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Abstract

The preservation of connectivity in mobile robot networksciitical to the success of most existing algorithms
designed to achieve various goals. The most basic methodhieve this involves each agent preserving its edges
for all time. More advanced methods preserve a (minimumhisipg tree in the network. Other methods are based
on increasing the algebraic graph connectivity, which iegiby the second smallest eigenvalug L) of the graph
Laplacian £ that represents the network. These methods result in a m@iooincrease in connectivity until the
network is completely connected. A continuous feedbackrobmethod was proposed which allows the connectivity
to decrease, that is, edges in the network may be broken.métisod requires global knowledge of the network. In
this paper we modify the controller to use only local infotima. The connectivity controller is based on maximization
of A\2(£) and artificial potential functions and can be used in cortjoncwith artificial potential based formation
controllers. The controllers are extended for impleméohabn non-holonomic wheeled mobile robots, and the
performance is demonstrated in experiment on a team of wtieabbile robots.

|I. INTRODUCTION

The study of mobile-robot networks has been an active areasefarch for over a decade. Such systems afford a
robust and inexpensive method for achieving certain cageetasks or cooperative missions. Many algorithms for
achieving tasks using mobile-robot networks require thatrtetwork maintains connectivity. When the network is
connected, any two robots can communicate and share infiormaven if through several ‘hops’. The problem
of maintaining connectivity in mobile robot networks hasighbeen receiving increasing attention. This problem
becomes further complicated when the connectivity dependshe state of the system.

A good review of different methods to control the connetyician be found in[1]. These methods may be either
centralized or decentralized. The key advantage of a dedizetd method is that it can scale to large numbers of
robots. An obvious method of maintaining connectivity ipt@serve the edges present in the network for all time
[2], [3]. Most decentralized methods to preserve connggtivtilize a variation of this idea. A notable exception
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is found in [4], where the authors propose algorithms to diedf edges may be deleted while still ensuring
a spanning subgraph exists, based on local estimates ofetinonk topology. The edges are usually preserved
using unbounded artificial potential functions, which suffrom the phenomenon of the overall potential becoming
unbounded (generating a large control effort due to theigrdwhenever a new edge is added. This is overcome
using a hysterisis protocol. A method that uses boundedaawottackle this phenomenon is given [d [5], however
edges are never broken.

The presence of a spanning subgraph in the network can beedffrom the spectral properties of the Graph
Laplacian£. Thus, another method for maintaining connectivity amoiaggroup of mobile robots is to maximize
the second smallest eigenvalue of the graph Laplacian fi6lhis method, the edge strengths are non-increasing
functions of the distance between robots. The resultinglgiia always completely connected, as seen in the
simulation results in[[6]. This method is effective for soly rendezvous problems, which was a primary goal
in [6]. It can also can be extended to some other applicafiblhg6] such as tracking a leader.

When the task to be achieved is formation control or areareges the tendency of the network to become
completely connected is undesirable. Instead, the goad isrévent disconnection during the execution of such
tasks. Hence, we would wish to allow link deletions whenahl#, without relying on higher level planning or
decision making. In a previous papér [7] we modify the apphoa [6] so that the resulting behavior is such that
global connectivity is maintained, but not increased hi# hetwork is completely connected. The result is that links
may be broken under the influence of additional control dbjes (such as exploration or coverage) without losing
global connectivity. The method is easier to implement ttt@none in [[4], however our controller requires each
agent to have access to the positions of all other nodes.

To overcome this, we present a decentralized version of ¢émmectivity controller which only requires local
network information. This decentralized controller is thain contribution of this paper. It relies on the connetyivi
estimation algorithm presented in/ [8]. A further contributin this work is the experimental validation of this
decentralized controller on a network of non-holonomic @led mobile robots (WMRs). This is also the first
reported implementation of the algorithm [n [8] using expemtal data.

Connectivity controllers that prevent edge deletions aweoge to complete networks limit the set of formations
that can be commanded. The controllers we present allowgeraet of formations that can be achieved, which
can be modified using a parameter in the control. This methatkécentralized, and hence can scale to networks

with a large number of robots.

Il. BACKGROUND

In this section we give a brief recount of concepts from grépgory used to model the connectivity of a mobile
robot network.

A weighted graph is a tuple consisting of a set of verticgs (also called nodes) and a functid#, that is,
G=(V,W)
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whereV = {1,..., N} denotes the set of nodes. The functidh: V' x V x Ry — R, is used to compute the
weights of the edges i/, such that

wi;(t) = W (i, j, t); (1.1)
If w;;(t) = 0, then there is no connection between nodand j. We obtain the edge weights using bump functions,

commonly used as gluing objects of differential geometry:

1 if x<py

P(z) = o255 if pp<z<p
oxp (= o) Toxp (575 ==
0 if po <z

One of the advantages of bump functions is that they are smulgjects and can thus be differentiated as many
times as required. If we take the distantég between two robots as the domain ¥fz), we obtain a smooth
weightingw;; = ¢ (d;;) from full connectivity to no connectivity for any two robotas seen in Figure1ll1. The

edge weights give rise to the graph Laplacia) € RY*¥ defined as

—wij (t) If 7 #]

s win(t) i i =

Lij(t) =

The Laplacian gives us a measure of the connectivity of tiaply&; since the number of connected components
in the graph is equal to the number of zero eigenvalue£@¥). Thus, for the graph to be connected, only
one eigenvalue ofZ(G) will be zero. The second smallest eigenvalugL(G)) thus becomes an indicator of
connectivity in the graph.
The LaplacianZ(G) can be converted to a matrix(G) € RYN N1 whose eigenvalues are the largast- 1
eigenvalues ofZ(G). The matrix M (G) is given by
M(G) =PTL(G)P (I.2)

whereP € RV*N-1 gatisfiesPT1 = 0 and PTP = Ix_;. Thus, the determinant of1(G) vanishes if and only
if A\2(L)(G) vanishes.
For eachk € V we can define the neighbor s&f, as
N ={j € V|wj # 0} (11.3)

and its closureV; given by

Ni =k UN; (11.4)

Note that\), C V has orderN; + 1, where N}, is the number of neighbors @f in G. Each member ol can
be assigned a position i, = {1,2,..., N, + 1}. This is achieved through the mag : V — V},. We can now
define the subgrapty, = (Vi, W), which has Laplacia, = £(G}) and reduced Laplaciatn, = M(Gy).

For the rest of the paper, refers to the Laplacian of the gragh, and £ refers to that of the grapty; for

eachk with similar convention applying tou.
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I1l. M OTIVATION

Consider the scenario where we would like a team of robotsatyp annected with each other while performing
some other task. This task might be, for example, arrandirgselves in a formation or exploration, etc. These
two requirements can be mathematically restated as bogitknsecond smallest eigenvalue of the Laplacian away
from zero while each robot tracks either (possibly time imgy absolute or relative positions.

One way to attack this problem is to come up with a connectivytroller based on maximization ok (L)
and add another controller that achieves the tracking aggebe task. The downfall of this approach is that the
connectivity may conflict with the ability of the tracking miwoller to achieve the desired goal, or restrict the set

of robot positions that can be tracked.

Example. ConsiderN = 5 first-order robots, whose

— w9
05 L)

dynamics are represented by the simple integrator, with

a maximum detection range @b = 0.70m. Assume

that two robots can detect each other perfectly if they %5

are a distance ofp; = 0.20m. or smaller away. -1
We model this connectivity pattern with the weight -15; 3 o o5 o .
function defined in[(IL1).

Suppose a second smallest eigenvalue-maximizing Fig. I11.1: Bump function

control law such as the one given inl [1] is applied on each efrbbots; that is, the control law for the"
robot will be the gradient of the potential function
#(x) =logdet (PTL(x)P)~" :=logdet (M(x))!

wherex;, denotes the position vector,(, ) of robotk. The controller for thek*" robot reads

T = —8—1%(?() =tr (M_l%(x))

We simulate this control law with the first robot commandeddmain at the position:; = (0.5,0.5). This is
equivalent to the robot tracking any constant set point. blakaviors of the remaining robots are illustrated in
Figure[TV. The bold green curve is the circle of radiysaround the location of the first robot. We immediately
notice that all of the robots are forced into this circle hessaof the second smallest eigenvalue maximizing control
law. This is because the connection strengths are maximvbeth each pair of robots is separated by no more than
P1-

This means that formations to be tracked should lie comlglatside this circle. This could be a serious limitation,
for example in tasks related to coverage. Thus, we see thakectivity control based on second smallest eigenvalue

maximization alone limits the success of achieving addéldehaviors.

IV. CONTROL DESIGN
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A connectivity preserving controller with the desired 0.9

0.8}
properties mentioned in Sectidnllll was presented in 0.7 /}D
) b 5

[7]. The method can be used with formation and 06 |
D———78

collision avoidance controllers satisfactorily. A chief = 0.5}
drawback of the method was that it was centralized, due ~ 04|

. 0.3+
to the presence of the termt —1 in each agent’s control 0ol / lj \b

law. The main result of this paper is a decentralized 01l

version of that connectivity controller, presented in 0 5
Section[1V-B. We also analyse the performance of x[m]
the decentralized connectivity controller when used in
) ) ) ) o ) . Fig. IV.1; ) maximizing controller
conjunction with formation or collision-avoidance contlaws in Section anf 1V-D respectively.

The controllers in the following sections assume that eanahas the following dynamics
X, =T (IV.1)
wherex; € R? is the position of thé*” mobile robot given by; = (z;,v;). In Sectior IV=E In the next subsection,

we recount the centralized control law frof [7] and its pmbies.

A. Centralized connectivity control law

The connectivity control law in [] was shown to maintain thenoectivity of a network, however it restricts
the possible equilibrium configurations of the team of mebibbots to those where the network is completely
connected. The control was based on the gradient of a patéutiction whose argument iget M, where M is

the reduced Laplacian of the graph. In [7], the followingetal function was proposed:
D(x) := det (M(x))

o= (o 225

This function and its gradient blow up whenever the deteamirapproaches the lower bouadand are zero
whenever the determinant is greater than the upper baurithus, using the above potential function results in a
control law which guarantees thdtt M > «, which implies that the graph is always connected. Moreasiace
det M is bounded from above, this ensures thaf£)(¢) has a non-zero lower bound which we can select. The
performance of consensus based algorithms improves witease im. (L), hence this feature would be beneficial
in such a scenario.

Another feature of the control law is that the connectivibytrol law is inactive ifdet M > &. Thus, by choosing
a anda appropriately, we can make the control law unresponsivénémges in connectivity until the connectivity
becomes lower than desired. This lowers the interferendheotonnectivity controller with the primary tasks that
the team of agents is supposed to achieve, yet guarantdasotiteectivity will be maintained.

Upon taking partial derivatives df,. with respect to the coordinates andy, of the k" robot, we find
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The following result was shown in[7].
Proposition 1V.1. Under the control law
tr (M—12M
Tk = =V, Ve(x) = —B(x) ( 12;”\2) (IV.2)
tr (M7 m)

the first-order robots with dynamid®V.I) converges to the sef = {x € R*" : det (M(x)) > &} and the graph

G whose nodes the robots represent stays connected for &l tim

B. Decentralized Connectivity Control law

The connectivity controller (IVI2) can be viewed as the cohgiven in [I] multiplied by a gain which is
dependent on the connectivity of the network. The contraflecentralized due to the need to compute the matrix

M~1(x) and the determinant of. The termngMk depend on the term which vanish for robots that are

X
not neighbors. ThungMk is a local computation for each robot.

It was shown that the velocity vectag in (V.2) was a positive combination of the vectors from thatot to each
of its neighbors. The direction af, was determined by the gradient @&t M, the calculation of which requires
each agent to possess global information. Each robot camimenanded to move in the direction determined by
the gradient ofdet M}, instead, which requires each neighbor to have informatimoutits neighbors only. Thus,

the decentralized connectivity controller becomes

tr (M,:laa/\;")
oo = —koBo(x : IV.3
k ﬂ2( ) o (./\/llzl 88/;/:“) ( a)
2 L) — ~2
Ba(x) = min {% o} (IV.3b)

wherek, > 0 and f2(x) < 0 ¥x € R2N. Note that if \,(£) is available at each node, then the control law
requires information about its neighbors. This means thatcontrol law is decentralized. In order to understand
the behaviour of the agents under the action[of (IV.3a), wawvsthe following property,
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Proposition 1V.2. The instantaneous direction of motion of each robat V' under any control of the form

Oz

tr (M,;l BM’“)

Oyx

tr (M,;l 6Mk)

T = —

is a positive combination of the vectofs; — x;), wherej € A, and 8 < 0.

(IV.4)

Proof: Each agent has a subgra@h = (V,, W) as defined in Sectidnlll. We define the the symmetric matrix

A? e RVt D)X (Nk+1) gg

g iy wiy; ifm=iandn=j
A;cj (n’ m) = A;cj (m’ n) =
0 otherwise

wherew;; is defined as in[(I[11). This corresponds to the adjacencyimat a subgraph of=;, consisting of the

same( N}, +1) robots, but only robots and; are connected by weight,;. We can construct a matrik’ from A%/

using the standard process of obtaining a Laplacian matix fan adjacency matrix. This matrix has the property

that

sz = 2w (v¥)T

wherev” € RIW«+1) with its I*® component given by

—1/V2 ifl=i
w=S1v2 =g
0 otherwise

It should be noted that we recover the original graph Lapladf,, by the expression
N N B
Lp=> > "L
i=1 j>i

The partial derivatives oij can be expressed as

(“)sz OWi ;5. +s
-9 1] i (0T
axl (91'1 v (v )
aLZJ _ 28wij Vi (’Uij)T
oyl oyl

(IV.5)

(IV.6)

(IV.7)

We take the inversez;“/l;1 > 0 of the matrix M;, > 0 obtained fromZ; by using [I[.2) and express it in terms

of the eigenvalue decomposition 6f;:
Ni+1

1

-1 T

M, = E S Uplip
p=2 p

whereLv, = A, (Li)vp, up = PTu, for eachp € {1,2,3,..., N, + 1}. We calculate, for somég
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.. Ni+1
oL ! P
tr (MklpTa—le> = 1r ( E )\_upuz;z 6“;; PTUU (UU)TP>
'y

p=2
ow.. (N g g
=2 8:107 tr < Z /\—upungv” (PTv”)T> (1V.8)
p=2 P
6’[1}1']' et 1

and similarly,

where~;; > 0. Now, take the vector

1pT LY Ow; ;
Tz] _ tr (Mk P oz P) o 2’713 amlj
L —1pT LY o k Ow;j
r (M L LPTL P) .
We have the relations
8wij - 811)1'3' 8dlj - 8wij Xr; — xj

8:@» B 6dij (91'1 B adu dij
Owij  Owi; Odi; — dwij yi — y;

thus
OQwi; T —
611’ _ 6 X J ?
8’11)»;]' Ty
dy: Yi — Yi

whered;; > 0, since% < 0. To compute the control fai" robot, we use the fact that
iJ

Ly, oLy oLy
3171 Z Z Z 8:cl

i=1 j>1i

sinceLy = LY’ = 0 whenever neithet # i, nor [ # j. Therefore, the control vectdr (IV.4) is computed

as
tr (M P9 p) Nt [ (M PP P) Nit1 S
T = — = —B(x) . = —B(x) 2YkjOkj
1 pT Lk 1 pT oL IR
i) T 2 i) T 2

which is clearly a positive combination of the displacemeettors from robotk to the robots; € N} (note,
B(x) <0).

Proposition 1V.3. Consider the control law for thé'™" robot given by(@IV.3). If the robots are started such that
X2(L)(to) > 0, then X\z(L)(¢) > 0 Vt > to, and the configuration of the agents converges to thefset
{x e R¥ : \(L) > &}
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Proof: Agentk € V has a local graplts;, = (Vi, W). Let the graphG), be such thatv,; = ¢ > 0 and as
wi; — 0 the graph becomes disconnected. In order to prevent disction, we must have thai, — c(x; — xx)
asw;; — 0 for somec > 0. We assume that the opposite node of this edge also behawesimilar manner.
When this occursdy; must decrease whemny; is sufficiently small, increasing;, away from zero.
Note that agent& andj have indices:’ = m (k) andj’ = () respectively inV;, (See sectiofill). The control
law for agentk was shown to be a positive combination of the relative pasitrectors to its neighbors. From

(I\Z8) the weights are given by
Np+1

3 1 3%
’YII:J = Z )\—p(UZ‘PT'Uk J )2 (|V.9)

p=2

If wi; — 0thenAiq(Ly) — 0. Sinceds < A3 < ...An,+1. the term due tg = 2 dominates, and we can rewrite

above as 1
!~ —(ud PTo*7")? (IV.10)
A2
We have that
Ni+1 Ni+1
L= 3 Y 2wyt (@)
=1 j'>i

so that

N N
Ekvz = )\Q(Ek)’UQ = Z Z 2wi/j/’0i,jl(’0i,j,)T'02

i'=1 4>’
As \y(L) — 0, we get
N N N N
D D 2wy () ug =3 D 2wy (077) ) 0 (V1)
il =14 >i/ i=14'>

The weightsw;;; = w;; are non-negative. Due to the form ¢f (IV/10), we are concerwéth the behavior of
¥’ § e {1,2,3, ..., Ny + 1} {k’}. By definition, thek’ " component of each*'" is —1/+/2. Thus, the only
way (IVIT) can hold for the first component is that eithgs;; — 0 or (v*7)Tvy — 0 = ud PTv*'7" — 0. Thus,

we can conclude that

Ni+1 Qw1
T pT, k' 5'\2 )
Th,e = —B(X) Z /\—Q(ug Pyt awzfj, (IV.12)
Jlwgr ;7 —0 2 Yk

If only one edge is close to vanishing, then

Bwk/,-/
1 ! 2
Tk,e = —B(X))\—Q(UzTPTUk 7y 26?{1221 (IV.13)
Yk

which is clearly of the forme(x; —x;) (note that we revert to addressing nodes by their positidi)irThus, even
thoughwy; can become very small, it cannot decrease till zero, sinedvilo agents at opposite ends of such an
edge will eventually move towards each other. This showstti& graphG remains connected for all time when
each agent moves under the action[of (TV.3a).

By Propositiod V.2, each agent moves towards the intericthe convex hull CHV;,) determined by its neighbor

set.
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Moreover, the agents defining the convex hull @®H of the whole graph will move into the convex hull so
that the perimeter will decrease by a simple applicatiorhefttiangle inequality on Euclidean space. Stacking the
lengths{d; }|" of the edges defining the convex hull in a vectothis means thatv||, is monotonously decreasing
with a lower bound). By Bolzano-Weierstrass Theorem, each entry of the vacisrapproaching zero. Since the
perimeter is shrinking, any agent inside the convex hull tiasve smaller distances to their neighbors than the
perimeter. As a result, there existsTa> 0 such that whert > T, d;;(T) < € for any e > 0. Since\z(£) is a
monotonically decreasing function of each distadgg Ao will increase until5,(x) = 0. [ |

One of the nice features of the controller (TV.3a) is thatcitsnputation requires only local knowledgeX$ (L)
is known. The authors in_[8] have introduced an estimatortties critical piece of information with tunable gains
that govern its rate of convergence. Once this estimatooisbined with the control law (IV.3a), we achieve a
decentralized connectivity controller.

The only restriction that the decentralization imposeshia the motions of the robots be slower than the rate
of convergence of the estimator. Conversely, the estingdors should be selected judiciously so that a time-scale

separation between the convergence of the estimator statethe robot states is established.

C. Decentralized Connectivity Preserving Formation Coliér
In this section, we develop on the connectivity controlleesented in Section IVAB by adding a formation

controller on top of it. We define a quadratic potential fumtfor each robok, Vi (xy), with a minimum located

at the desired positior;;. The sum of the contributions of each robot gives rise to tlmétion potential function,
Vi(x).

1

Vip = §<Xk — Xpd, Xk — Xkd)
N

V=Y Vi

where the bracket§, -) represents the usual Euclidean inner product of vectonsc&avenience, we define
Ne ={j€{l,.N}: j#kandd;, < p2}

which is the index set of neighbors of robdatWe now show an important property of the connectivity coriaw.

In the rest of the subsection, we shall assume that the ddawcdfor each robot is given by
Tk = Th,e(X) — kfVx, V(%) (IV.14)

where 7, .(x) is the decentralized connectivity controller presentedéotion[1V-B, andk.,k; > 0 are control

gains.

Theorem 1V.1. Suppose the control effort for each robbtis given by([V.14). Let V; denote the vertex set for
the desired formation. Then the robots converge to alsetontained in the convex hulH(V;) of the desired

formation.
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Proof: Under the action of the control law _(TV114), the agents rethehset of configurations € R?Y where
for all &, both of the following holds

koo B (X)tr (Mkl OM

awk
LOM,,
Yk

Since8(x) < 0, this is equivalent to the statement that the angle betweervéctors

T
[tr (M;l%) tr (M;l%)} and [zx — Zra Yk — yra]” is w rad. Due to Propositiof IM2, the former
always points intadCH(V'), so this is only possible if for each, x;, € CH(V;) (see Figuré 1V.R).

)—i—kf(:ck—xkd) =0

keBa(x)tr (./\/l,; ) + ks (yx —yra) =0

Remarkl. Theoren{IV.1 provides a way to move the robots into the comgkdefined by the desired formation
while maintaining connectivity. Even though the claims loé theorem are weaker, in any simulation, the robots

converge to the desired formatioxy, provided it is selected such that tHet (M(x4)) > @.

Remark2. The control due to connectivity becomes unboundedkag — 0. Finite errors in formation yield finite

control effort, hence even if the desired formation is dmsuected, the network will never become disconnected.

D. Decentralized Connectivity Preserving Formation Cohiér with Collision Avoidance

We can add yet another potential functidf,(z) , designed to introduce collision avoidance behavior, tokwo
in collaboration with the existing ones. By this way, we caragntee that the robots do not collide while they

move towards the desired formation. We use the avoidander{pal) functions as defined inl[9] by

Vaij = [ min{ 0,22 (IV.15)
dfj —7r2

where d;; is the Euclidean distance between robots
¢ and 7, r and R define the avoidance region and
sensing region, respectively. The potential functions
are designed such that if the robots are started away
from the avoidance regiofY;; = {z : ||z; — x| .7},
they never enter this region. The sensing region, on the
other hand, given bP;; = {z : ||z; — ;| _ R}, is the
region where robot can sense the presence of robot
j.

The sum of the pairwise potentials_(TVI15) between

robots: andj constitute the total avoidance potential

function Fig. IV.2: If an agentx; is outside the convex hull of
NoON-1oy the desired formation (depicted by dotted red lines), the
Vo(z) = Z §Vm-j formation controller and the connectivity controller cahn
i=1 j#i,j=1 conflict so much to cancel the effect of each other.
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Thus the form of the control law for robdat with the collision avoidance would be
T — Tk,c(x) — k.fvxin (X) — kavxiVa(X) (|V.16)

whereT;, .(x) is the decentralized connectivity controller presenteddntion IV-B andky, k, are positive gains.

E. Extension to Wheeled Mobile Robots

In the case of non-holonomic wheeled mobile robots the katers are modeled by the nonlinear ordinary
differential equations
Ty = vk cos (0y)
U = vy sin (0x) (IV.17)
0, = wy
wherex;, € R andy, € R are the Cartesian coordinatek, € [0,27) is the orientation of the:*" robot with
respect to the world frame ang, w; are the linear and angular velocity inputs, respectivelg. Wéuld like the
controllers developed so far to work with this system dyr@niather than the first-order integratdrs (JV.1).

The idea will be to turn the robot to the desired orientatdiotated by the direction of the connectivity controller
derived for robots with dynamicE (IV.1). Let : R?V — TR2N =~ R2N x R2N pe the vector field that we want our
wheeled mobile robots to follow in the andy directions. This vector field extends to the case when theulyidg
configuration space for each robotié x S! by defining X : R2Y x SV — R2N x §V x R2NV x RV such that
X = (q,0,X7,Y7), where(q, 0) denotes the configuration > x SV, X/ denotes the fiber component of the

vector field X andY/ denotes the fiber component of any vector filéd SV — SV x RY

0 0
de = arctans (<X, a—yk>, <)(7 8—%>) (|V18)

Define the orientation erraty, = 05 — 6,q. Let us also define the desired velocity vector to be

0 0
Tkd = <<X’3—M>’<X’Tyk>) (IV.19)

Note that the desired orientatid, is the angle this vector makes with the woulehxis. Assuming thafiey, | # 7,

we have the following result.

Proposition 1VV.4. All of the convergence results presented so far hold for the-lmlonomic dynamics as given

in (M17) if the following controller is applied

vk = —kp cos (eq,.) || Thdll (IV.20)
W = —nggk

with gainsk,, Ky > 0.
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TABLE V.1: Parameters used in experiments

Parameter Expl Exp2 Exp3 Exp4

ke 1.0 1.0 1.0 1.0
ky 0.0 1.0 0.0 1.0
kq 0.1 1.0 0.1 0.1
Ky 5.0 5.0 5.0 5.0
a 20 1 1.0 1.0
Q 0 0 0 0

pi[m] 07 07 07 07
pp[m] 23 23 23 23
R [m] 07 10 07 07
r [m] 04 045 04 04

. . . _ t 1
Proof: Let us take the time derivative of the potential functibly, = / (X (q(7)),q(T))dr + B Zezk.
0 k=1

Then,

Vo _ - 0 o\ .
dt _;<(<X’8—M>7<X7Tyk>)a(xkayk)>+€0k€9k

;
= Z <X,i>,<X,i) , (v cos (0), vg sin (0)) ) + eq, o,
Oy, Oy,
k=1 :
N (IV.21)
= Z —kp cos (eq, )| Trall <(<X, (“)ixk% (X, (“)iyk>> , (cos (O), sin (Hk))> —nggk
k=1

ITkall cos (eq,,)
N
=" —ky cos® (eq, )| hal® — Koel, <0

with equality only if || x4 cos (eg, ) = 0, for all k. But this is only the case if the states are in the desired Bet.

V. EXPERIMENTAL IMPLEMENTATION

The connectivity control is demonstrated using an expertalesetup consisting of six iRobot Creates. The
kinematics of the Creates are given by (IV.17), where thetiepre the desired linear and angular velocitigsoy,.
Each robot has a linux-based Gumstix Verdex microcontrditeard, which we program in C++. The position
feedback is obtained using a VICON motion tracking systeime VICON system has sub-millimeter accuracy
with a data rate ol 00Hz.

The controllers presented in Sectibnl IV are implementedxipeements corresponding to different scenarios.
When we refer to controllers developed in Sections 1V-B tighTV-D, we mean that they have been implemented
using the procedure in Sectién 1V-E.

In the first experiment, each robot must achieve a desiretiigqosvhile avoiding other robots and maintaining
connectivity. The control is of the forni_(IV.16). We see inuig[\V.1a that the steady state position errors of the

robots are small, and are a result of the dead-zone in agtuathus, the agents have converged to their desired
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(a) Implicit plot of the six robots (b) Estimates of\2(£(x)) and its true value

Fig. V.1: Experiment with six Creates running the deceiteal connectivity control, formation control and colligio
avoidance.

positions. Robotg, 3 and6 follow a circular path due to collision avoidance, sine tlag in each others way. In
figure[\V.IB the initial estimateéu for each robot are close to the true value when the robots siaving. The
estimates track the true value quite well. We see that theexdivity is allowed to decrease, and the final value of
A2(L(x)) is less than the maximum possible valuetof

In the second experiment, five robots use the same controdexs in the first experiment. However, the fourth
robot implements the decentralized connectivity contrad ¢he collision avoidance control, but not the formation
control. The remaining five robots are given desired pasitiwith y; = —1500mm. In figure[V.2h, we see that
the steady state position errors of these five robots arel.siied initial connectivity of the robots is high, that is,
A2(L) > 4. At t = 9s the five robots move towards their desired locations, aralydwom robot4. This causes a
drop in connectivity, however Robdtdoes not react untih2(£) < @ = 1, as seen in figurie M 3. The connectivity
controller causes the formation to ‘drag’ Robbin order to maintain a high enough connectivity. The minimum

value of A2 (L) is above0.5 and the robots remain connected throughout the experiment.

VI. CONCLUSION

In this paper we have presented a decentralized conngctigititrol method for a mobile network based on
maximization of the second smallest eigenvalu€L) of the graph LaplaciarC. In practice, this is achieved
by maximizing a local measure of connectivity given by thdéedminant of a matrixM;, = PTLFP, which
eventually results in increasing(£). We prove that the connectivity control maintains conntgtiby increasing
the connectivity away from zero whenever it is below a carthreshold. In addition, the connectivity contriol (IV.2)
can be integrated into a previous collision-avoiding fotioracontroller [9] without losing the latter's convergenc

properties, provided the desired formation has a valug,¢f) above the threshold used in our control.
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Fig. V.2: Experiment with five Creates running the deceizeal connectivity control, formation control and colligio
avoidance. Robot merely maintains connectivity and avoids collision. Maintng connectivity results in it getting
'dragged’ by the other five robots as they move to their ddsioeations.

1500

1000 4
—_—, [mm]

—, [mm]

-500 q

-1000 [ q

-1500
0

10 20 30 40 50 60 70
t [sec]

Fig. V.3: The position of Robot. The robot moves only wheRl,(£(x)) < 1

The decentralized version of the connectivity control lalies on the estimator given ihl[8]. This controller is
shown to behave similar to the centralized versiori_in [7]cegt for the requirement of preventing the robots from
moving until the error in the estimate o&(£) at the initial time is small.

Using the extension i [7], we can implement the decenesdlizontroller on a team of non-holonomic wheeled
mobile robots. Experiments which demonstrate the progeii the controllers were provided. The expermients
show the convergence of the mobile robots to desired pasiiio the formation while maintaining connectivity and
avoiding collisions. This behavior is stronger than whaeditenTV.1 promises and thus presents a future avenue

of research. The effectiveness of the method_In [8] is aldimlated during the experiment.
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