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Abstract— This paper presents an automated algorithm to
analyze the stability of piecewise affine (PWA) dynamical
systems due to their broad applications. We parametrize the
Lyapunov function as a PWA function, with polytopic regions
defined by the PWA dynamics. Using this parametrization,
Stability conditions can be expressed as linear constraints re-
stricted to polytopes so that the search for a Lyapunov function
involves solving a linear program. However, a valid Lyapunov
function might not be found given these polytopic regions. A
natural response is to increase the size of the parametrization
of the Lyapunov function by dividing regions and solving the
new linear program. This paper proposes two new methods
to divide each polytope into smaller ones. The first approach
divides a polytope based on the sign of the derivative of the
candidate Lyapunov function, while the second divides it based
on the change in the vector field of the PWA dynamical system.
In addition, we propose using Delaunay triangulation to achieve
automated division of regions and preserve the continuity
of the PWA Lyapunov function. Examples involving learned
models and explicit MPC controllers demonstrate that the
proposed method of dividing regions leads to valid Lyapunov
functions with fewer regions than existing methods, reducing
the computational time taken for stability analysis.

I. INTRODUCTION

Piecewise affine (PWA) dynamical systems have gained
popularity in robotics [1] and the automotive industry [2]
due to their wide applications. PWA concepts are utilized in
advanced controllers, including gain-scheduled flight control
systems [3] and Takagi-Sugeno fuzzy systems [4]. Affine
systems with control saturation can be expressed using PWA
dynamics, enabling effective synthesis of controllers through
explicit model predictive control (MPC) [5]. However, ob-
taining a Lyapunov function for stability guarantees with
explicit MPC can be challenging. Alternatively, there is
an increasing trend in using supervised machine learning
methods for learning dynamics and controllers [6], [7].
Neural networks (NN) with the rectified linear unit (ReLU)
activation functions have been employed to convert closed-
loop dynamics into PWA dynamics [8]. The stability of
these methods, however, is not guaranteed, emphasizing the
need to develop an automated approach to finding Lyapunov
functions for learned models, including ReLU networks and
explicit MPC.

Sampling-based methods [9]–[11] are prevalent for learn-
ing Lyapunov functions. The Lyapunov function is learned
from finite samples, and this function must meet the stability
conditions at all states, therefore verification is a critical
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component of the analysis. Verification can be performed
in an inexact manner using relaxed convex problems [12]
or in an exact manner using Satisfiability Modulo theo-
ries (SMT) and Mixed-Integer Programs (MIP) [9], [13]–
[15]. The exact verifier certifies the Lyapunov function or
generates counterexamples violating the stability conditions.
Counterexamples can be incorporated into training samples
for iterative learning. However, the computational complexity
of the verifier remains a challenge.

An alternative to the learning approach is to parameterize
the Lyapunov function and solve it as an optimization
problem [16]–[18]. The Sum of Squares (SOS) method
is employed to find the Lyapunov function for nonlinear
dynamics [16], but it can be computationally complex. A
piecewise quadratic (PWQ) parameterization of the candidate
Lyapunov function is proposed in [17], [18]. However, these
methods must deal with the conservatism of the S-procedure,
and the results are limited to two-dimensional examples.

Instead of relying on the PWQ Lyapunov function, [19]
utilized the PWA function to parameterize the Lyapunov
function. An algorithm has been developed for finding a
PWA Lyapunov function using partition refinement in [20].
A method for calculating the Lyapunov function for conewise
PWA dynamics was proposed by [21]. The dynamics and
controller of PWA have been parameterized as a ReLU in
[8]. The Lyapunov function and the controller are found
by parameterizing Lyapunov conditions as quantifier-free
constraints for a bilinear quadratic optimization problem [8].
Although the Lyapunov condition for the PWA Lyapunov
function can be expressed without conservatism, the PWQ
Lyapunov function receives more attention in the literature.

The refinement process in the context of Lyapunov stabil-
ity analysis presents several challenges, such as preserving
the continuity of the candidate Lyapunov function and divid-
ing complex polytopes effectively. We propose the following
contributions to address the challenges in the refinement and
continuity of the PWA Lyapunov function.

a) Contributions: The paper introduces two novel
methods for dividing cells during the search for valid Lya-
punov functions. The first method utilizes the derivative
of the Lyapunov function as a criterion to divide a cell,
while the second method analyzes the vector field of the
PWA dynamics to do so. By examining the behavior of the
Lyapunov function derivative or vector field, these methods
determine suitable locations for proposing new vertices that
will define new cells, since we use the vertex representation
for polytopes. Furthermore, the paper proposes using De-
launay triangulation to automate the refinement process for
cells. The proposed refinement methods offer the advantage



of finding valid Lyapunov functions with fewer refinements
compared to existing techniques. The efficacy of the search
procedure is demonstrated through non-trivial examples,
where valid Lyapunov functions are successfully identified
within reasonable computation times. Additionally, the paper
evaluates the effectiveness of the proposed approach in
determining the region of attraction (ROA) by comparing
the results with other methods. The comparison showcases
the capability of the proposed approach to identify the
ROA using the PWA Lyapunov functions. The contributions
of this paper improve the refinement process addressing
challenges in the parameterization of the Lyapunov function.

II. PRELIMINARIES

In this paper, we examine the stability analysis problem for
dynamical systems described by piecewise affine functions
as follows:

ẋ = PWA(x). (1)

where x ∈ Rn is the state variable, and term PWA denotes
a piecewise affine function. We focus on continuous PWA
functions with polytopic cells. The rest of this section
formally describes PWA functions.

Notation: An index for each element in the set S
constitutes the set I(S). The convex hull, the interior, the
boundary, and the closure of the set S are denoted by
conv (S), Int (S), ∂S, and S respectively. The transpose of
matrix A is AT . ⟨·, ·⟩ denotes the inner product, ∠(·, ·) is
the angle between two vectors, and | · |2 is the standard L2

norm. It should be noted that the symbol ⪰ is the element-
wise version of ≥.

A. Partitions And Refinements

In this paper, we define a partition P as a collection of
subsets {Xi}i∈I(P), where each Xi is a closed subset of Rn

and int(Xi) ∩ int(Xj) = ∅, ∀i, j ∈ I(P) and i ̸= j. The
domain of the partition, Dom(P), is the union of all the cells
in P .

Given two partitions P = {Yi}i∈I and R = {Zj}j∈J of a
set S = Dom(P) = Dom (R), we say that R is a refinement
of P if Zj ∩Yi ̸= ∅ implies that Zj ⊆ Yi. We denote the set
of all refinements of P as Ref(P) [8].

B. Piecewise Affine Functions

We explicitly parameterize a piecewise affine function
PWA(x) by a partition P = {Xi}i∈I(P) and a collection
of matrices AP = {Ai}i∈I(P) and vectors aP = {ai}i∈I(P)

such that

PWA(x) = Aix+ ai, if x ∈ Xi, where
Xi = {x ∈ Rn : Eix+ ei ⪰ 0}. (2)

Note that a generic PWA function may not be continuous
unless we appropriately constrain the parameters Ai, ai, Ei,
and ei [19], [22]. It is assumed that any PWA function in
this paper with this explicit form meets such constraints and
is always continuous. Additionally, we consider the origin to
be the equilibrium, thus denoting index sets I0 and I1 for

Algorithm 1 Verifying Stability using Vertices
Require: PWA(x), Vertices

Solve Optimization Problem (12) with the initail PWA
dynamics.
while ΣN

i=1τi ̸= 0 or Computational time ≤ 3600(sec) do
for i ∈ Is do

1- Finding new vertices using presented methods(see
IV-D.1).
2- Add the new vertex to B (24).

end for
for i ∈ Isplit do

1- Finding set of vertices Vnew(i) for cell Xi.
2- Forming sub-cells DT (F0(Xi) ∪ Vnew(i)) (see
(IV-D.2)).

end for
Solve Optimization Problem (12) with the refined PWA
dynamics.

end while
return V (x) = pTi x+ qi ∀i ∈ I(P).

cells containing and not containing the origin respectively.
Also, we assume that all the cells are bounded. Therefore,
we can use the vertex representation for all cells. A vertex is
a facet of dimension 0 for a cell [23]. Each cell of a partition
can be represented using its vertices:

Xi = conv (F0(Xi)), (3)

where F0(Xi) represents the set of vertices of the cell Xi.

III. MAIN ALGORITHM

This section presents an overview of the stability analysis
algorithm, which aims to construct an optimization problem
to discover the PWA Lyapunov function. The algorithm
consists of two main components: the formulation of an
optimization problem to find a valid Lyapunov function
and a refinement process to enhance the flexibility of the
PWA Lyapunov function. A detailed description of these
components is provided in the subsequent section. For better
comprehension, a pseudo-code representation of the algo-
rithm is presented in Algorithm 1. The termination condition
of the algorithm is determined by two criteria: either a valid
Lyapunov function is found, or the optimization process
exceeds the predefined timeout threshold of 3600 seconds. It
should be emphasized that in the case of unstable systems,
the algorithm needs to be manually terminated.

IV. OPTIMIZATION BASED SEARCH FOR LYAPUNOV
FUNCTION

In this section, first, we describe the general idea of the
stability analysis and the Lyapunov function. In the next step,
we parameterize the Lyapunov function as a PWA function.
Then we present the stability condition for PWA dynamics
with a PWA candidate Lyapunov function. In IV-C, We
convert the stability analysis problem to a linear optimization
problem. We construct the optimization problem to be always



feasible; however, only a specific solution is accepted as
a valid Lyapunov function. Furthermore, we proposed new
refinement approaches IV-D to increase the capacity of the
candidate Lyapunov functions, facilitating the search for
valid Lyapunov functions.

A. Lyapunov function

The Lyapunov stability theory is well known for its appli-
cation to the analysis of nonlinear dynamical systems [24].
Assume that V : D → R is a continuously differentiable
function, and x = 0 is the equilibrium point of equation (1).
In this case, equation (1) will be asymptotically stable if and
only if V is strictly positive definite and strictly decreasing
∀x ∈ D − {0}.

B. PWA Lyapunov function

In the paper, we investigate the use of PWA Lyapunov
functions on a bounded partition that aligns with the PWA
dynamics (2) structure. This assumption can be used to
further reduce computation costs by taking advantage of the
convexity property. Specifically, if all cells in the partition
are bounded, an affine function is considered positive on a
particular cell Xi if and only if it is positive on all vertices of
Xi [19]. This observation allows for simplified analysis and
computation of the Lyapunov function. Consider a candidate
PWA Lyapunov function such that:

V (x) =

{
pTi x+ qi for i ∈ I1
pTi x for i ∈ I0.

(4)

In the equation above, the function V (x) is continuous and
differentiable in the interior of the cell. It is possible to
calculate the derivative of the candidate Lyapunov function,
along the dynamic, ẋ = f(x), in the interior of cell X−{0}:

LfV = ⟨∇V, f(x)⟩, (5)

where ∇V is the gradient of V (x), and L is the lie derivative.
When V (x) is differentiable at x, let the local affine

Lyapunov function be V (x) = pTx+q, and the dynamics be
ẋ = Ax+ a. The derivative of the Lyapunov function along
the trajectories can be calculated as follows:

V̇ = pT (Ax+ a). (6)

Lemma 4.1: Let {Xi}i∈I be a partition of a bounded
subset of Rn into convex polytopes with vertices vk.

1) The Lyapunov function (4) will be positive definite iff:

pTi vk + qi > 0 for i ∈ I1, vk ∈ F0(Xi)

pTi vk > 0 for i ∈ I0, vk ∈ F0(Xi). (7)

2) V̇ , (6), will be a negative definite function iff:

pTi (Aivk + ai) < 0 for i ∈ I(P), vk ∈ F0(Xi). (8)
Proof: These results can be derived directly as a result

of parameterizing the candidate Lyapunov function in the
affine form.

The last step is to force the Lyapunov function to be
continuous. To achieve this goal, the candidate Lyapunov
function (4) must meet the following requirements.

Vi(vk) = Vj(vk), i ̸= j ∈ I(P), vk ∈ F0(Xi) ∩ F0(Xj).
(9)

Theorem 4.2: A Lyapunov function (4) in the partition P
is considered valid if there exist pi and qi satisfy (7)-(9) for
every vk ̸= 0.

Proof: In this formulation (7) guarantees that the
Lyapunov function will be positive definite. Additionally, (9)
guarantees continuity. In this case, the Lyapunov function is
Liptchitz continuous, but it is not differentiable at the bound-
ary. As a result of the Lipchitz continuity of the Lyapunov
function, we are able to use the Clarke generalized gradient
and Clarke generalized derivative [25], [26]. According to
Clarke generalized gradient ∂V (x) for the PWA Lyapunov
function (4) can be described as:

∂V (x) = conv({pi : i ∈ I(p), x ∈ Xi}) (10)

The Clarke generalized derivative along F for the differential
inclusion ẋ ∈ F (x) is provided by [25]

V̇F = {pT f : p ∈ ∂V (x), f ∈ F (x)}. (11)

For points x ̸= 0 if F is a singleton function then (8)
guarantees that V̇F < 0, ∀p ∈ ∂V (x). As shown by [26],
the maximum of the (11) upper-bounded the decrease of the
Lyapunov function along solutions of the dynamical systems.
Therefore, we may conclude that the Lyapunov function is
decreasing along all the trajectories of the PWA dynamical
systems. For more detail, please see [8].

The origin is assumed always to be defined as a vertex
in I0. The assumption that the origin is always defined as a
vertex of a cell ensures that we can always find a positive-
definite Lyapunov function. Another assumption is that if a
vertex vk ∈ F0(Xi) and vk ∈ Xi ∩Xj , then vk ∈ F0(Xj).
This assumption is required to preserve the continuity of the
Lyapunov function using (9). Details can be found in IV-D.2.

C. Optimization problem
The constraints (7)-(9) on variables pi and qi from (4)

may be infeasible due to conditions (8) associated with the
decrease of the Lyapunov function along solutions. Slack
variables are added to these constraints to ensure feasibility.
Consequently, we can formulate the search process for the
PWA Lyapunov function as follows:

min
pi,qi,τi

N∑
i=1

τi (12)

Subject to:

pTi (Aivk + ai)− τi < −ϵ1 ∀i ∈ I1, vk ∈ F0(Xi)

pTi Aivk − τi < −ϵ1 ∀i ∈ I0, vk ∈ F0(Xi)

pTi vk + qi > ϵ2 ∀i ∈ I1, vk ∈ F0(Xi)

pTi vk > ϵ2 ∀i ∈ I0, vk ∈ F0(Xi)

Vi(vk) = Vj(vk) ∀vk ∈ F0(Xi) ∩ F0(Xj), i ̸= j

τi ≥ 0 ∀i ∈ I(P)



where τi is the slack variable associated to cell Xi, and
ϵ1, ϵ2 > 0. By design, we can state the following result.

Lemma 4.3: The optimization problem in (12) is always
feasible.

Proof: This result is by the construction of the opti-
mization problem.

The solution to this optimization problem yields a valid
Lyapunov function if and only if all the slack variables are
zero. If the cost function is non-zero, the Lyapunov function
is non-decreasing at some vertices. In fact, no Lyapunov
function associated with the current partition exists. It may
be possible to refine the partition, meaning to divide regions
within it, in order to increase the capacity of the Lyapunov
function and then repeat the search using this higher-capacity
function. In the following section, the refinement process is
described in detail.

D. Refinement

A refinement of the current partition is intended to enhance
the flexibility of the Lyapunov function search process. To
achieve flexibility, a cell Xi with a nonzero slack variable
will be divided into smaller sub-cells. In order to keep things
simple, we assume that the refinement of Xi will result in the
creation of two new subcells, Xi1 and Xi2 . For each subcell,
we can parameterize the PWA Lyapunov function as Vi1 =
pTi1x + qi1 and Vi2 = pTi2x + qi2 . As a result, the candidate
Lyapunov function for cell Xi has a higher capacity PWA
function that is more flexible. Furthermore, the new PWA
Lyapunov function has more parameters, pi and qi, as well
as constraints. Increasing the number of parameters and
constraints might increase the computational complexity for
solving (12) since the computational complexity of linear
optimization with n parameters and accuracy parameter ϵ is
O(n3/4log(nϵ )) [27]. Therefore, to implement refinement, it
is necessary to use an intelligent approach, since otherwise,
the complexity of the computation may increase.

We utilize a vertex representation for the refinement pro-
cess to represent cells within a partition, which are convex
polytopes. The process of refinement for cells involves
adding a new vertex on the cell’s boundary and then forming
new sub-cells. For this section, we will begin by defining a
few concepts and definitions that will be useful for describing
these two steps. The first concept is the simplex region, a
bounded region with the smallest possible number of vertices
in Rd. Polytope’s faces of dimension one are called edges
[23]. In cell Xi, we define the edges by the set F1(Xi),
and each edge is represented by a pair of vertices (vj , vk),
where vj , vk ∈ F0(Xi). The edges of convex polytopes
can be obtained by using MILP as described in [28]. It
is worth emphasizing that the edges containing the origin,
where vj = 0 or vk = 0, are not taken into account in the
set of edges F1(Xi). By making this assumption, we ensure
that refinement will not be applied to edges containing the
origin. Therefore, if Xi ∈ I0, its subcells will always contain
the origin after refinement.

For the cell Xi, with dynamic ẋ = Aix + ai and the
candidate Lyapunov function Vi = pTi x + qi we can define

the following sets and functions.
1) We can find the vector field and the derivative of the

Lyapunov function at a vertex, vj , using the following
functions.

ẋ(Xi, vj) =Aivj + ai, (13)

V̇ (Xi, vj) =pTi ẋ(Xi, vj), (14)

where ẋ(Xi, vj) ∈ Rn is the vector field of the
local dynamic at the vertex vj , and V̇ (Xi, vj) is the
derivative of the Lyapunov function at the specified
vertex in Xi.

2) The vertices of the longest edge of a cell can be
obtained using the following function:

Lmax(i) = argmax
(vj ,vk)∈F1(Xi)

(|vj − vk|2) (15)

3) The following function can be used to capture changes
in the sign of the derivative of a candidate Lyapunov
function:

sgnV̇ (i) =


1 sgn(V̇ (Xi, vj)) ≥ 0,∀vj ∈ F0(Xi),

−1 sgn(V̇ (Xi, vj)) ≤ 0,∀vj ∈ F0(Xi),

0 otherwise,
(16)

where the sgn(x) is the standard sign function. This
function generates zero whenever the sign of the
derivative of the candidate Lyapunov function in the
cell Xi changes. Otherwise, this function generates
either 1 or -1 depending on the sign of the derivative
of the candidate Lyapunov function within the cell Xi.

4) With sgnV̇ (i) being 0, the following set may also be
used to provide the vertices of the edges where the
sign of the derivative of the Lyapunov function has
changed.

cV (i) = {(vj , vk) : sgnV̇ (i) = 0,∀(vj , vk) ∈ F1(Xi),

V̇ (Xi, vj)V̇ (Xi, vk) < 0}. (17)

There are multiple edges where the sign of the
derivative of the Lyapunov function has changed if
sgnV̇ (i) = 0.

5) The following equation can be used to determine the
vertices for an edge with the largest variation in the
derivative of a candidate Lyapunov function.

∆V̇max(i) = {(vj , vk) : (18)

argmax
(vj ,vk)∈F1(Xi)

|V̇ (Xi, vj)− V̇ (Xi, vk)|}.

6) We aim to determine the edge along which the vector
fields exhibit the greatest range of angle variations.
Therefore, we use the following function to find the
edge with the smallest cosine between the vector field
at its vertices.

cosmin(i) = {(vj , vk) : (19)

argmin
(vj ,vk)∈F1(Xi)

⟨ẋ(Xi, vj), ẋ(Xi, vk)⟩
|ẋ(Xi, vj)|2|ẋ(Xi, vk)|2

}

Now, we can delve into the refinement process.



Algorithm 2 Finding new vertices using naive refinement
Require: PWA(x), Vertices

1- Find
i = argmax

i∈Is

(τi) (21)

2- Find (vj , vk) using Lmax(i) (15).
3- finding vnewi

using (20) where α = β = 0.5.
return vnewi

, i.

1) Finding new vertices: The first step in the refinement
process is to introduce new vertices on the boundary of cells
in Is = {i ∈ I : τi > 0}. The new vertex for the cell Xi can
be obtained using the following equation:

vnewi
= αvj + βvk, (20)

which is a linear combination of two vertices of an edge.
Based on the splitting approach which will be introduced in
this section, α, β, vj , and vk in (20) could be different. Here
we consider three different approaches for finding the new
vertices.

a) Naive refinement: The first algorithm is inspired
from [19]. The original algorithm was described for simplex
regions and restricted to 2-D problems. In order to make the
comparison possible we generalize the method for all types
of regions. The process of refinement for the cell Xi based
on [19] is described in Algorithm 2. The naive algorithm
adds a new vertex exclusively to the longest edge, denoted
as Lmax, of cell Xi that has the largest slack variable, as
determined by (21). This method creates sub-cells with the
largest possible volume without considering the candidate
Lyapunov function or local dynamics. Consequently, it may
lead to unsatisfactory results. Selecting vertices randomly
could increase computational complexity without necessarily
improving the refinement process. Thus, it is crucial to
choose new vertices intelligently.

b) Lyapunov-based refinement: To address the chal-
lenge with the naive refinement, a new approach is pro-
posed, leveraging the candidate Lyapunov function to make
more informed decisions regarding selecting new vertices.
The basic principle behind this method is that for every
cell Xi where i ∈ Is finding a set of points P (i) =
{vnewi

: V̇ (Xi, vnewi
) = 0, vnewi

∈ ∂Xi}. Using these
points, vnewi

∈ P (i), the cell Xi could be divided into the
two sub-cells, Xi1 and Xi2 , where sgnV̇ (i2) = −sgnV̇ (i1).
In the case of sgnV̇ (i) = 0, we know that P (i) ̸= ∅.
Therefore, we can find these points using the following
convex problem in cell Xi.

max
α,β

0 (22)

s.t. αV̇ (Xi, vj) + βV̇ (Xi, vk) = 0,

α+ β = 1,

0 ≤ α, β ≤ 1,

(vj , vk) ∈ F1(Xi).

Algorithm 3 Finding new vertices using Lyapunov-based
refinement
Require: PWA(x), Vertices

for i ∈ Is do
1- Finding sgnV̇ (i) using (16).
if sgnv(i) = 0 then

for (vj , vk) ∈ cV (i) do
1- Solve the convex problem (22) to obtain α and
β.
2- Find vnewi

using (20).
end for

else
1- Find (vj , vk) using ∆V̇max(i) (18).
2- Find vnewi

using (20) where α = β = 0.5.
end if

end for
return vnewi , i.

An explanation of how to find i, vj and vk in (22) and other
details about finding a new vertex using Lyapunov-based
refinement can be found in Algorithm 3. If sgnV̇ (i) = 1,
then P (i) = ∅, so we choose the new vertex at the edge
obtained from ∆V̇max(i).

In contrast to the previous method that focused only
on the cell with the largest slack variable, the Lyapunov-
based refinement is now applied to all cells with nonzero
slack variables, denoted as i ∈ Is. As a result of this
broader approach, each relevant cell will be refined based
on its individual candidate Lyapunov function. However, it
is important to note that the coefficient vector pi used in
the refinement process may change significantly in the next
iteration. Therefore, this approach may not be suitable in all
cases, as the optimization process in the subsequent steps
can alter the candidate Lyapunov function.

c) Vector field refinement: To address the problem with
the Lyapunov-based refinement, the search for new vertices
should be conducted using a method that is not influenced
by the optimization process in the subsequent steps. The
proposed method leverages the vector field information of the
dynamics, which remains unchanged during the optimization
process. The underlying heuristic behind this method is
that the direction or magnitude of the vector fields along
an edge may undergo significant changes within a cell
Xi where i ∈ Is. Consequently, a higher-capacity PWA
function may be required to represent the Lyapunov function
within Xi accurately. As illustrated in Fig.1, the vector field
direction in a cell can exhibit substantial variations, such
as a flip from v1 to v2. In such cases, a simple PWA
function may struggle to approximate the level set accu-
rately. To mitigate this, the method is adding a new vertex,
vnewi

, between (v1, v2) where ∠(ẋ(Xi, v1), ẋ(Xi, vnewi
)) =

∠(ẋ(Xi, v2), ẋ(Xi, vnewi
)). Consequently, after each refine-

ment process, the greatest angle between the vector fields of
an edge in cell Xi is divided in half. The process of finding
a new vertex using the vector field refinement is outlined in



Fig. 1. Vector fields of a cell on its vertices. b) The angle between vector
fields of vertices. As can be seen, the angle of the vector field between v1
and v2 is close to −π.

Algorithm 4 Finding new vertices using Vector field refine-
ment
Require: PWA(x), Vertices

for i ∈ Is do
1- Find (vj , vk) using (19).
2- Find α and β using following equation:

α =
1

1 +
|ẋ(Xi,vj)|2
|ẋ(Xi,vk)|2

, β = 1− α. (23)

3- Find the new vertex using (20)
end for
return vnewi , i.

Algorithm 4, which provides a detailed description of the
method.

Before moving on to the next step, storing the new
vertices created by these algorithms in the following buffer
is necessary.

B = {vnewi
∈ Rn : i ∈ Is}. (24)

Now we can proceed to the next step, which is forming sub-
cells.

2) Forming sub-cells: In order to form sub-cells, Johann-
son [19] proposed remedies for 2-D systems; however, this
method is limited to simplex cells. It was suggested that tri-
angulation methods be used for non-simplex regions in [19],
but no specific method or implementation is presented. It has
also been proposed in [29] to apply Delaunay triangulation
to all cells; however, the results have been limited to 2-D
examples. We apply Delaunay triangulation to overcome the
challenges associated with forming sub-cells for non-simplex
cells and cells in higher dimensions (n > 2), which would
be challenging to accomplish manually.

The Delaunay triangulation of a set of points in Rd is
defined to be the triangulation such that the circumcircle of
every triangle in the triangulation contains no point from
the set in its interior. Such a unique triangulation exists for
every point set in Rd, and it is the dual of the Voronoi di-
agram. Moreover, the Delaunay triangulation will maximize
the minimum angle in each triangle [30]. DT (F0(Xi)) is
the notation for implementing Delaunay triangulation using

Fig. 2. Triangulation process using Delaunay. a) A non-simplex region
b) Midpoint is chosen to be added as a new vertex. c) The refined cells
generated by the Delaunay triangulation.

Fig. 3. The process of refinement using naive refinement a) Two adjacent
cells where τ1 > τ2 > 0. b) Based on the naive refinement method, the
new vertex is located on the longest edge of the cell X1 because it has
the greatest slack variable τ1. c) Delaunay triangulation is used to form the
sub-cells.

the vertices of the cell Xi. The process of implementing
Delaunay triangulation for a single cell is illustrated in Fig.2.
Delaunay triangulation will also handle the continuity of the
Lyapunov function if the partition is composed of multiple
cells. To illustrate how continuity is preserved, let us consider
the vnewi as the new vertex obtained using (20) for the cell
Xi. If vnewi ∈ Xi∩Xj , then vnewi must also be considered
as a new vertex for the cell Xj , and DT (F0(Xi)∪vnewi

) and
DT (F0(Xj)∪vnewi

) should be implemented. Consequently,
even after refinement, continuity would be guaranteed by
(9). Generally, in order to implement Delaunay triangulation
within the current partition, we have to follow the following
steps.

1) First, we must obtain the following set containing cells
that required refinement.

Isplit ={i : Xi ∩B ̸= ∅, i ∈ I(P)}. (25)

2) Then, we need to find the vertices located on the
boundary of the cell Xi where i ∈ Isplit using the
following set.

Vnew(i) ={vnewj
: vnewj

= Xi ∩B, i ∈ Isplit}.
(26)

3) Then, we can form the new sub-cells using
DT (F0(Xi) ∪ Vnew(i)) for i ∈ Isplit.

The process of refinement based on the naive approach
using Delaunay triangulation is shown in Fig. 3. As can be
seen, the sub-cells are created just in the simplex cells. How-
ever, the Lyapunov-based and vector-field methods perform
differently as shown in Fig.4. and Fig.5. respectively.

V. RESULTS

The paper presents seven examples to demonstrate the
search performance for a PWA Lyapunov function using
the algorithm described in Algorithm 1. The computations



Fig. 4. The process of refinement using Lyapunov-based refinement a)
Two adjacent cells where τ1 > τ2 > 0. b) Let’s assume in the simplex
cell, X1, we have V̇ (X1, v2) < 0 < V̇ (X1, v1) < V̇ (X1, v3) and in the
non-simplex-cell, X2, 0 < V̇ (X2, v3) < V̇ (X2, v2) < V̇ (X2, v5) <
V̇ (X2, v4). Based on the Lyapunov-based refinement method, the new
vertices, Vnew1 and Vnew2 , for the simplex cell will be obtained using
(22) on the edges obtained using (17). For the non-simplex cell, the new
vertex Vnew3 is obtained using(20) where α = β = 0.5 on the edge
obtained using (18) c) Delaunay triangulation is used to form the sub-cells
for the cell X1 and X2 with their new vertices. Delaunay Triangulation
for the cell X1 and X2 will be DT (F0(X1) ∪ vnew1 ∪ vnew2 ) and
DT (F0(X2) ∪ vnew1 ∪ vnew3 ) respectively.

Fig. 5. The process of refinement using vector field refinement a) Two
adjacent cells where τ1 > τ2 > 0. b) Let’s assume in the simplex cell we
have the biggest variation in the vector field angle, cosmin(1) = (v2, v3),
and in the non-simplex cell the biggest variation of the vector field,
cosmin(2) = (v4, v5). Based on the vector field refinement method, the
new vertex for the simplex and non-simplex cell will be obtained using (20)
with α and β obtained from (23). c) The Delaunay triangulation is employed
to form the sub-cells for the cell X1 and X2 using DT (F0(1) ∪ vnew1 )
and DT (F0(2) ∪ vnew1 ∪ vnew2 ) respectively.

are implemented using the Mosek optimization package [31]
and Python 3.9 on a computer with a 2.1 GHz processor
and 8 GB RAM. During the computations, a tolerance of
10−8 is used to determine if a number is nonzero. In all
the examples, the values of ϵ1 and ϵ2 are set to 10−4. These
examples aim to showcase the effectiveness and efficiency of
the proposed algorithm in finding valid Lyapunov functions
within reasonable computation times.

Example 1 (4-D Example [13]): For this example, we
will use the 4-D MPC example presented in [13] as follows:

xt+1 =


0.4346 −0.2313 −0.6404 0.3405
−0.6731 0.1045 −0.0613 0.3400
−0.0568 0.7065 −0.086 0.0159
0.3511 0.1404 0.2980 1.0416

xt+

(27)[
0.4346,−0.6731,−0.0568, 0.3511

]
ut.

It includes the same details as [13], such as a state constraint
of ∥x∥∞ ≤ 4, an input constraint of ∥u∥∞ ≤ 1, a prediction
horizon of T = 10, a stage cost of Q = 10I and R = 1.
Explicit MPC produces a PWA dynamic with 193 cells. To
ensure that the origin is a vertex, we refined the cell with
the origin on its interior first. Our next step is to convert
the discrete-time PWA dynamics into continuous-time PWA
dynamics with a sampling time ts = 0.01. Finally, We

Fig. 6. The ROA for the closed-loop path following wheeled vehicle using
NN [15] and vertex-based method.

searched for the continuous PWA Lyapunov function using
Algorithm 1 with all refinement techniques. The algorithm
1 timed out after 2000 seconds using the naive refinement
after 31 iterations. Algorithm 1 found the Lyapunov function
in 1200 seconds using the Lyapunov-based refinement with
5874. With the vector field refinement, the Algorithm 1
found the solution in 280 seconds by generating 3086 cells.
In comparison with [13], the Lyapunov function using vector-
field refinement requires a shorter computational time.

Example 2 (4-D controllable canonical dynamic):
Following is a simple 4-D example with stable canonical
controllable dynamics with condition number 10 to illustrate
the meaningful difference between the refinement methods.

ẋ =


0 1 0 0
0 0 1 0
0 0 0 0

−24 −50 −35 −10

x, (28)

where ∥x∥∞ ≤ 5 and the initial partition includes 16
simplex cells around the origin with the dynamic (28). The
search algorithm 1 found the valid PWA Lyapunov function
after 43 seconds with 1054 cells created as a result of
vector field refinement, whereas Lyapunov-based refinement
required 106 seconds with 2743 cells, and naive search
required 1546 seconds with 6943 cells.

Example 3 (Path Following Wheeled Vehicle [15]):
The following kinematic model is used to analyze the
stability of a path following wheeled vehicle in [15]:

ḋe = νsin(θe), (29)

θ̇e = ω − νκ(s)cos(θe)

1− deκ(s)
.

In equation (29), we have the state variables θe, which
represents the angle error, and de, which represents the
distance error. The control input is denoted as ω. In this
study, we used a single-hidden layer ReLU with 50 neurons
as described in [8] in order to identify the dynamic (29) with
the NN controller [15] in the region ∥x∥∞ ≤ 0.8. Moreover,
we used the vertex-based method along with vector field



Fig. 7. Selected level sets and flows for the Example 4.

refinement to obtain the PWA Lyapunov function. As can
be seen in Fig. 6, a comparison was made between the ROA
obtained by the proposed method and the ROA obtained
using the NN Lyapunov function [15].

Example 4 (Multi-agent consensus): The Hegselmann-
Krause model is a widely studied model in the literature,
which involves N autonomous agents with state variables
ξi. Each agent’s dynamics are given by the equation:

ξ̇i =

N∑
j=1

ϕ(ξi, ξj)(ξj − ξi) (30)

where i ranges from 1 to N , and ϕ : [0, 1]2 → {0, 1}
represents a weight function as defined in the reference [17].
The stability analysis results for this model are presented in
Figure 7. We observed that a valid PWA Lyapunov function
can be obtained without requiring any refinement. Therefore,
the choice of different splitting approaches does not have any
impact on this particular example. The details are provided
in TableI.

Example 5 (2-D example from [25], [21], [19]): This
system has been presented in four different regions as
follows:

Z1 = {x ∈ R2 : −x1 + x2 ≥ 0, x1 + x2 ≥ 0} (31)

Z2 = {x ∈ R2 : −x1 + x2 ≥ 0,−x1 − x2 ≥ 0}
Z3 = {x ∈ R2 : x1 − x2 ≥ 0,−x1 − x2 ≥ 0}
Z4 = {x ∈ R2 : x1 − x2 ≥ 0, x1 + x2 ≥ 0}

and the dynamics are as follows:

Ωp : ẋ =


[
−0.1 1
−5 −0.1

]
x if x ∈ Z1 or x ∈ Z3[

−0.1 5
−1 −0.1

]
x if x ∈ Z2 or x ∈ Z4.

(32)

The level sets and the vector fields are shown in Fig.8.
The PWA Lyapunov function was obtained by refining the
cells. In this example, all three refinement methods perform
similarly in finding the Lyapunov function. The details about

Fig. 8. Selected level sets and flows of the Example 5.

this example are presented in TableI. The refinement process
creates 128 cells in the partition.

Example 6 (Explicit model-predictive controller [8]):
In this study, the stability of the following discrete time
dynamic is investigated using explicit MPC, similar to [8],
[13].

xt+1 =

[
1 1
0 1

]
xt +

[
1
0.5

]
ut (33)

As in [8], the MPC problem has the same specification
such as stage cost, actuator, and state constraints. We use
the MPT3 toolbox [32] in Matlab to obtain an explicit
controller. A sampling time of ts = 0.01s was used to
obtain the continuous form of the dynamic (33) with the
explicit MPC controller. The PWA dynamics generated
by the explicit MPC have a cell where the origin is not
on the vertices. As a result, we refine this cell with the
origin as a new vertex, DT (F0(Xi) ∪ 0), and then start the
Algorithm 1. Fig.9. depicts the level sets of the Lyapunov
function. The Lyapunov function was found by all three
refinement algorithms within one second. The Lyapunov-
based refinement and the vector-field refinement, however,
produce a greater number of cells than the naive refinement.

Example 7 (Inverted Pendulum [8], [33], [34]): It is
common in the literature to use an inverted pendulum as an
example with the following state-space model:[

ẋ1

ẋ2

]
=

[
x2

− c
mx2 − gl2 sin(x1)

]
+

[
0
1

ml2

]
u (34)

where m = 0.15 kg, l = 0.5 m, c = 0.1Ns/rad, and
g = 9.81 m/s2 [15]. First, we used a single-hidden layer
ReLU neural network consisting of 20 neurons in the region
∥x∥∞ ≤ 4 to identify the uncontrolled dynamics. Subse-
quently, we designed a ReLU neural network controller as
described in [8]. By incorporating the ReLU NN controller
into the system, we were able to achieve stability. We
searched for the PWA Lyapunov function using Algorithm
1 with the Vector-field refinement. The results are com-
pared with Linear-quadratic regulator (LQR) [34] and NN



Fig. 9. Selected level sets and flows for the Example 6.

Fig. 10. The ROA for the closed-loop inverted pendulum using LQR [34],
NN [15] and vertex-based method.

Lyapunov function [15] in Fig.10. The Lyapunov function
obtained using the proposed approach has a larger ROA. It
is important to note that the valid region for [34] and [15]
is ∥x∥2 ≤ 4.

Moreover, the computational time for each example is
presented in the TABLE I. Having run each simulation ten
times, the computational time is the average time elapsed.
TABLE I provides the number of cells created by each
refinement technique. The Vector field refinement performs
better in terms of computation time and number of cells than
the Lyapunov-based and naive approaches specifically in 4-D
examples.

VI. DISCUSSION

We have shown the effectiveness of our automated ap-
proach for stability verification through various examples.
Our proposed refinement methods outperform existing tech-
niques, and although our method does not specifically aim to
maximize the region of attraction, our results are comparable
to other methods. However, there are challenges to consider
when applying this algorithm to a wider range of problems.

Examples Lyapunov based Lyapunov based Vector field
Time cells Time Cells Time Cells

Example 1 Timed-out 17764 1200 5874 280 3086
Example 2 1546 6943 106 2743 43 1054
Example 3 17.6 705 14.5 649 11.2 532
Example 4 0.15 12 0.15 12 0.15 12
Example 5 1.8 116 1.8 116 1.86 120
Example 6 1.27 88 1.27 88 1.29 96
Example 7 23.3 1107 17.4 996 16.1 956

TABLE I
SUMMARY OF EXAMPLES OF APPLYING THE PROPOSED METHODS. ALL

TIMES ARE IN SECONDS.

Limitations: The computational complexity and perfor-
mance of the proposed algorithm depend on the increase
in the number of cells and optimization parameters during
the refinement process. In a space Rn, the number of cells
should satisfy m ≥ 2n. The simplest case, where the origin
is surrounded by 2n simplex cells, results in an optimization
problem with 2n×(n+1) parameters and 2n+1×n inequality
constraints. The number of constraints increases with the
presence of non-simplex cells. The computational complexity
of the optimization process significantly depends on the
dimensionality n, leading to longer computation times as
cells are further divided. In some cases, the algorithm may
encounter challenges and longer computation times due to
increased complexity. To compare the results of different
examples in terms of computational time and the number
of cells, we introduce the following concepts:

Topti =

∑i
j=1 toptj∑N
i=1 topti

(35)

Nri =
nri∑N
i=1 nri

. (36)

Topt represents the normalized accumulative optimization
time, Nr indicates the normalized number of regions, topt
represents the time spent finding the solution with MOSEK,
nr represents the number of regions, and N represents the
total number of iterations to solve the optimization problem.
The subscripts i and j indicate the optimization iteration.
The relationship between the normalized accumulative op-
timization time (Topt) and the normalized number of cells
(Nr) is investigated in three different examples in Fig.11. The
graphs demonstrate almost linear behavior for Example 6 and
Example 5, while Example 1 exhibits an almost exponential
trend. This indicates that increasing the number of cells could
present a significant challenge for our proposed technique.
Additionally, the refinement process may result in cells
with nearly coplanar vertices, which can introduce numerical
difficulties. It is essential to consider these complexities and
challenges when applying our algorithm to various systems.

VII. CONCLUSION

This paper presents a computational framework for ob-
taining valid PWA Lyapunov functions. The framework



Fig. 11. normalized Accumulative time for optimization vs. the normalized
number of regions. The accumulative optimization time with respect to the
number of cells for 2-D examples is almost linear; however, in the 4-D
example, the accumulative time grows exponentially with respect to the
number of cells.

addresses the challenges of formulating the Lyapunov con-
ditions as a linear optimization problem, which does not
always guarantee a valid Lyapunov function. To overcome
this limitation, two novel refinement methods are proposed,
enhancing the flexibility of the candidate Lyapunov function.
We used the Delaunay triangulation to automate the refine-
ment process. We demonstrated that the proposed approach
is effective based on experiments and comparisons with
alternative approaches. The experiments successfully solve
a 4-D example in a short time, highlighting the practicality
and efficiency of the framework. The proposed framework
offers a more effective method for generating valid PWA
Lyapunov functions, offering flexibility through refinement
methods and automating the process.
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