
1

Maintaining Visibility in Multi-Robot-Networks
with Limited Field-of-View Sensors

Hasan A Poonawala and Mark W Spong

Abstract—A multi-robot team can be endowed with a sensing
graph whose edges indicate the ability of a robot to measure the
relative position to another robot. The connectivity properties
of this graph are important for the performance of different
multi-robot coordination algorithms. Many coordination methods
assume that the sensing graph is undirected. When the robots
are equipped with limited field-of-view sensors, the sensing graph
becomes directed. This paper provides a method to maintain the
strong connectivity of a directed sensing graph in the presence
of bounded persistent disturbances.

I. INTRODUCTION

The consensus algorithm [1], [2] is often used to design
algorithms for the coordination of multiple robots. Information
consensus can be used by a team of robots to provide all
members of the team with a global average of some quantity
through only local exchange of information. In order for each
robot’s local variable to converge to the true global average, it
is necessary for the graph to retain certain connectivity prop-
erties. When the robots are mobile, the required connectivity
properties may be lost.

Maintaining the connectivity of dynamic networks formed
by mobile robots or agents has received a lot of attention [3]–
[9]. Most solutions focus on the case of undirected graphs. Few
solutions exist for the case of directed graphs [9]–[11]. Those
that do exist focus on maintaining the communication network
formed by multiple robots that have omnidirectional sensing
and communication capabilities. The communication network
may be directed when the robots have different communcation
radii.

Many robots are equipped with sensing devices such as
cameras which have a limited field-of-view. These robots
cannot necessarily measure the relative position of all robots
within their communication radii. Therefore, they cannot im-
plement the connectivity preserving techniques proposed in
many works, whether the communication radii are equal or
not. Even if a robot can communicate with other robots, it can
only measure the distance to those robots if they are within
its field-of-view. If all communication radii are equal, the the
communication links are bi-directional. In this case, a robot
that is inside the communication range of another robot but
not inside the latter’s field-of-view can measure the relevant
inter-robot distance and provide it via communication. If the
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communication radii are unequal, this may not be possible for
some pairs of robots.

These considerations show that the graph related to sensing
must be treated differently from the graph related to commu-
nication, and steps must be taken to preserve the connectivity
properties of the sensing graph. The sensing graph needs to
be strongly connected in order to be able to preserve a set
of edges which ensure that the communication network is
strongly connected. If the communication radii are all equal,
then it may be possible to relax the required connectivity from
the sensing graph being strongly connected to the sensing
graph containing a directed rooted spanning tree.

A. Related Work

Maintaining the strong connectivity of the sensing net-
work involving limited field-of-view sensors has been studied
in [10], [11]. In [10], the connectivity control consists of
spinning the camera with a large enough angular velocity,
effectively turning the limited field-of-view camera into an
omnidirectional sensor with low sampling rate. In [11] a
combinatorial approach is taken. The authors note that the
estimation of minimum spanning subgraphs is NP-hard, and
hence suboptimal spanning subgraphs are obtained. No control
method is proposed. The work in [9] is related to preserving
strong connectivity in directed communication networks. The
authors aim to artificially balance the graph, and then extend
the gradient-based control in [6] to keep the real part of
the algebraic connectivity λ2(L) non-zero, thus guaranteeing
preservation of strong connectivity. The work assumes that
each robot is responsible for maintaining only its out-edges,
and not the in-edges. As a result, in certain cases edges
can only be preserved by allowing the agents to increase
their communication radius to arbitrary values. A centralized
method to ensure that a rooted spanning tree exists in the
sensing graph was proposed in [12]. This thesis also proposed
a decentralized method to preserve the strong connectivity of
communication networks. In such networks, the robots have
disk-like models of communication, with unequal communica-
tion radii. A control law was proposed to maintain the strong
connectivity of such directed communication graphs, which
was based on preserving inter-robot distances. A stronger
result is presented in [13].

B. Contributions

In this paper, we propose a decentralized hybrid control
method to preserve the strong connectivity property of the
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directed sensing graph formed by robots equipped with lim-
ited field-of-view sensors. The method is based on a novel
technique proposed in [12], [13] for identifying which edges
must be preserved in order to preserve strong connectivity
of a directed graph. A control law is presented in this paper
guarantees that desired sensing edges are preserved. We prove
that the proposed control method guarantees that the sensing
network will remain strongly connected. The performance is
demonstrated in a simulation example. The form of the control
law and the analysis of the control law presented in this paper
are extensions of those in [13].

II. PRELIMINARIES

A. Directed Graphs

A directed graph G = (V,E) is a tuple consisting of a set
of vertices V (also called nodes) and a set of edges E (also
called links). If there are N nodes, then we can label them
using integers from 1 to N , so that V can be identified with
the set {1, 2, . . . , N}. An edge e ∈ E is an ordered pair (i, j)
which indicates that a connection exists which starts at node i
and ends at node j, where i, j ∈ V . More precisely, the edge
(i, j) is an out-edge for node i and an in-edge for node j.

We can define two neighbor sets for each node i ∈ V . These
are the set of out-neighbors denoted by N out

i and the set of
in-neighbors denoted by N in

i . They are given by

(1)N out
i = {j ∈ V |(i, j) ∈ E}

(2)N in
i = {j ∈ V |(j, i) ∈ E}

Theorem II.1. A path is a sequence of edges such that if an
edge in the path ends at node i, then the next edge in the
sequence starts at node i.

Directed networks have multiple definitions of connectiv-
ity [14]:

Definition 1. A directed graph G is weakly connected if a
path exists from any node to any other node when the path
disregards the direction of edges.

Definition 2. A directed graph G = (V,E) is quasi-strongly
connected if there exists a node v ∈ V such that a directed
path exists from any node u ∈ V to v.

Definition 3. A directed graph G is strongly connected if a
directed path exists from any node to any other node.

B. Mobile Robot Networks

Consider a team of N mobile robots. The configuration of
the ith robot is given by qi = (xi, yi, θi) ∈ R3. The angle
θi is the orientation of the limited field-of-view sensor of the
ith robot, not the robot heading. The robot is assumed to be
holonomic. We can stack the N configurations of the N robots
together in an obvious way to obtain the configuration of the
team q ∈ R3N .

The robots are assumed to have first order dynamics:

(3)q̇i = uci + uei

where uci ∈ R3 is a control term to be designed and uei ∈ R3

is a bounded vector representing additional control objectives
and/or disturbances.

We wish to model the directed sensing network G formed by
this team of mobile robots. The nodes V of the network are the
robots, and edges E in the network correspond to the ability
of the robots to measure the state of other robots to which they
can send information. Robot i is able to send information to
any other robot within a distance of Ri from the center of the
robot.

The distance dij between the ith and jth robot is dij =√
(xi − xj)2 + (yi − yj)2. If dij < Ri, then robot i can send

information to robot j. Robot j is in the field of view of robot
i if ψij < ψmaxi , where

(4)ψij = tan−1

(
yj − yi
xj − xi

)
− θi.

We define the edge set E as

(5)E = {(i, j): i, j ∈ V, dij < Ri and ψij < ψmaxi }

Note that the edges of the sensing graph are a subset of the
edges of the communication graph, since an edge (i, j) is
present in the communication graph if and only if dij < Ri.
We are not concerned with the communication graph in the
rest of this paper, since the connectivity properties of the
communication graph can only be better than that of the
sensing graph.

We make two assumptions about the sensing and commu-
nication abilities of these robots:
A1 The ith robot can measure the relative location of any

robot inside its field-of-view.
A2 The communication devices are such that if robot i

receives information from robot j, then it can estimate
the direction towards j.

In this way, the configuration q of the mobile robot team
and the parameters Ri and ψmaxi , i ∈ {1, 2, . . . , N} determine
the proximity graph G. The graph G is not a fixed graph, but
rather it depends on the time-varying state q(t), and hence the
graph is actually dynamic and state-dependent.

III. ALGEBRAIC CONNECTIVITY

In this section, we describe concepts from algebraic graph
theory that will be used in designing the connectivity-
preserving control law. In Section III-A, we define the weights
of the sensing graph, and introduce relevant graph matrices. In
Section III-B, we recount ideas from [12], [13] which provide
a method to identify which edges of a directed sensing network
are critical to preserving strong connectivity.

A. Graph Matrices

Given a directed graph G = (V,E), we can assign a weight
wij to each edge (j, i) ∈ E. Once the edge weights wij are
defined, the adjacency matrix Aw(G) = {aij} ∈ RN×N is
given by

(6)aij =

{
wij if (j, i) ∈ E
0 otherwise
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Note that the non-zero entries of the ith row correspond to
the edges directed towards node i, which are the in-edges of
i. It is also possible to define the ith row based on out-edges,
however we do not use that formulation.

Consider the smooth monotonic map Ψ given by

Ψ(ρ1,ρ2)(x) =


1 if x ≤ ρ1

exp (− 1
ρ2−x )

exp (− 1
ρ2−x )+exp ( 1

ρ1−x )
if ρ1 < x < ρ2

0 if ρ2 ≤ x
(7)

The edge weights wij for the graph G are determined by
dij and ψij as follows

(8)wij = Ψ(0,ψmaxi )(|ψij |)Ψ(0,Ri)(dij)

The Laplacian Lw(G) ∈ RN×N of the graph can be derived
from the adjacency matrix Aw(G) and is given by

(9)Lw(G) = Dw(G)−Aw(G)

where Dw(G) is a diagonal matrix whose ith diagonal element
is
∑N
j=1 wij . Due to the definition of Aw, the matrix Lw is

often known as the in-Laplacian, however we do not refer to
it as such in the paper. The Laplacian Lw(G) always has an
eigenvalue at 0, corresponding to a right eigenvector given by

1√
N

1N , where 1N ∈ RN , 1N = [1, . . . , 1]T .
The remaining eigenvalues of Lw may be complex, and are

ordered based on their absolute value. Let the ith smallest
eigenvalue of a matrix A be denoted by λi(A). The second
smallest eigenvalue of Lw(G) is denoted by λ2(L). In the
case of undirected graphs, it is called the Fiedler value
of the graph [15]. Note that we will henceforth drop the
subscript w from these matrices, with the understanding that a
graph matrix with no subscript implies that the edge weights
correspond to wij given by (8).

We can create a nonnegative row-stochastic [16] matrix S ∈
RN×N , by using the transformation

(10)S = IN − εL

where IN is the identity matrix of size N and ε > 0 is a
sufficiently small number. Assuming that each edge weight
wij is bounded above by 1, then selecting ε ≤ 1/N ensures
S is non-negative.

B. Algebraic Connectivity for Directed Graphs

The magnitude of λ2(L) indicates whether the network is
quasi-strongly connected (and therefore weakly connected) or
not. This is due to the following theorem derived from results
in [17]:

Theorem III.1 ([17]). Consider a directed graph G with
Laplacian as defined in (9). The graph G is quasi-strongly
connected if and only if |λ2(L)|> 0

For a directed graph, strong connectivity is indicated by
λ2(L) and the first left eigenvector of the matrx S. The
following is a corollary to Lemma IV.5 in [13].

Corollary 1. Let G be a directed graph with graph Laplacian
L and stochastic matrix S. Then, G is strongly connected if

and only if λ2(L) 6= 0 and there exists γ ∈ RN such that
γTS = γT and γ > 0.

Let γi be the ith component of γ. Then, we can compute

(11)µij =
γi
γj

+
γj
γi

for all i 6= j and i, j ∈ V . Due to the Perron-Frobenius
theorem, if G is strongly connected then µij are non-zero and
finite ∀ i, j ∈ V . The quantities µij are functions of the state
q, and are time varying.

Given a directed graph G = (V,E) which is not strongly
connected, we can define a minimal connecting edge set E′

as follows:

Definition 4. A minimal connecting edge set E′ of a graph
G = (V,E) is a set of edges such that (V,E ∪E′) is strongly
connected, and for any e ∈ E′, (V,E∪(E′−e)) is not strongly
connected.

If a graph G = (V,E) is strongly connected, then γ > 0
and is unique. An analysis of the structure of the eigenvectors
associated with the eigenvalue 1 for a stochastic matrix S
which is not strongly connected leads to the following result.
A weaker version is presented in [12].

Lemma III.2. [13] Let G(c) = (V,E) be a graph
parametrized continuously by c ∈ R such that G(c) is strongly
connected ∀c > 0. Let S(c) be its row stochastic adjacency
matrix with Perron vector γ(c). Let G(0) be the subgraph of
G(c) obtained when c = 0, such that G(0) has at least one
weakly connected component. Let E0 be the subset of edges
in E that are deleted when c = 0. Let E′ ⊂ E0 be the set
of edges belonging to a minimal connecting edge set of G(0).
Then there exists (i, j) ∈ E′ such that µij →∞ as c→ 0+.

It is possible for all nodes i ∈ V to compute or estimate
γ [18], [19]. In the next section, we recount how γ can be used
to determine which edges should be preserved, and present a
control law which preserves these edges.

IV. VISIBILITY CONTROL

We use a hybrid control approach to design the connectivity-
preserving control. When a strongly connected graph G =
(V,E) is close to losing an edge which results in a loss
of strong connectivity, either λ2(L) → 0 or µij → ∞ for
some (i, j) ∈ E. These quantities are used to drive a two-
state finite-state machine associated with each edge which
determines if an edge should be preserved. If an edge (i, j) is
to be preserved, we include appropriate control terms in the
control for robots i and j which guarantee that the edge will be
preserved. The edge is preserved even if bounded disturbance
velocities act on the robots.

We define parameters µon, µoff and λm that serve as guards
which trigger a change in state of the finite state machine
(FSM). The state of the FSM associated with edge (i, j) is
denoted as acij , which can have two values: 0 or 1. The rules
for transitioning between states are given by

(12)acij → 1, if wij > 0 and µij ≥ µon or |λ2(L)|< λm

acij → 0,
if µij < µoff and λ2(L)|> λm and dij < δij and |ψij |< ζij ,



4

where λm > 0 is some threshold that determines when all
edges must be included, and δij and ζij are parameters which
are defined later. We must select µon > µoff > 2, in order
to achieve a hysteresis effect for switching based on µij . It is
possible to add a hysteresis effect for the switching based on
λm also.

The subgraph of G which must be preserved is denoted as
Gc = (V,Ec). The edge set Ec ⊆ E is defined as Ec =
{(i, j) ∈ E: acij = 1}. The edge set Ec varies with time. We
assume that at the initial condition q(t0), µij < µon for all
i, j ∈ V , and therefore Ec = ∅. This implies that acij is initially
set as 0 for all i, j ∈ V .

The definition of edges in G (and therefore Gc) relies
on dij and ψij being below corresponding bounds for edge
(i, j) ∈ E. This leads to the use of edge tension functions [20]
to ensure that these quantities never exceed those bounds.
However, we modify the edge tensions presented in [20] by
allowing them to be defined based on the values of dij and ψij
at the instant when (i, j) is included in Ec. This allows us to
avoid the discontinuities that are faced by the method in [20]
whenever new edges are included in the set of preserved
distances.

The control for the ith robot is given by

(13)
uci = −

∑
{j:(i,j)or(j,i)∈Ec}

(
αij(dij(t))dij

∂dij
∂qi

T

+ βij(ψij(t))ψij
∂ψij
∂qi

T
)
.

where αij and βij are the edge tension functions which ensure
that dij and |ψij | respectively remain within required bounds.
First, we define the function ν as

νρ3,ρ4(x) =


0 if x < ρ3

1− exp
(

1−
(
x−ρ3
ρ4−ρ3

2
))

if ρ3 < x < ρ4

1 if ρ4 < x

.

(14)

which is a smooth monotonic function such that νρ3,ρ4(ρ3) =
0 and νρ3,ρ4(ρ4) = 1. The numbers ρ3 and ρ4 are chosen such
that 0 < ρ3 < ρ4.

Next, we define the function κ as

(15)κρ5(x) =
1

(ρ5 − x)2
.

The edge tension functions αij and βij are then

αij(dij) = κRij (dij)νδij ,εij (dij), and (16)
βij(ψij) = κψmaxi

(|ψij |)νζij ,εij (|ψij |), (17)

where Rij , δij , εij , ζij , and ηij are parameters which are set
at the time instant tsw when acij switches from 0 to 1. These
quantities are determined as follows:

Rij =

{
max{Ri, Rj} if min{wij(tsw), wji(tsw)} = 0

min{Ri, Rj} if min{wij(tsw), wji(tsw)} > 0

(18a)
(18b)δij = dij(tsw) + (1− c)(Rij − dij(tsw))

(18c)εij = dij(tsw) + c(Rij − dij(tsw))

(18d)ζij = |ψij(tsw)|+(1− c) (ψmaxi − |ψij(tsw)|)
(18e)ηij = |ψij(tsw)|+c(ψmaxi − |ψij(tsw)|).

where c ∈ (0.5, 1]. The values set by (18) imply that
αij(dij(tsw)) = βij(|ψij(tsw)|) = 0 by design. Thus, the con-
trol uci (t) is never discontinuous in time. When acij switches
from 1 to 0, the value of these quantities are zero since νij
will be zero in both edge tension functions.

Note that in [20], a function similar to κ alone is used as
the edge tension, and is based on the gradient of a potential
function which must be fixed for all time in order to facilitate
analysis. We avoid this constraint on the potential function
by choosing a different analysis technique, allowing the edge
tension to be defined in a more flexible manner.

For a graph Gc, we define the set D as

D = {q ∈ R3N : dij < Rij and |ψij |< ψmaxi ∀(i, j) ∈ Ec}.
(19)

Theorem IV.1. Consider the fixed directed graph Gc =
(V,Ec) with dynamics (3). Let the control uci be selected
according to (13). The external control uei (t) is unknown but
bounded for each i ∈ V . Then, for any solution q(t) of (3)
with initial condition q(t0) ∈ D,

q(t) ∈ D ∀t ≥ t0.

Proof: See appendix.
We are now ready to state the main result related to the

perfomance of the control that preserves strong connectivity.

Theorem IV.2. Consider a directed mobile communication
network with dynamics of the ith robot given by (3). The
control uci is selected according to (13). The external control
uci is unknown but bounded for each i ∈ V . The discrete states
acij (and hence Ec ) are updated according to (12) and the
parameters Rij , δij , εij , ζij , and ηij are updated according to
(18). Then, if the network is strongly connected at some time
t0 , the network is strongly connected for all t > t0.

Proof: Due to Corollary 1 and Lemma III.2, the update
rule (12) ensures that the edge set Ec always contains edges
that must be preserved in order to maintain strong connectivity,
when the network is close to losing strong connectivity. By
Theorem IV.1, the control (13) ensures preservation of edges
in Ec. Thus, if the network is strongly connected at t = t0, it
is strongly connected for all t > t0.

A. Implementation of the proposed controller

The definition of uci in (13) makes both edges responsible
for preserving a directed edge (i, j). In order for both robots
i and j attempting to preserve the directed edge (i, j), the
position vector from i to j or vice versa must be known to
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both robots. Due to assumption A1, robot i can measure this
quantity since robot j is in its field-of-view. Assumption A1
is a common one in mobile ad-hoc networks. It ensures that
a robot can determine the position vector to its out-neighbor,
using sensing.

However, robot i may not be in the field-of-view of robot
j. The position vector from j to i can be determined by robot
j if Assumption A2 holds. Assumption A2 is not common. It
implies that a robot can obtain the direction to an in-neighbor.
This assumption can be realistically met using radio direction
finding techniques (RDF). This would require specialized
hardware in addition to the assumed omnidirectional wireless
transmitters. The distance to an in-neighbor can be obtained
by communication from the in-neighbour, which can sense this
quantity. Therefore, using a combination of sensing, commu-
nication, and techniques such as RDF, both robots forming
a directed edge can implement the proposed control (13).
However, this does not mean that the communication is bi-
directional, since the RDF equipment is used for receiving a
signal, not for transmitting one.

Finally, decentralized methods to estimate λ2(L) and γ have
been presented in [19] and [18] respectively.

V. SIMULATION

We simulate four robots with position in R2 and an orien-
tation which are commanded with velocities uci + uei where
uci is given by (13), and uei is some additional task-dependent
velocity.

The initial condition Q(0) is given by

q1(0) =
[
0.56m 1.91m 4.71rad

]T
q2(0) =

[
0.42m 1.27m 0rad

]T
q3(0) =

[
0.70m 1.01m 0rad

]T
q4(0) =

[
0.92m 0.99m 2.36rad

]T
where qi(0) is the ith column of Q(0). The values are in
metres for the first two rows, and in radians for the third.
The communication radii of the have values R1 = 0.83m,
R2 = 0.90m, R3 = 0.31m, and R4 = 0.70m. The parameter
ψmaxi is equal to 1rad for all the robots. The task velocities
are given by

ue1 =
[
−3m/s −3m/s 0rad/s

]T
ue2 =

[
3m/s 3m/s 0rad/s

]T
ue3 =

[
3 sin(t/2)m/s 3 cos(t/2)m/s 0rad/s

]T
ue4 =

[
0m/s 0m/s 0rad/s

]T
The task velocities uei are such that if the robots were

to move according to uei alone, the sensing network would
eventually lose strong connectivity. In Figure 1 we see that the
initial condition is such that the sensing network is strongly
connected. The field-of-view is indicated by the sector with an
acute angle. Under the action of uci given by (13), the sensing
network remains strongly connected as seen in Figure 2. These
positions are such that the agents form a network which is
barely strongly connected, as seen from Figure 2 where the
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Fig. 1. Positions of the four robots at t = 0, denoted by squares. The
boundary of the circular communication region of each robot is indicated by
the circle. The field-of-view of each robot is denoted by the smaller sector of
each circle.
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Fig. 2. Final positions and orientations of the four robots. The sensing graph
remains strongly connected.

agents are located close to the boundaries of the field-of-view
of other robots. The evolution of the state q(t) is shown in
Figure 3.

VI. CONCLUSION

In this paper, we have proposed a control method to preserve
the strong connectivity of the directed sensing graph formed by
robots with limited field-of-view sensors. The proposed control
is shown to guarantee preservation of strong connectivity
in the directed sensing network even in the presence of
additional disturbance terms, without favoring any particular
graph topology. Note that the terms uei can also be interpreted
as additional control objectives such as tracking a leader or
reaching positions in a formation. Therefore, the connectivity
preserving control law presented in this paper can be used
alongside other control tasks with higher priority.

In order to implement such a control law, robots may have
to be able to find the direction of the transmitter from which it
receives information. This can be done using radio direction
finding techniques. Of course, this requirement adds to the
complexity required of the robots that can implement such a
control method. For some applications in which strong con-
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Fig. 3. Trajectories xi(t), yi(t), and θi(t) for the four agents.

nectivity of the sensing network (and therefore communication
network) at all times is critical, this may be justified.

Future work consists of analyzing the effects of the time
delay in estimating the quantities λ2(L) and γ. Since these
quantites are only used in order to choose which edges must
be preserved, the effects of small delays are not expected to be
serious.If the speed of motion of the robots is much faster than
the time constant related to the estimation of these dynamic
quantities, then strong connectivity may be lost. This motivates
techniques which may limit the motion of the robots depending
on the time taken for informatin related to changes in network
topology to propagate through the network.
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APPENDIX

PROOF OF THEOREM IV.1

We define edge potential functions as

(20)V̄ dij(q) =

∫ dij

0

sαij(s)ds

and

(21)V̄ ψij (q) =

∫ |ψij |
0

sβij(s)ds,

where we have suppressed the dependence of αij and βij on
various parameters. These edge potentials can be summed over
all edges to obtain the overall potential function

(22)V̄ (q) =
∑

(i,j)∈Ec

V̄ dij(q) + V̄ ψij (q).

The function V̄ (q) serves as a Lyapunov-like function. If
dij → Rij or ‖ψij |→ ψmaxi for edge (i, j) ∈ Ec, then
V̄ (q)→∞ The proof will rest on showing that V̄ (q) remains
finite for all time.

We first prove the following result.

Lemma A.1. Let Lσ be a symmetric graph Laplacian for a
connected undirected graph

←→
G = (V,

←→
E ) with edge weights

σij . Let |V |= p, and x ∈ Rp. Let q ∈ N, and z ∈ Rp be any
vector. Consider the quantity Ω given by

(23)Ω =

∥∥∥∥[Lσ 0
0 0

] [
x
z

]∥∥∥∥
If x 6= c1p for any c ∈ R, then Ω > 0. Moreover, if σij →
∞ ∀(i, j) ∈

←→
E , then Ω→∞.

Proof: Let P ∈ Rp×p−1 be any matrix such that PT1p =
0 and PTP = Ip−1, where Ip−1 is the identity matrix of size

http://users.ices.utexas.edu/~hap/HPoonawalaTAC.pdf
http://users.ices.utexas.edu/~hap/HPoonawalaTAC.pdf
http://books.google.com/books?id=vMUexcIVnjIC
http://dx.doi.org/10.1002/rnc.2895
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p− 1. Let x ∈ Rp be any vector. We can define xP = PTx,
and thus express x as

(24)x = PxP +

(
xT1p
p

)
1p

One can check that PxP = 0 ⇐⇒ x = c1p, where c is a
real number. Given a symmetric graph Laplacian Lσ ∈ Rp×p
and the vector x, we have that

(25)‖Lσx‖≥ λ2(Lσ)‖PxP ‖

If
←→
G is connected then λ2(Lσ) > 0. If x 6= c1p for any

c ∈ R, then PxP 6= 0 and therefore ‖Lσx‖> 0. For any
undirected graph

←→
G , λ2(Lσ) is a non-decreasing function of

the edge weights [5]. Consider the weighted symmetric graph
Laplacian Lσ,min where every edge weight σij is replaced by
σmin = min

(i,j)∈
←→
E
σij . Now, this matrix is converted to Lσ

by increasing each edge weight. This means that

(26)λ2(Lσ) ≥ λ2(Lσ,min)

However,

(27)λ2(Lσ,min) = λ2(σminL1)

= σminλ2(L1)

where L1 is the graph Laplacian of
←→
G obtained when edge

weights are either zero or one. Thus, we can conclude that

(28)λ2(Lσ) ≥ σminλ2(L1)

where λ2(L1) > 0 since
←→
G is connected. We have assumed

that for all edges (i, j) ∈
←→
E we have that σij(t) → ∞ as

t → T . Since there are a finite number of edges, if σij →
∞ ∀(i, j) ∈

←→
E , then it holds that σmin →∞.

Clearly, Ω = ‖Lσx‖> σminλ2(L1)‖PxP ‖. Since
←→
G is

connected and x 6= c1p for any c ∈ R, it must hold that
Ω→∞ as σmin →∞.

We now rewrite the equations of the robots in such a way
that the kth elements of all vectors qi are combined. This was
also done in [20]. We will sometimes denote the kth element
of a vector x as [x]k, in order to avoid confusion in subscripts.

We can rewrite dynamics (3) as

ẋ = ucx + uex (29)
ẏ = ucy + uey (30)

Θ̇ = ucθ + ueθ (31)

where [x]k = xk, [y]k = yk, [Θ]k = θk, [ucx]i = [uci ]1, [ucy]i =
[uci ]2, [ucθ]i = [uci ]3, [uex]i = [uei ]1, [uey]i = [uei ]2, [ueθ]i =
[uei ]3.

We have that

(32)
∂dij
∂qi

=
[
(xi − xj)/d2

ij (yi − yj)/d2
ij 0

]
and
∂|ψij |
∂qi

= sign (ψij)
[
(yi − yj)/d2

ij (xj − xi)/d2
ij −1

]
.

(33)

Consider the set D∗ given by

D∗ = {q ∈ R3N : dij = Rij or |ψij |= ψmaxi ∀(i, j) ∈ Ec}.
(34)

The set D∗ is a subset of the boundary of set D in (19). If
q(t) reaches D∗ at some time T , this means that all edges in
the graph are lost at the same time instant. We first show that
this cannot happen.

Lemma A.2. Consider the fixed directed graph Gc = (V,Ec)
with dynamics (3). Let the control uci be selected according
to (13). The external control uei (t) is unknown but bounded
for each i ∈ V . Then, for any solution q(t) of (3) with initial
condition q(t0) ∈ D, if q(t) ∈ D for all t ∈ [t0, T ) where
T > t0, then q(T ) /∈ D∗.

Proof: We prove the Lemma by contradiction. Assume
that at t = T , q(T ) ∈ D∗. This means that for all (i, j) ∈
Ec, limt→T αij(dij(t)) = ∞ or limt→T βij(|ψij(t)|) +

βji(|ψji(t)|) = ∞. Consider an undirected graph
←→
Gc =

(V,
←→
Ec ), where edge set

←→
Ec is such that (i, j) ∈

←→
Ec iff (i, j)

or (j, i) ∈ Ec.
Consider the weighted symmetric Laplacian Lα with edge

weights of the form αij + αji corresponding to a graph
G′ = (V,E′), where E′ ⊆

←→
Ec and (i, j) ∈ E′ if and only if

limt→T αij(dij(t)) =∞. Similarly, we construct a symmetric
Laplacian Lα with edge weights of the form βij + βji if and
only if limt→T βij(|ψij(t)|) + βji(|ψji(t)|) =∞.

We can then rewrite the control terms ucx, ucy , and ucθ using
(32) and (33) in (13), to obtain

ucx = −Lαx− Lβy + z1, (35)
ucy = −Lαy + Lβx + z2, and (36)

[ucθ]i =
∑

{j:(i,j)∈Ec}

−ψijβij(|ψij |) sign (ψij) . (37)

where the vectors z1 and z2 absorb those terms from
the control (13) for which limt→T αij(dij(t)) < ∞ and
limt→T βij(|ψij(t)|) + βji(|ψji(t)|) <∞. We can treat these
vectors as bounded disturbance terms when analyzing the
control.

Since d
dx

∫ y
0
sf(s)ds = yf(y) dydx , it can also be shown that

(ucx)T = −∂V̄∂x , ucy = ∂V̄
∂y , and [ucθ]i =

[
∂V̄
∂Θ

]
i
.

The derivative of V̄ (q) is

˙̄V (q) =
∂V̄

∂x
ẋ +

∂V̄

∂y
ẏ +

∂V̄

∂Θ
Θ̇

= (Lαx + Lβy + z1)
T

(−Lαx− Lβy − z1 + uex)

+ (Lαy − Lβx + z2)
T (−Lαy + Lβx− z2 + uey

)
+

N∑
i=1

[ucθ]i (− [ucθ]i + [ueθ]i)

= −‖Lαx + Lβy‖2 + (Lαx + Lβy)
T

(uex − 2z1)

− ‖Lαy − Lβx‖2 + (Lαy − Lβx)
T

(uey − 2z2) . . .

− ‖ucθ‖2 + (ucθ)
T
ueθ + ∆1

=−‖Lαx+Lβy‖2−‖Lαy−Lβx‖2−‖ucθ‖2 +∆1 +∆2

(38)

where
(39)∆1 = zT1 (uex − z1) + zT2 (uey − z2)
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and

(40)∆2 = (Lαx + Lβy)
T

(uex − 2z1)

+ (Lαy − Lβx)
T

(uey − 2z2) + (ucθ)
Tueθ

≤ (‖Lαx
+Lβy‖) ‖uex−2z1‖+ (‖Lαy+Lβx‖) ‖uey−2z2‖+‖ucθ‖‖ueθ‖

We can bound ˙̄V (q) as

˙̄V (q) ≤ −‖Lαx + Lβy‖(‖Lαx + Lβy‖−‖uex − 2z1‖) . . .
− ‖Lαy − Lβx‖(‖Lαy − Lβx‖−‖uey − 2z2‖) . . .
− ‖ucθ‖(‖ucθ‖−‖ueθ‖) + ‖∆1‖

(41)

The terms uex, uey , ueθ, z1 and z2 are all bounded by
assumption. Let the norm of all terms in (41) consisting of
only these terms be bounded above by M . When the norm
of ‖Lαx + Lβy‖,‖Lαy − Lβx‖, or ‖ucθ‖ is larger than M ,
then the corresponding term in (41) is negative. This implies
that we can bound the values of ∆2 for which ˙̄V (q) > 0 from
above by 3M2. Thus, if one of the negative definite terms in
(38) has magnitude greater than 3M2 + M , then ˙̄V (q) < 0,
where the additional M comes from the term ∆1 .

By applying Lemma A.1, we can show that one of the terms
out of ‖Lαx‖, ‖Lαy‖, ‖Lβx‖, and ‖Lβy‖ must approach
infinity as t → T . This implies that one of the terms out of
‖Lαx+Lβy‖ and ‖Lαy−Lβx‖ must become unbounded as
t → T . This in turn implies that there exists a time τ where
0 < τ < T such that ˙̄V (q(t)) < 0 for all t ∈ (τ, T ]. Since
˙̄V (q(t)) < 0 for all t ∈ (τ, T ], we have that V̄ (q(T )) remains

finite, which contradicts the assumption that q(T ) ∈ D∗, since
for all q∗ ∈ D∗, V̄ (q∗) =∞. This proves the Lemma.

A. Theorem IV.1

Proof: We again prove the result by the method of
contradiction. Let there exist some T > t0 such that the
solution q(t) of (3) for initial condition q(t0) is such that
q(t) ∈ D ∀t ∈ [t0, T ) and q(T ) /∈ D. Let some set
of edges E∗ be broken at t = T . The edges E∗ may
consist of multiple disconnected components. Each of these
disconnected components satisfy the conditions of Theorem
A.2 independently, since the control terms due to the edges
between these components are not broken at t = T , and can be
considered as bounded disturbance terms. Therefore we obtain
a contradiction, and so conclude that q(t) ∈ D ∀t ≥ t0.
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