.

The presence of a spanning subgraph in the network can be inferred from the spectral properties of the Graph

LaplacianL. Thus, another method for maintaining connectivity amongst a group of mobile robots is to maximize

the second smallest eigenvalue of the graph Laplacian [6]. In this method, the edge strengths are non-increasing

functions of the distance between robots. The resulting graph is always completely connected, as seen in the

simulation results in [6]. This method is effective for solving rendezvous problems, which was a primary goal

in [6]. It can also can be extended to some other applications[1], [6] such as tracking a leader.

When the task to be achieved is formation control or area coverage, the tendency of the network to become

completely connected is undesirable. Instead, the goal is to prevent disconnection during the execution of such

tasks. Hence, we would wish to allow link deletions when suitable, without relying on higher level planning or

decision making. In a previous paper [7] we modify the approach in [6] so that the resulting behavior is such that

global connectivity is maintained, but not increased till the network is completely connected. The result is that links

may be broken under the influence of additional control objectives (such as exploration or coverage) without losing

global connectivity. The method is easier to implement thanthe one in [4], however our controller requires each

agent to have access to the positions of all other nodes.

To overcome this, we present a decentralized version of the connectivity controller which only requires local

network information. This decentralized controller is themain contribution of this paper. It relies on the connectivity

estimation algorithm presented in [8]. A further contribution in this work is the experimental validation of this

decentralized controller on a network of non-holonomic wheeled mobile robots (WMRs). This is also the first

reported implementation of the algorithm in [8] using experimental data.

Connectivity controllers that prevent edge deletions or converge to complete networks limit the set of formations

that can be commanded. The controllers we present allow a larger set of formations that can be achieved, which

can be modified using a parameter in the control. This method is decentralized, and hence can scale to networks

with a large number of robots.

II. BACKGROUND

In this section we give a brief recount of concepts from graphtheory used to model the connectivity of a mobile

robot network.

A weighted graphG is a tuple consisting of a set of verticesV (also called nodes) and a functionW , that is,

G = (V,W )
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whereV = {1, ..., N} denotes the set of nodes. The functionW : V × V × R+ → R+ is used to compute the

weights of the edges inG, such that

(II.1)wij(t) =W (i, j, t);

If wij(t) = 0, then there is no connection between nodesi andj. We obtain the edge weights using bump functions,

commonly used as gluing objects of differential geometry:

ψ(x) =







1 if x ≤ ρ1

exp (− 1

ρ2−x
)

exp (− 1

ρ2−x
)+exp ( 1

ρ1−x
)

if ρ1 ≤ x ≤ ρ2

0 if ρ2 ≤ x

One of the advantages of bump functions is that they are smooth objects and can thus be differentiated as many

times as required. If we take the distancedij between two robots as the domain ofψ(x), we obtain a smooth

weightingwij = ψ(dij) from full connectivity to no connectivity for any two robots, as seen in Figure III.1. The

edge weights give rise to the graph LaplacianL(G) ∈ R
N×N defined as

Lij(t) =







−wij(t) if i 6= j

∑

k 6=iwik(t) if i = j

The Laplacian gives us a measure of the connectivity of the graphG since the number of connected components

in the graph is equal to the number of zero eigenvalues ofL(G). Thus, for the graph to be connected, only

one eigenvalue ofL(G) will be zero. The second smallest eigenvalueλ2(L(G)) thus becomes an indicator of

connectivity in the graph.

The LaplacianL(G) can be converted to a matrixM(G) ∈ R
N−1×N−1, whose eigenvalues are the largestN−1

eigenvalues ofL(G). The matrixM(G) is given by

(II.2)M(G) = PTL(G)P

whereP ∈ R
N×N−1 satisfiesPT 1 = 0 andPTP = IN−1. Thus, the determinant ofM(G) vanishes if and only

if λ2(L)(G) vanishes.

For eachk ∈ V we can define the neighbor setNk as

(II.3)Nk = {j ∈ V |wjk 6= 0}

and its closureN̄k given by
(II.4)N̄k = k ∪Nk

Note thatN̄k ⊆ V has orderNk + 1, whereNk is the number of neighbors ofk in G. Each member ofN̄k can

be assigned a position inVk = {1, 2, ..., Nk + 1}. This is achieved through the mapπk : V → Vk. We can now

define the subgraphGk = (Vk,W ), which has LaplacianLk = L(Gk) and reduced LaplacianMk = M(Gk).

For the rest of the paper,L refers to the Laplacian of the graphG, andLk refers to that of the graphGk for

eachk with similar convention applying toM.
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III. M OTIVATION

Consider the scenario where we would like a team of robots to stay connected with each other while performing

some other task. This task might be, for example, arranging themselves in a formation or exploration, etc. These

two requirements can be mathematically restated as bounding the second smallest eigenvalue of the Laplacian away

from zero while each robot tracks either (possibly time varying) absolute or relative positions.

One way to attack this problem is to come up with a connectivtycontroller based on maximization ofλ2(L)
and add another controller that achieves the tracking aspect of the task. The downfall of this approach is that the

connectivity may conflict with the ability of the tracking controller to achieve the desired goal, or restrict the set

of robot positions that can be tracked.
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Fig. III.1: Bump function

Example. ConsiderN = 5 first-order robots, whose

dynamics are represented by the simple integrator, with

a maximum detection range ofρ2 = 0.70m. Assume

that two robots can detect each other perfectly if they

are a distance ofρ1 = 0.20m. or smaller away.

We model this connectivity pattern with the weight

function defined in (II.1).

Suppose a second smallest eigenvalue-maximizing

control law such as the one given in [1] is applied on each of the robots; that is, the control law for thekth

robot will be the gradient of the potential function

φ(x) = log det (PTL(x)P)−1 := log det (M(x))−1

wherexk denotes the position vector (xk, yk) of robotk. The controller for thekth robot reads

τk = − ∂φ

∂xk
(x) = tr

(

M−1 ∂M
∂xk

(x)

)

We simulate this control law with the first robot commanded toremain at the positionx1 = (0.5, 0.5). This is

equivalent to the robot tracking any constant set point. Thebehaviors of the remaining robots are illustrated in

Figure IV.1. The bold green curve is the circle of radiusρ1 around the location of the first robot. We immediately

notice that all of the robots are forced into this circle because of the second smallest eigenvalue maximizing control

law. This is because the connection strengths are maximizedwhen each pair of robots is separated by no more than

ρ1.

This means that formations to be tracked should lie completely inside this circle. This could be a serious limitation,

for example in tasks related to coverage. Thus, we see that connectivity control based on second smallest eigenvalue

maximization alone limits the success of achieving additional behaviors.

IV. CONTROL DESIGN
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Fig. IV.1: λ2(L) maximizing controller

A connectivity preserving controller with the desired

properties mentioned in Section III was presented in

[7]. The method can be used with formation and

collision avoidance controllers satisfactorily. A chief

drawback of the method was that it was centralized, due

to the presence of the termM−1 in each agent’s control

law. The main result of this paper is a decentralized

version of that connectivity controller, presented in

Section IV-B. We also analyse the performance of

the decentralized connectivity controller when used in

conjunction with formation or collision-avoidance control laws in Sections IV-C and IV-D respectively.

The controllers in the following sections assume that each agent has the following dynamics

(IV.1)ẋi = τi

wherexi ∈ R
2 is the position of theith mobile robot given byxi = (xi, yi). In Section IV-E In the next subsection,

we recount the centralized control law from [7] and its properties.

A. Centralized connectivity control law

The connectivity control law in [] was shown to maintain the connectivity of a network, however it restricts

the possible equilibrium configurations of the team of mobile robots to those where the network is completely

connected. The control was based on the gradient of a potential function whose argument isdetM, whereM is

the reduced Laplacian of the graph. In [7], the following potential function was proposed:

D(x) := det (M(x))

Vc(D) =

(

min

{

0,
D2 − ᾱ2

D2 − α2

})2

This function and its gradient blow up whenever the determinant approaches the lower boundα and are zero

whenever the determinant is greater than the upper boundᾱ. Thus, using the above potential function results in a

control law which guarantees thatdetM > α, which implies that the graph is always connected. Moreover, since

detM is bounded from above, this ensures thatλ2(L)(t) has a non-zero lower bound which we can select. The

performance of consensus based algorithms improves with increase inλ2(L), hence this feature would be beneficial

in such a scenario.

Another feature of the control law is that the connectivity control law is inactive ifdetM > ᾱ. Thus, by choosing

ᾱ andα appropriately, we can make the control law unresponsive to changes in connectivity until the connectivity

becomes lower than desired. This lowers the interference ofthe connectivity controller with the primary tasks that

the team of agents is supposed to achieve, yet guarantees that connectivity will be maintained.

Upon taking partial derivatives ofVc with respect to the coordinatesxk andyk of the kth robot, we find
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∂Vc
∂xk

=







0 if D ≤ α

β(x)tr
(

M−1 ∂M
∂xk

)

if α < D < ᾱ

0 if ᾱ ≤ D

;
∂Vc
∂yk

=







0 if D ≤ α

β(x)tr
(

M−1 ∂M
∂yk

)

if α < D < ᾱ

0 if ᾱ ≤ D

where

β(x) = 4

(
ᾱ2 − α2

) (
D2 − ᾱ2

)

(D2 − α2)
3 D2 < 0.

The following result was shown in [7].

Proposition IV.1. Under the control law

(IV.2)τk = −∇xk
Vc(x) = −β(x)




tr
(

M−1 ∂M
∂xk

)

tr
(

M−1 ∂M
∂yk

)





the first-order robots with dynamics(IV.1) converges to the setE = {x ∈ R
2N : det (M(x)) ≥ ᾱ} and the graph

G whose nodes the robots represent stays connected for all time.

B. Decentralized Connectivity Control law

The connectivity controller (IV.2) can be viewed as the control given in [1] multiplied by a gain which is

dependent on the connectivity of the network. The controller is centralized due to the need to compute the matrix

M−1(x) and the determinant ofM. The terms∂M
∂xk

depend on the terms∂wij

∂xk
, which vanish for robots that are

not neighbors. Thus,∂M
∂xk

is a local computation for each robot.

It was shown that the velocity vectorτk in (IV.2) was a positive combination of the vectors from thatrobot to each

of its neighbors. The direction ofτk was determined by the gradient ofdetM, the calculation of which requires

each agent to possess global information. Each robot can be commanded to move in the direction determined by

the gradient ofdetMk instead, which requires each neighbor to have information about its neighbors only. Thus,

the decentralized connectivity controller becomes

(IV.3a)τk,c = −kcβ2(x)




tr
(

M−1
k

∂Mk

∂xk

)

tr
(

M−1
k

∂Mk

∂yk

)





(IV.3b)β2(x) = min

{(
λ22(L)− ᾱ2

)

(λ22(L))
, 0

}

wherekc > 0 and β2(x) ≤ 0 ∀x ∈ R
2N . Note that if λ2(L) is available at each node, then the control law

requires information about its neighbors. This means that the control law is decentralized. In order to understand

the behaviour of the agents under the action of (IV.3a), we show the following property,
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Proposition IV.2. The instantaneous direction of motion of each robotk ∈ V under any control of the form

(IV.4)τk = −β




tr
(

M−1
k

∂Mk

∂xk

)

tr
(

M−1
k

∂Mk

∂yk

)





is a positive combination of the vectors(xj − xk), wherej ∈ Nk and β < 0.

Proof: Each agent has a subgraphGk = (Vk,W ) as defined in Section II. We define the the symmetric matrix

Aij
k ∈ R

(Nk+1)×(Nk+1) as

Aij
k (n,m) = Aij

k (m,n) =







wij if m = i andn = j

0 otherwise

wherewij is defined as in (II.1). This corresponds to the adjacency matrix of a subgraph ofGk consisting of the

same(Nk+1) robots, but only robotsi andj are connected by weightwij . We can construct a matrixLij
k fromAij

k

using the standard process of obtaining a Laplacian matrix from an adjacency matrix. This matrix has the property

that

(IV.5)Lij
k = 2wijv

ij(vij)T

wherevij ∈ R
(Nk+1) with its lth component given by

(IV.6)vijl =







−1/
√
2 if l = i

1/
√
2 if l = j

0 otherwise

It should be noted that we recover the original graph Laplacian,Lk, by the expression

(IV.7)Lk =

N∑

i=1

N∑

j>i

Lij
k

The partial derivatives ofLij
k can be expressed as

∂Lij
k

∂xl
= 2

∂wij

∂xl
vij(vij)T

∂Lij
k

∂yl
= 2

∂wij

∂yl
vij(vij)T

We take the inverseM−1
k > 0 of the matrixMk > 0 obtained fromLk by using (II.2) and express it in terms

of the eigenvalue decomposition ofLk:

M−1
k =

Nk+1∑

p=2

1

λp
upu

T
p

whereLkvp = λp(Lk)vp, up = PT vp for eachp ∈ {1, 2, 3, ..., Nk + 1}. We calculate, for somel,
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(IV.8)

tr

(

M−1
k PT ∂L

ij

∂xl
P

)

= tr

(
Nk+1∑

p=2

1

λp
upu

T
p 2
∂wij

∂xl
PT vij(vij)TP

)

= 2
∂wij

∂xl
tr

(
Nk+1∑

p=2

1

λp
upu

T
p P

T vij(PT vij)T

)

= 2
∂wij

∂xl

Nk+1∑

p=2

1

λp
(uTp P

T vij)2 = 2γijk
∂wij

∂xl

and similarly,

tr

(

M−1
k PT ∂L

ij

∂xl
P

)

= 2γijk
∂wij

∂yl

whereγij > 0. Now, take the vector

τ ijk,l =




tr
(

M−1
k PT ∂Lij

∂xl
P
)

tr
(

M−1
k PT ∂Lij

∂yl
P
)



 = 2γijk





∂wij

∂xl

∂wij

∂yl





We have the relations
∂wij

∂xi
=
∂wij

∂dij

∂dij
∂xi

=
∂wij

∂dij

xi − xj
dij

∂wij

∂yi
=
∂wij

∂dij

∂dij
∂yi

=
∂wij

∂dij

yi − yj
dij

thus




∂wij

∂xi

∂wij

∂yi



 = δij




xj − xi

yj − yi





whereδij ≥ 0, since ∂wij

∂dij
≤ 0. To compute the control forlth robot, we use the fact that

∂Lk

∂xl
=

N∑

i=1

N∑

j>i

∂Lij
k

∂xl
=

N∑

j 6=l

∂Llj
k

∂xl

sinceLij
k = Lji

k and ∂L
ij

k

∂xl
= 0 whenever neitherl 6= i, nor l 6= j. Therefore, the control vector (IV.4) is computed

as

τk = −β




tr
(

M−1
k PT ∂Lk

∂xk
P
)

tr
(

M−1
k PT ∂Lk

∂yk
P
)



 = −β(x)
Nk+1∑

j 6=k




tr
(

M−1
k PT ∂Lkj

∂xk
P
)

tr
(

M−1
k PT ∂Lkj

∂yk
P
)



 = −β(x)
Nk+1∑

j 6=k

2γkjδkj




xj − xk

yj − yk





which is clearly a positive combination of the displacementvectors from robotk to the robotsj ∈ Nk (note,

β(x) ≤ 0).

Proposition IV.3. Consider the control law for thekth robot given by(IV.3). If the robots are started such that

λ2(L)(t0) > 0, then λ2(L)(t) > 0 ∀t ≥ t0, and the configuration of the agents converges to the setE =
{
x ∈ R

2N : λ2(L) ≥ ᾱ
}
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Proof: Agent k ∈ V has a local graphGk = (Vk,W ). Let the graphGk be such thatwkj = ǫ > 0 and as

wkj → 0 the graph becomes disconnected. In order to prevent disconnection, we must have thatτk → c(xj − xk)

asw1j → 0 for somec > 0. We assume that the opposite node of this edge also behaves ina similar manner.

When this occurs,dkj must decrease whenwkj is sufficiently small, increasingwjk away from zero.

Note that agentsk andj have indicesk′ = πk(k) andj′ = πk(j) respectively inVk (See section II). The control

law for agentk was shown to be a positive combination of the relative position vectors to its neighbors. From

(IV.8) the weights are given by

(IV.9)γk
′j′

k =

Nk+1∑

p=2

1

λp
(uTp P

T vk
′j′)2

If wkj → 0 thenλ2(Lk) → 0. Sinceλ2 < λ3 < . . . λNk+1, the term due top = 2 dominates, and we can rewrite

above as
(IV.10)γk

′j′

k ≈ 1

λ2
(uT2 P

T vk
′j′)2

We have that

Lk =

Nk+1∑

i′=1

Nk+1∑

j′>i′

2wi′j′v
i′j′ (vi

′j′ )T

so that

Lkv2 = λ2(Lk)v2 =
N∑

i′=1

N∑

j′>i′

2wi′j′v
i′j′(vi

′j′)T v2

As λ2(Lk) → 0, we get

(IV.11)
N∑

i′ =1

N∑

j′ >i′

2wi′j′v
i′j′(vi

′j′)Tu2 =

N∑

i′=1

N∑

j′>i′

2wi′j′((v
i′j′)Tu2)v

i′j′ → 0

The weightswi′j′ = wij are non-negative. Due to the form of (IV.10), we are concerned with the behavior of

vk
′j′ , j′ ∈ {1, 2, 3, ..., Nk + 1} {k′}. By definition, thek′ th component of eachvk

′j′ is −1/
√
2. Thus, the only

way (IV.11) can hold for the first component is that eitherwk′j′ → 0 or (vk
′j′)T v2 → 0 ⇒ uT2 P

T vk
′j′ → 0. Thus,

we can conclude that

(IV.12)τk,c → −β(x)
Nk+1∑

j|wk′j′→0

1

λ2
(uT2 P

T vk
′j′)2




2
∂wk′j′

∂xk

2
∂wk′j′

∂yk





If only one edge is close to vanishing, then

(IV.13)τk,c → −β(x) 1

λ2
(uT2 P

T vk
′j′)2




2
∂wk′j′

∂xk

2
∂wk′j′

∂yk





which is clearly of the formc(xj −xk) (note that we revert to addressing nodes by their position inV ). Thus, even

thoughwkj can become very small, it cannot decrease till zero, since the two agents at opposite ends of such an

edge will eventually move towards each other. This shows that the graphG remains connected for all time when

each agent moves under the action of (IV.3a).

By Proposition IV.2, each agent moves towards the interior of the convex hull CH(Vk) determined by its neighbor

set.
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Moreover, the agents defining the convex hull CH(V ) of the whole graph will move into the convex hull so

that the perimeter will decrease by a simple application of the triangle inequality on Euclidean space. Stacking the

lengths{di}m1 of the edges defining the convex hull in a vectorv, this means that‖v‖
1

is monotonously decreasing

with a lower bound0. By Bolzano-Weierstrass Theorem, each entry of the vectorv is approaching zero. Since the

perimeter is shrinking, any agent inside the convex hull must have smaller distances to their neighbors than the

perimeter. As a result, there exists aT > 0 such that whent > T , dij(T ) < ǫ for any ǫ > 0. Sinceλ2(L) is a

monotonically decreasing function of each distancedij , λ2 will increase untilβ2(x) ≡ 0.

One of the nice features of the controller (IV.3a) is that itscomputation requires only local knowledge ifλ2(L)
is known. The authors in [8] have introduced an estimator forthis critical piece of information with tunable gains

that govern its rate of convergence. Once this estimator is combined with the control law (IV.3a), we achieve a

decentralized connectivity controller.

The only restriction that the decentralization imposes is that the motions of the robots be slower than the rate

of convergence of the estimator. Conversely, the estimatorgains should be selected judiciously so that a time-scale

separation between the convergence of the estimator statesand the robot states is established.

C. Decentralized Connectivity Preserving Formation Controller

In this section, we develop on the connectivity controller presented in Section IV-B by adding a formation

controller on top of it. We define a quadratic potential function for each robotk, Vfk(xk), with a minimum located

at the desired positionxkd. The sum of the contributions of each robot gives rise to the formation potential function,

Vf (x).

Vfk =
1

2
〈xk − xkd,xk − xkd〉

Vf =

N∑

i

Vfk

where the brackets〈·, ·〉 represents the usual Euclidean inner product of vectors. For convenience, we define

Nk = {j ∈ {1, ...N} : j 6= k anddjk < ρ2}

which is the index set of neighbors of robotk. We now show an important property of the connectivity control law.

In the rest of the subsection, we shall assume that the control law for each robot is given by

(IV.14)τk = τk,c(x)− kf∇xi
Vf (x)

whereτk,c(x) is the decentralized connectivity controller presented insection IV-B, andkc, kf > 0 are control

gains.

Theorem IV.1. Suppose the control effort for each robotk is given by(IV.14). Let Vd denote the vertex set for

the desired formation. Then the robots converge to a setE contained in the convex hullCH(Vd) of the desired

formation.
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Proof: Under the action of the control law (IV.14), the agents reachthe set of configurationsx ∈ R
2N where

for all k, both of the following holds

kcβ2(x)tr

(

M−1
k

∂Mk

∂xk

)

+ kf (xk − xkd) = 0

kcβ2(x)tr

(

M−1
k

∂Mk

∂yk

)

+ kf (yk − ykd) = 0

Sinceβ(x) < 0, this is equivalent to the statement that the angle between the vectors
[

tr
(

M−1
k

∂Mk

∂xk

)

tr
(

M−1
k

∂Mk

∂xk

)]T

and [xk − xkd yk − ykd]
T is π rad. Due to Proposition IV.2, the former

always points intoCH(V ), so this is only possible if for eachk, xk ∈ CH(Vd) (see Figure IV.2).

Remark1. Theorem IV.1 provides a way to move the robots into the convexhull defined by the desired formation

while maintaining connectivity. Even though the claims of the theorem are weaker, in any simulation, the robots

converge to the desired formation,xd, provided it is selected such that thedet (M(xd)) ≥ ᾱ.

Remark2. The control due to connectivity becomes unbounded asdetM → 0. Finite errors in formation yield finite

control effort, hence even if the desired formation is disconnected, the network will never become disconnected.

D. Decentralized Connectivity Preserving Formation Controller with Collision Avoidance

We can add yet another potential function,Va(x) , designed to introduce collision avoidance behavior, to work

in collaboration with the existing ones. By this way, we can guarantee that the robots do not collide while they

move towards the desired formation. We use the avoidance (potential) functions as defined in [9] by

(IV.15)Vaij =

(

min

{

0,
d2ij −R2

d2ij − r2

})2

x
1

x
1d

x
2d

x
3d

x
4d

x
5d

x
2

x
3x

4

x
5

V
fx

4

-

V
fx

1

-

τ
1,c

τ
4,c

Fig. IV.2: If an agentx1 is outside the convex hull of
the desired formation (depicted by dotted red lines), the
formation controller and the connectivity controller cannot
conflict so much to cancel the effect of each other.

where dij is the Euclidean distance between robots

i and j, r and R define the avoidance region and

sensing region, respectively. The potential functions

are designed such that if the robots are started away

from the avoidance regionΩij =
{
x : ‖xi − xj‖≤

r
}

,

they never enter this region. The sensing region, on the

other hand, given byDij =
{
x : ‖xi − xj‖≤

R
}

, is the

region where roboti can sense the presence of robot

j.

The sum of the pairwise potentials (IV.15) between

robotsi and j constitute the total avoidance potential

function

Va(x) =

N∑

i=1

N−1∑

j 6=i,j=1

1

2
Vaij
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Thus the form of the control law for robotk with the collision avoidance would be

(IV.16)τk = τk,c(x) − kf∇xi
Vf (x)− ka∇xi

Va(x)

whereτk,c(x) is the decentralized connectivity controller presented insection IV-B andkf , ka are positive gains.

E. Extension to Wheeled Mobile Robots

In the case of non-holonomic wheeled mobile robots the kinematics are modeled by the nonlinear ordinary

differential equations

(IV.17)
ẋk = vk cos (θk)

ẏk = vk sin (θk)

θ̇k = ωk

wherexk ∈ R and yk ∈ R are the Cartesian coordinates,θk ∈ [0, 2π) is the orientation of thekth robot with

respect to the world frame andvk, ωk are the linear and angular velocity inputs, respectively. We would like the

controllers developed so far to work with this system dynamics, rather than the first-order integrators (IV.1).

The idea will be to turn the robot to the desired orientation,dictated by the direction of the connectivity controller

derived for robots with dynamics (IV.1). LetX : R2N → TR2N ∼= R
2N ×R

2N be the vector field that we want our

wheeled mobile robots to follow in thex andy directions. This vector field extends to the case when the underlying

configuration space for each robot isR2 × S1 by definingX̃ : R2N × SN → R
2N × SN × R

2N × R
N such that

X̃ =
(
q, θ,Xf , Y f

)
, where(q, θ) denotes the configuration inR2N × SN , Xf denotes the fiber component of the

vector fieldX andY f denotes the fiber component of any vector filedY : SN → SN × R
N

(IV.18)θkd = arctan2

(

〈X, ∂

∂yk
〉, 〈X, ∂

∂xk
〉
)

Define the orientation erroreθk = θk − θkd. Let us also define the desired velocity vector to be

(IV.19)τkd :=

(

〈X, ∂

∂xk
〉, 〈X, ∂

∂yk
〉
)

Note that the desired orientationθkd is the angle this vector makes with the worldx-axis. Assuming that|eθk | 6= π
2 ,

we have the following result.

Proposition IV.4. All of the convergence results presented so far hold for the non-holonomic dynamics as given

in (IV.17) if the following controller is applied

(IV.20)vk = −kp cos (eθk)‖τkd‖
ωk = −Kθeθk

with gainskp,Kθ > 0.
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TABLE V.1: Parameters used in experiments

Parameter Exp 1 Exp 2 Exp 3 Exp 4
kc 1.0 1.0 1.0 1.0
kf 0.0 1.0 0.0 1.0
ka 0.1 1.0 0.1 0.1
Kθ 5.0 5.0 5.0 5.0
ᾱ 20 1 1.0 1.0
α 0 0 0 0

ρ1 [m] 0.7 0.7 0.7 0.7
ρ2 [m] 2.3 2.3 2.3 2.3
R [m] 0.7 1.0 0.7 0.7
r [m] 0.4 0.45 0.4 0.4

Proof: Let us take the time derivative of the potential functionVnh =

∫ t

0

〈X(q(τ)), q̇(τ)〉dτ +
1

2

N∑

k=1

e2θk .

Then,

(IV.21)

dVnh
dt

=

N∑

k=1

〈(

〈X, ∂

∂xk
〉, 〈X, ∂

∂yk
〉
)

, (ẋk, ẏk)

〉

+ eθk ėθk

=
N∑

k=1

〈(

〈X, ∂

∂xk
〉, 〈X, ∂

∂yk
〉
)

, (vk cos (θk), vk sin (θk))

〉

+ eθk ėθk

=
N∑

k=1

−kp cos (eθk)‖τkd‖
〈(

〈X, ∂

∂xk
〉, 〈X, ∂

∂yk
〉
)

, (cos (θk), sin (θk))

〉

︸ ︷︷ ︸

‖τkd‖ cos (eθk )

−Kθe
2
θk

=

N∑

k=1

−kp cos2 (eθk)‖τkd‖2 −Kθe
2
θk

≤ 0

with equality only if ‖τkd‖cos (eθk) = 0, for all k. But this is only the case if the states are in the desired set.

V. EXPERIMENTAL IMPLEMENTATION

The connectivity control is demonstrated using an experimental setup consisting of six iRobot Creates. The

kinematics of the Creates are given by (IV.17), where the inputs are the desired linear and angular velocitiesvk, ωk.

Each robot has a linux-based Gumstix Verdex microcontroller board, which we program in C++. The position

feedback is obtained using a VICON motion tracking system. The VICON system has sub-millimeter accuracy

with a data rate of100Hz.

The controllers presented in Section IV are implemented in experiments corresponding to different scenarios.

When we refer to controllers developed in Sections IV-B through IV-D, we mean that they have been implemented

using the procedure in Section IV-E.

In the first experiment, each robot must achieve a desired position while avoiding other robots and maintaining

connectivity. The control is of the form (IV.16). We see in figure V.1a that the steady state position errors of the

robots are small, and are a result of the dead-zone in actuation. Thus, the agents have converged to their desired
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Fig. V.1: Experiment with six Creates running the decentralized connectivity control, formation control and collision
avoidance.

positions. Robots2, 3 and6 follow a circular path due to collision avoidance, sine theyare in each others way. In

figure V.1b the initial estimateŝλ2,i for each robot are close to the true value when the robots start moving. The

estimates track the true value quite well. We see that the connectivity is allowed to decrease, and the final value of

λ2(L(x)) is less than the maximum possible value of6.

In the second experiment, five robots use the same control as used in the first experiment. However, the fourth

robot implements the decentralized connectivity control and the collision avoidance control, but not the formation

control. The remaining five robots are given desired positions with yi = −1500mm. In figure V.2a, we see that

the steady state position errors of these five robots are small. The initial connectivity of the robots is high, that is,

λ2(L) > 4. At t ≈ 9s the five robots move towards their desired locations, and away from robot4. This causes a

drop in connectivity, however Robot4 does not react untilλ2(L) < ᾱ = 1, as seen in figure V.3. The connectivity

controller causes the formation to ’drag’ Robot4 in order to maintain a high enough connectivity. The minimum

value ofλ2(L) is above0.5 and the robots remain connected throughout the experiment.

VI. CONCLUSION

In this paper we have presented a decentralized connectivity control method for a mobile network based on

maximization of the second smallest eigenvalueλ2(L) of the graph LaplacianL. In practice, this is achieved

by maximizing a local measure of connectivity given by the determinant of a matrixMk = PTLkP , which

eventually results in increasingλ2(L). We prove that the connectivity control maintains connectivity by increasing

the connectivity away from zero whenever it is below a certain threshold. In addition, the connectivity control (IV.2)

can be integrated into a previous collision-avoiding formation controller [9] without losing the latter’s convergence

properties, provided the desired formation has a value ofλ2(L) above the threshold used in our control.
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Fig. V.2: Experiment with five Creates running the decentralized connectivity control, formation control and collision
avoidance. Robot4 merely maintains connectivity and avoids collision. Maintaining connectivity results in it getting
’dragged’ by the other five robots as they move to their desired locations.
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Fig. V.3: The position of Robot4. The robot moves only whenλ2(L(x)) < 1

The decentralized version of the connectivity control law relies on the estimator given in [8]. This controller is

shown to behave similar to the centralized version in [7] , except for the requirement of preventing the robots from

moving until the error in the estimate ofλ2(L) at the initial time is small.

Using the extension in [7], we can implement the decentralized controller on a team of non-holonomic wheeled

mobile robots. Experiments which demonstrate the properties of the controllers were provided. The expermients

show the convergence of the mobile robots to desired positions in the formation while maintaining connectivity and

avoiding collisions. This behavior is stronger than what Theorem IV.1 promises and thus presents a future avenue

of research. The effectiveness of the method in [8] is also validated during the experiment.
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