
ME/AER 676 Robot Modeling & Control

Hasan Poonawala

Contents

1 Space and Motion 6
1.1 Introduction . 6
1.2 Euclidean Space . 6
1.3 Summary & Preview . 7
1.4 Cartesian Coordinates . 7

1.4.1 Body-Fixed Frames . 7
1.5 Homogenous Transformations . 8

1.5.1 Notation . 8
Example 2 Coordinate Transformation . 9

1.6 Rigid Body Pose . 9
1.6.1 Rotations . 9
1.6.2 Basic Rotations . 10
1.6.3 Composition of Rotations . 10
Example 3 Simple Pendulum . 11
1.6.4 Parametrizations of SO(3) . 12

2 Kinematics 15
2.1 Kinematic Chains . 15

2.1.1 Serial Kinematic Chains . 15
2.1.2 Denavit-Hartenberg Convention . 15

2.2 Velocity of Frames . 16
2.2.1 Linear Velocity . 16
2.2.2 Angular Velocity . 16
2.2.3 Task-space Velocity . 17
2.2.4 Derivation . 17
2.2.5 Another Derivation . 18

2.3 Geometric and Analytic Jacobians . 20
2.3.1 Geometric Jacobian . 21
Example 4 Planar Elbow Manipulator . 21
2.3.2 Analytic Jacobian . 23
2.3.3 Singularities . 24
2.3.4 Decoupling Singularities . 24
2.3.5 Inverse Velocity . 24
2.3.6 Manipulability . 25
Example 5 Planar Elbow Manipulator . 25

2.4 Inverse Kinematics . 25
2.4.1 Optimization-Based Kinematics . 26
2.4.2 Differential Inverse Kinematics . 26
2.4.3 Trajectory Inverse Kinematics . 27

2.5 Spatial and Body Jacobians . 27
Example 6 Spatial and Body Jacobians . 27

2.6 Static Force/Torque Relationships . 30

1

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

2.6.1 Derivation . 30
Example 7 Static Forces To Torques . 31
2.6.2 Force Ellipsoid . 33

3 Dynamics 34
3.1 Newton-Euler Formulations . 34

3.1.1 Two Dimensional Examples . 34
Example 8 Simple Pendulum . 34
Example 9 Double pendulum . 35
3.1.2 Solving Newton-Euler Equations . 35
3.1.3 Newton-Euler Equations For A Planar Rigid Body . 37
Example 10 Simple Pendulum Using Angle . 37
Example 11 Two-Mass Pendulum As Constrained Double Pendulum 38
Example 12 Compound Pendulum . 38
3.1.4 Newton-Euler Equations For A 3D Rigid Body . 40
3.1.5 Newton-Euler Equations For Rigid Body Mechanisms 42
3.1.6 Recursive Newton Euler Algorithm . 42

3.2 The Lagrangian . 43
3.2.1 On Frames . 43
3.2.2 Kinetic Energy . 43
3.2.3 Potential Energy . 44

3.3 Euler-Lagrange Equations . 44
Example 14 Planar Elbow Manipulator . 45
3.3.1 Derivation . 47

3.4 Properties of the Euler-Lagrange Equations . 50
3.4.1 Skew Symmetry and Passivity . 50
3.4.2 Bounds on Inertia Matrix . 50
3.4.3 Linearity in Parameters . 50

3.5 Passivity . 51
Example 15 (Capacitor) 51
Example 16 (Capacitor continued) 52
3.5.1 Passivity in Robots . 52
3.5.2 Applications . 53

3.6 Actuator Models . 53
3.6.1 Electric Actuators . 53
3.6.2 SISO Joint Model . 54
3.6.3 Flexible Joint Models . 54

4 Control 56
4.1 Independent Joint Control . 56

4.1.1 Routh Hurwitz Criterion . 56
4.1.2 P Control . 56
4.1.3 PD Control . 57
4.1.4 PID Control . 57
4.1.5 FeedForward Control . 57
4.1.6 Control Of Flexible Joints . 58

4.2 Multivariable Control . 59
4.2.1 PD+ Control . 59
4.2.2 Inverse Dynamics Control . 60
4.2.3 Task Space Inverse Dynamics Control . 60
4.2.4 Robust Inverse Dynamics Control . 60
4.2.5 Adaptive Inverse Dynamics Control . 62

4.3 Passivity-Based Control . 63
4.3.1 Potential-Shaping Control . 63

Table of Contents 2

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.3.2 Passivity-based Tracking . 64
4.3.3 Passivity-Based Robust Control . 65
4.3.4 Passivity-Based Adaptive Control . 65
4.3.5 Passivity-based Interaction . 65

4.4 Force Control . 66
4.4.1 Direct Force Control . 66
4.4.2 Configuration-based Force Control . 67
4.4.3 Coordinate Frames and Constraints . 67
4.4.4 Hybrid Force / Position Control . 68
Example 17 Hybrid Force/Position Control . 69

4.5 Network Models and Impedance . 70
4.5.1 One-Port Model . 70
4.5.2 Impedance . 71
Example 18 Examples of Impedances . 71
Example 19 (Spring-Mass-Damper Impedance) 72
4.5.3 Robot Impedance . 72
4.5.4 Robot and Environment Interaction . 73
4.5.5 Impedance Control . 73
Example 20 Apparent Inertia . 74
4.5.6 Hybrid Impedance Control . 75
Example 21 Inertial Environment . 75
Example 22 Capacitive Environment . 76

4.6 Optimal Control . 77
4.6.1 Linear Quadratic Regulator . 77

4.7 Summary . 78

5 Motion Planning 79
5.1 Path And Trajectory Planning . 79
5.2 Potential Field Planning . 80

5.2.1 Gradient Descent . 80
5.2.2 Task Space Potentials . 80

5.3 Probabilistic Road Maps . 81
5.3.1 Construction . 81
5.3.2 Query . 81
5.3.3 Analysis . 81

5.4 RRT . 81
5.4.1 RRT∗ Simulation . 82

5.5 Trajectories From Paths . 85
5.5.1 Polynomials . 85
5.5.2 Parabolic Blends . 86
5.5.3 Cubic Splines in Hermite Form . 86
5.5.4 Bezier Splines . 86

A Vector Spaces 87
A.1 Vector Spaces . 87

Example 23 (Group: Real Numbers) 87
Example 24 (Group: Real Numbers without 0) 87
Example 25 (Field: Real Numbers) 87
Example 26 (Rn) . 88
Example 27 (Rn) . 88
Example 28 (Rn) . 88
Example 29 (Metric on Rn) 88

A.2 A Concept Chart . 89

Table of Contents 3

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

B Linear Algebra 90
B.1 Matrix-Vector Products . 90

C Analysis 91
C.1 Topology . 91

C.1.1 Neighborhoods . 91
Example 30 (Neighborhoods in R) 91
C.1.2 Open Sets . 92

D Dynamical Systems & Control 93
D.1 Dynamical Systems . 93

D.1.1 Solutions Of ODEs . 93
D.1.2 Stability . 93

D.2 Linear Dynamical Systems . 94
D.2.1 Transfer Functions . 94
D.2.2 Controllability and Observability . 94
D.2.3 Controllability . 95
D.2.4 Observability . 95

Table of Contents 4

Preface

This document collects and polishes hand-written notes I created for this class on Robotics. These notes are
largely based on the textbook written by Spong, Vidyasagar, and Hutchinson [5].

For the Spring of 2021, I began to incorporate more material from the textbook by Kevin Lynch and
Frank Park [2]. This incorporation has been challenging, however, I am excited to continue developing a
pedagogical resource that helps readers translate between the two approaches.

5

Chapter 1

Space and Motion

1.1 Introduction

This chapter lays the mathematical foundations for describing physical two- and three-dimensional space.
The central message is that there are infinite ways to numerically describe physical space. For example,
two separate LIDAR sensors on a robot may describe locations of the same object in space using different
coordinates. When we perform mathematical computations for robot motion, we need to be careful that we
account for such differences. Section 1.2 connects inner product spaces with a mathematical characterization
of physical space as a Euclidean space.

1.2 Euclidean Space

Euclidean Space is a model for physical space. Mathematically, this model turns out be that of an affine
space. An affine space consists of elements called points. The main idea is that these points are not
vectors, however differences between points become vectors. What this means is that we can’t assign
numbers to a point without using another (reference) point.

Definition 1 (Affine Space). An affine space is a set A together with a vector space
−→
A , and a transitive

and free action of the additive group of
−→
A on the set A. The elements of the affine space A are called points,

and the elements of the associated vector space
−→
A are called vectors, translations, or sometimes free vectors.

Explicitly, the definition above means that the action is a mapping, generally denoted as an addition

A×
−→
A → A (1.1)

(a, v) 7→ a+ v (1.2)

Free implies that the only the 0 element of a vector space maps a point back to itself. Transitive means
any two points define a unique element of the vector space.

Definition 2 (Euclidean Space). A Euclidean space is an affine space with the vector space given by an
inner product space.

To reiterate:

Remark 1. An point in n-dimensional Euclidean space is not a vector.

When we describe points as numbers, what we are doing is implicitly using a reference point (origin)
and a vector space with a basis to describe points. This process is natural to us because an n-dimensional
Euclidean space is isomorphic to Rn. That is, we can always create a one-to-one correspondence between a
Euclidean space and the inner product space Rn. Concretely, after choosing a point in Euclidean space to
be the origin, Euclidean space is indistinguishable from Rn.

6

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

The problem is that we can create infinite such correspondences. A good amount of bugs in imple-
mented robotics algorithms boil down to erroneously assuming that two vectors are in the same reference
frame.

Definition 3 (Cartesian Coordinates). Identifying a point in Euclidean space with the zero vector of Rn,
and defining an orthogonal basis for Rn equips Euclidean space with Cartesian coordinates.

The fact that Euclidean space may be numerically handled through a Euclidean vector space Rn gives
us something else: a notion of distance. This distance is known as Euclidean distance, and is the usual
distance derived from the dot product (see Section A.1). Once we have a notion of distance, we are able to
define a topology (see Appendix C.1) on Euclidean space, which leads to mathematical descriptions of
motion in Euclidean space through the tools of calculus.

1.3 Summary & Preview

1. Points in three dimensional space (or the two dimensional plane) do not have intrinsic coordinates.
These points form a real affine space.

2. Every cartesian coordinate frame assigns its own unique coordinate to a point in n-dimensional space.
These coordinates form a real coordinate space Rn that possesses an inner product, a norm, and a
metric.

3. The same point in space can have multiple coordinates, each corresponding to a different frame.

4. We can relate descriptions of the same point in space in different coordinate frames via rigid coordinate
transformations.

5. We can describe the motion of multiple points on a moving rigid body occurs by describing the motion
of a body-fixed coordinate frame.

Definition 4 (Group). A group G is a set together with a binary operation · that satisfies the following
properties for all a, b, c ∈ G:

(i) Closure: a · b ∈ G;

(ii) Associativity: a · (b · c) = (a·)b · c;

(iii) Existence of identity element e ∈ G such that a · e = e · a = a;

(iv) Existence of inverse element d ∈ G such that d · a = a · d = e.

1.4 Cartesian Coordinates

We’ve seen the an n-dimensional Euclidean space consists of a collection of points, together with the notion
of translation as implied by a inner product space Rn.

This inner product helps identify whether two translations are collinear or not, in effect defining parallel
lines in Euclidean space.

Definition 5 (Cartesian Coordinates). Identifying a point in Euclidean space with the zero vector of Rn,
and defining an orthogonal basis for Rn equips Euclidean space with Cartesian coordinates.

1.4.1 Body-Fixed Frames

We may define a coordinate frame that moves with a rigid body in Rn by choosing n+1 non-trivial points on
the rigid body. One point becomes the origin, the remaining points define n independent basis vectors. For
3D, we need four points. Every point on the rigid body can then be assigned a unique coordinate relative
to this frame which is constant for all time.

This frame is known as a body-fixed frame. Unless specified, we assume that the n independent basis
vectors are orthogonal and normal, so that the frame is a cartesian frame.

Table of Contents 7

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

1.5 Homogenous Transformations

Example 1 (Robot And Camera). A robot needs to pick something up, and a camera tells it where it is. If
the robot and camera are using different reference frames, how do you convert the position from the camera
into a position that makes sense for the robot?

Let pA and pB be the coordinates of a point p in frames A and B respectively. We want a to find a map
g:Rn 7→ Rn such that pA = g(pB) for any point p in Euclidean space. The following theorem says that such
a map must necessarily be affine.

Theorem 1 (Ulam-Mazur). Let U , V be normed spaces over R. If mapping g:U 7→ V is a bijective isometry,
then g is affine.

Corollary 2. Any coordinate transformation g between a pair of three dimensional cartesian coordinate
spaces X and X ′ with the same orientation is parametrized by a pair (d,R) where d ∈ R3 and R ∈ SO(3).
Thus, g(p) = Rp+ d.

Proof. Assignment.

Problem 1 (HW 2). Prove Corollary 2
Hint: Given two coordinates pA and qA, and a map g that maps them to coordinates pB and qB respectively,
what properties of coordinates pB and qB hold independent of the map g?

Problem 2 (HW 2). Show that for two given cartesian coordinate frames, the parameters (d,R) of the
coordinate transformation are unique.

Problem 3 (HW 2). Let the affine transformation from frame A to frame B be parametrized by (d,R).
Express the affine transformation that maps coordinates in frame B to coordinates in frame A in terms of
R and d?
[Aside: Why is the derivation of this expression valid?]

The unique transformation that maps a point’s coordinates in one frame to its coordinates in another
frame is an affine map. We can convert this affine map between two Euclidean spaces of dimension 3 into a
linear map between two subsets of R4.

Define a homogenization h:R3 7→ R4

(1.3)h
(
pA
)

=

[
pA

1

]
.

We refer to the vector h
(
pA
)

as the homogenous representation of coordinate pA. The transformation
between homogenous representations of coordinates in different frames is linear. Mathematically, if pA =
RpB + d, then

(1.4)h
(
pA
)

=

[
R d
0 1

]
h
(
pB
)
.

The matrix

[
R d
0 1

]
represents a homogenous transformation, and forms a group.

Definition 6 (Special Euclidean Group). A rigid motion is a pair (d,R) where d ∈ R3 and R ∈ SO(3). The
group of all rigid motions is known as the Special Euclidean Group and is denoted by SE(3). We see
that SE(3) = R3 × SO(3).

1.5.1 Notation

The superscript of a coordinate denotes the frame it is defined in. The coordinate transformation that takes
points in frame B to frame A is denoted as (dAB , R

A
B), so that

pA = RABp
B + dAB .

Table of Contents 8

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

e1
A

e2
A

e1
B

e2
B

45◦

Example 2 (Coordinate Transformation). Find pB if pA =
(1, 1, 0).
Solution:

If these vectors have coordinates vA1 , vA2 , and vA3 , then R =[
vA1 vA2 vA3

]
, or

e1
B =

1√
2
e1
A −

1√
2
e2
A

e2
B =

1√
2
e1
A +

1√
2
e2
A

e3
B = 1 · e3

A

=⇒ R = TAB =

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

Therefore,

pB =
(
TAB
)−1

pA = TBA p
A =

 0√
2

0

� �

1.6 Rigid Body Pose

We have shown that given two frames A and B, there’s a unique affine transformation (d,R) that maps
coordinates of a point in frame B to its coordinates in frame A, where R ∈ SO(3) and d ∈ R3. Given any
other frame C, the transformation that maps coordinates of frame C into coordinates in frame A is given
by a transformation (d′, R′) where (d′, R′) 6= (d,R). Since the affine transformation is unique for any frame,
the pair (d,R) serves as a configuration of frame B in frame A.

Since we can associate a coordinate frame to a rigid body, we can associate the configuration of that
frame to the rigid body. Therefore, the configuration of any rigid body in some coordinate frame, also known
as its pose, is described by a pair (d,R) where R ∈ SO(3) and d ∈ R3. This pair is associated with the rigid
body, and it comes from the body-fixed coordinate frame.

1.6.1 Rotations

The matrix R is an element of SO(3), which is a subset of the more general linear group GL(R3). The group
GL(R3) is the space of linear bijective transformations between R3 7→ R3 with functional composition as
the group operation. The matrix R, which is part of the pose of a rigid body, is known as the orientation
matrix, and exactly gives the orientation of one rigid body with respect to another.

We have seen one interpretation of R as a map from one frame to another frame rotated with respect
to the first. Since the map is unique, R also serves to represent the orientation of the second frame with
respect to the first. A rotation matrix can also represent a rotation within the same (or current) frame.

Most important property: RT = R−1

The rotation matrix is effectively defining a basis for R3.

Definition 7 (Basis). A basis B of a vector space V over a field F is a linearly independent subset of V
that spans V .

An orthonormal bases has unit elements and mutually perpendicular vectors.
The relationships for change of bases from linear transformation has direct interpretations in terms of

rotation operations.

Table of Contents 9

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Similarity Transform

A similarity transform maps the representation of that linear transformation into another coordinate frame.
Suppose TA represents a linear map defined in frame A. Let the orientation of frame B with respect to
frame A be RAB . Then the same linear map in frame B is given by matrix TB

TB =
(
RAB
)−1

TA RAB

=⇒ TA = RAB TB
(
RAB
)−1

=⇒ TB = RBA TA
(
RBA
)−1

=⇒ TA =
(
RBA
)−1

TB RBA

1.6.2 Basic Rotations

Consider three frames rotated about each one of the world frame axes by an angle θ.
Each rotation is given by

Rx,θ =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

Ry,θ =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

Rz,θ =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

1.6.3 Composition of Rotations

We can consider a rotation matrix to represent a rotation relative to a frame. Consider a rigid body in frame
A, where its frame is coincident with that of A. We perform a rotation corresponding to rotation matrix
R1. The rigid body’s frame is now different from frame A, and we call it frame B. We perform a second
rotation corresponding to a matrix R2, say R2 = Rx,π/3. However, this rotation can be applied in two ways
to our rigid body, depending on which frame R2 is relative to: the original frame A, or the frame B that
is coincident with the body. We get two different final poses for the rigid body depending on which one we
choose.

Current Frame

If the rotation R2 is relative to the current frame of the rigid body (frame B), then the combined effect of
the two successive rotations in frame A is a post-multiplication of the sequence of rotations: R1 then R2.
That is, R′ = R1R2.

Fixed Frame

If the rotation R2 is relative to the fixed frame A, then the combined effect of the two successive rotations
in frame A is a pre-multiplication of the sequence of rotations: R1 then R2. That is, R′′ = R2R1.

How to derive: We have a rotation R2 in frame A. We can express it in frame B via a similarity transform

R3 = R−1
1 R2R1

. We’ve converted the rotation in frame A to its representation in frame B, so that the sequence of rotations

Table of Contents 10

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

are with respect to the current frame.

R′′ = R1R3 (1.5)

= R1

(
R−1

1 R2R1

)
(1.6)

= R2R1 (1.7)

Non-commutation

Since matrix multiplication is non-commutative, in general R′ 6= R′′.

m

Lc1

x0

y0

x1

y1

x2

y2

x4

y4

q1

Figure 1.1: We may view frame {2} as the result of a) a rotation in frame {0} followed by translation in
frame {1}, or b) same translation but in frame {0} producing {4}, followed by same rotation but in frame
{0}, which moves {4} to {2}.

Example 3 (Simple Pendulum). Consider the simple pendulum with mass m in Figure 1.1. Our goal will be
to describe the transformation from frame {2} to frame {0}, denoted T 0

2 . We may view this transformation as
a sequence of two simpler transformations: a rotation and a translation. Let’s refer to these transformations
as HT and HR given by

HT =

[
I d
0 1

]
, HR =

[
R 0
0 1

]
,

where

d =

Lc10
0

 , R = Rz,q1 .

The key idea is that the frames we define them in, and the order in which we combine them, have to be
consistent.

By looking at the figure, we see that
T 0

1 = HR.

In other words, to get to frame {1} from frame {0}, we need to rotate frame {0} by q1 radians about the
z-axis. We can also see that

T 1
2 = HT .

In words, to get to frame {2} from frame {1}, we need to translate along the x-axis by Lc1 units (meters,
usually). Therefore, we may see that to get from {0} to {2}, we can define a rigid body motion HR relative
to {0}, and then a rigid body motion relative to {1} of HR (intrinsic motion, or motion relative to current
frame). Using our rule of post-multiplication for a sequence of intrinsic motions, or motions relative to the
current frame, we get that we must post-multiply HR by HT :

T 0
2 = HR︸︷︷︸

first

HT︸︷︷︸
(second, intrinsic/current)

=

[
R Rd
0 1

]
.

Table of Contents 11

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

We get the same result by viewing the sequence from the fixed-frame, but now the translation happens
first, so that we are pre-multiplying HT by HR:

T 0
2 = HR︸︷︷︸

(second, fixed)

HT︸︷︷︸
first

=

[
R Rd
0 1

]
.

If we pre-multiplied the current-frame sequence, meaning HT pre-multiplies HR instead of the correct
post-multiplication, we would instead get a frame whose origin is on the x-axis of {0}, at d, with the right
orientation:

(incorrect pre-multiplication by current-frame motion) HTHR =

[
R d
0 1

]
6= T 0

2 (1.8)

Again, this premultiplication is a reversal of the right sequence of motions, viewed from two frames.
�

1.6.4 Parametrizations of SO(3)

Although the representation R has nine elements, the space SO(3) is three dimensional. One way to see
this is to note that RTR = I, which introduces six constraints on the elements of R. We now look at two
popular ways to parametrize R as a three-dimensional vector.

Euler Angle Representation

Euler angles consist of three angles corresponding to three consecutive basic rotations. These rotations either
use two axes (proper Euler) or three axes (Tait-Bryan). Furthermore, we may designate the rotations to be
with respect to a world frame (extrinsic) or the body frame (intrinsic).

Proper Euler: There are six proper Euler conventions:

1. X-Y-X (Rotate about X, then Y, then X again)

2. X-Z-X

3. Y-X-Y

4. Y-Z-Y

5. Z-X-Z

6. Z-Y-Z (Common in astrophysics)

These are doubled when considering intrinsic (body-frame) and extrinsic (world-frame) rotations.

Tait-Bryan:

1. X-Y-Z

2. X-Z-Y

3. Y-X-Z

4. Y-Z-X

5. Z-X-Y

6. Z-Y-X

Also double if you allow both intrinsic and extrinsic rotations. This representation includes the yaw-roll-
pitch method common in aerospace literature. Instead, if someone says roll-pitch-yaw, then we have different
numerical values.

The main drawback of Euler-angles: non-uniqueness of values of three angles at singular points.

Table of Contents 12

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Axis/Angle Representation

This representation is related to quaternions. The idea is that any orientation in a frame can be reached by

rotating a coordinate frame by some angle θ ∈ [0, 2π) around some vector
−→
k ∈ R3 in that frame. How do

we represent that orientation?
Consider a frame C identical to the world frame A. Define β, rotation of C about world y, then α,

rotation of C about world z that aligns world zC with
−→
k . In effect, β and α parametrize the unit-norm

3-dimensional vector
−→
k . Then RAC = Rz,αRy,β . We want to find the rotation matrix Rk,θ in frame A

corresponding to a rotation about
−→
k , given that it represents a rotation about zC in frame C by θ.

RAC = Rz,αRy,β .

Rk,θ = RACRz,θ
(
RAC
)−1

(
using TA = RAB TB

(
RAB
)−1
)

Rk,θ = Rz,αRy,βRz,θRy,−βRz,−α.

Table of Contents 13

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

0A

xA

yA

zA

−→
k

θ

xB

yB

zB

(a) Axis-Angle Rotation: Before

0A

xA

yA

zA

−→
k

θ

xB

yB

zB

(b) Axis-Angle Rotation: After

0A

xA

yA

zA

−→
k

θ

x′

y′

z′

xB

yB

zB

xk

yk

zk

β

α
x′′

(c) Axis-Angle Rotation: β and α. Rotate a copy of the
world frame about world y by β, then rotate the result
about world x by α. The final result is the x′ − y′ − k
frame. The vector x′′ lies in both the world x − y plane
and the plane formed by vectors k and x′.

Figure 1.2: Axis/Angle Rotations

Table of Contents 14

Chapter 2

Kinematics

2.1 Kinematic Chains

Kinematic chains consist of a set of rigid bodies connected to each other through joints. Start with a base
rigid body that’s so massive it’s fixed. We typically call this the world or inertial frame.

Types of Kinematic Chains:

• Open / Closed

• Serial / Parallel

Simple Joints:

• Prismatic

• Revolute

2.1.1 Serial Kinematic Chains

• We look at serial kinematic chains where all joints are simple.

• We number links as 0 for base to n in sequence.

• The assumption of single-parameter joints means we can use basic transformations to handle coordinate
transformations.

• These basic transformation are denoted Ai(qi), where qi ∈ R is the joint variable.

• qi is either an angle θi or a distance di, depending on the type of simple joint.

Given link i and i− 1,

(2.1)Ai =

[
Ri−1
i oi−1

i

0 1

]
Transformations between links i and j is T ij , where we are expressing frame j in frame i.

(2.2)T ij =

Ai+1Ai+2 · · ·Aj−1Aj i < j

I i = j(
T ij
)−1

i > j

Since we don’t want to manually compute Ri−1
i for each qi, we use our previous tricks of composing

rotations etc.

2.1.2 Denavit-Hartenberg Convention

The Denavit-Hartenberg (D-H) Convention is a popular convention that facilitates consistent communication
of robot manipulator information. In this convention

15

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

• All motion happens along the z axis

• Four numbers are enough to define relative link transformations (instead of 6 or 12).

When introducing the D-H convention, we typically consider a n-link serial manipulator. Recall that the
n moving links are numbered 1 to n, with the reference frame 0 attached to the base (typically not moving).
Therefore, we may define n+ 1 frames where

• Frame i is rigidly attached to link i

• Frame i moves relative to link i− 1 about joint i

• The frame i− 1 is located such that the axis of motion of link i at joint i is defined by zi−1

A consequence of this choice is that

• The location of the frame i that is rigidly attached to link i depends on how and where link i + 1 is
attached to it!

• The final link has no ‘successor’ or ‘child’ link. It’s frame is called the end-effector frame, or the tool
frame. Without a (n+ 1)

th
link, we define this frame based on the application or end-effector. For

two-fingered grippers, the z-axis, or approach axis is parallel to the fingers, since we approach objects
to be gripped by moving along this direction. the y axis is the sliding axis, since fingers slide along y
to open or close the grip.

The D-H convention is based on two restrictions:

(DH1) The x1 axis intersects the z0 axis.

(DH2) The x1 axis is orthogonal to the z0 axis.

This restriction makes the transformation matrix between link i and i− 1 given in (2.1) reduce to

(2.3)Ai = Rotz,θiTransz,diTransx,aiRotx,αi

While the numbering of frames and joints seems a bit arbitrary, we need to get it straight when con-
structing the geometric Jacobian in Section 2.3.1.

2.2 Velocity of Frames

We assign coordinates – aka rigid body pose – (d,R) to frame, relative to reference.
d ∈ R3, R ∈ SO(3). If the rigid body pose tells us where a frame is located, its position, what is the
rate-of-change of the position? For a position vector in Rn, we know that the rate of change of position is
another vector in Rn, called the velocity. However, the coordinate (d,R) is not a vector!

2.2.1 Linear Velocity

If the position of the origin of one frame in another is given by some a time-varying quantity x(t), where
x(t) ∈ R3 for all t, then the linear velocity of the latter frame in the former is simply ẋ(t), the usual notion
of a velocity.

2.2.2 Angular Velocity

Unlike the rate-of-change of the position of the origin of a frame, the rate-of-change of the orientation of a
frame is a more complicated object. If the orientation is time-varying, say R(t), it turns out that

Ṙ(t) = S(t)R(t),

where S(t) satisfies S(t) +S(t)T = 0 for each t. The matrix S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for three numbers ω1, ω2, ω3 Physically, the vector ω =

[
ω1 ω2 ω3

]T
defines the instantaneous angular

velocity of the frame whose coordiantes are (d(t), R(t)) in the reference or base frame.

Table of Contents 16

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

2.2.3 Task-space Velocity

There’s a one-to-one relationship between a vector R3 and the set of 3×3 skew-symmetric matrices. Therefore,
we can represent the rate of change of orientation using an angular velocity. So, when a task is x(t) =
(d(t), R(t)) ∈ R3 × SO(3), its velocity i s

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity

2.2.4 Derivation

A frequent computation in robot motion is to determine the velocity of the end-effector frame ξ given the
rates of change q̇ of the joint angles q. This relationship is linear, and takes the form

ξ = J(q)q̇,

where J(q) is a configuration-dependent matrix called the Jacobian.
To compute ξ, we therefore need to know J(q). We now show that J(q) in most cases may be derived

using frame-transformations similar to the forward kinematics problem.
The core computation involves deriving the linear and angular velocity of a frame {2} that is fixed in frame

{1}, if we know the linear and angular velocity of the frame {1} relative to a fixed frame {0}. Frame {0} is
not arbitrary; it is chosen to be coincident with {1} at the instant of time we are considering. Specifically, for
an observer in frame {0}, the linear and angular velocity of frame {1} are v1

0 and ω1
0 respectively. Figure 2.1

depicts this situation.

o0

x0

y0

z0

o1
2

x2

y2

z2

x1

y1

z1

Figure 2.1: Frame {1} moves with respect to fixed frame {0}. Frame {2} is fixed in frame {1}.

Note two things about this setup. First, o1
2 and R1

2, which define the location of frame {2} in frame {1},
are constants. Second, o0

1 = 0 ∈ R3, and R0
1 = I ∈ SO(3), however these my not be constants, due to the

velocity of frame {1} as seen in frame {0}.
Our goal is to compute v0

2 and ω0
2 , the linear and angular velocity of frame {2} as observed in fixed frame

{0}. We may rewrite o1
2 as the seemingly pointless expressions :

o0
2 = o0

1 +R0
1o

1
2, (2.4)

R0
2 = R0

1R
1
2. (2.5)

Their value comes when we differentiate them with respect to time. Doing so, we obtain

v0
2 = v0

1 + ω0
1 ×R0

1o
1
2 (2.6)

= v0
1 + ω0

1 × o0
2, (2.7)

Table of Contents 17

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

and

[ω0
2]R0

2 = [ω0
1]R0

1R
1
2 (2.8)

=⇒ [ω0
2] = [ω0

1]R0
2 (2.9)

=⇒ ω0
2 = ω0

1 (2.10)

Therefore, we only need to know o1
2 = o0

2 to derive v0
2 and ω0

2 given v0
1 and ω0

1 . The link to joint velocity is
as follows. in our conventions, the single degree of freedom of motion q of a frame {1} relative to {0} always
occurs about the z axis of frame {0} (same as that of frame {1}, so that either

v0
1 =

0
0
1

 q̇, ω0
1 = 0, or v0

1 = 0, ω0
1 =

0
0
1

 q̇ (2.11)

2.2.5 Another Derivation

Consider a fixed frame {s}. Point mass mi is located at position ri ∈ R3 in frame {s}. These point masses
all move rigidly relative to one another, but are not rigidly connected to the origin of {s}. Let dij be the
constant distance between mi and mj . Then

(ri − rj)
T (ri − rj) = d2

ij (2.12)

=⇒ (ri − rj)
T (ṙi − ṙj) = 0 (2.13)

(2.14)

Let’s pick four points ri for i ∈ {0, 1, 2, 3}, where no 2D plane contains all four points. We define all
positions and velocities relative to r0 and v0 = ṙ0, and simplify the notation by defining

ri0 = ri − r0, vi0 = ṙi − ṙ0 = vi − v0 (2.15)

The distance constraints between r0 and ri for any index i then becomes

rTi0vi0 = 0 (2.16)

We may rewrite the distance constraint between ri and rj as follows:

(ri − rj)
T (vi − vj) = ((ri − r0)− (rj − r0))

T
((vi − v0)− (rv − v0)) (2.17)

= (ri0 − rj0)T (vi0 − vj0) (2.18)

= rTi0vi0 + rTj0vj0︸ ︷︷ ︸
0

−rTj0vi0 − rTi0vj0 (2.19)

= −rTj0vi0 − rTi0vj0 (2.20)

=⇒ rTj0vi0 = −rTi0vj0 (2.21)

Therefore, given the four position vectors ri for i ∈ {0, 1, 2, 3}, they define six relative velocity constraints,
corresponding to choosing pairs from a set of four.

Since we chose ri for i ∈ {0, 1, 2, 3} to be non-coplanar, we know that the three vectors r10, r20, r30 are
mutually independent, and therefore form a basis for R3. If we define the matrix

Msb =
[
r10 r20 r30

]
,

then
Ṁsb =

[
v10 v20 v30

]
.

We know that Msb is invertible, and any point rj in {s} can be rewritten as rj = r0 +Msbα, for some α ∈ R3.
We know α to be the coordinates of rj in a frame {b} defined by points ri for i ∈ {0, 1, 2, 3} on the rigid
body.

Table of Contents 18

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

We may compute the matrix product S given by

S = MT
sbṀsb (2.22)

=

rT10

rT20

rT30

3×3

[
v10 v20 v30

]
3×3

(2.23)

=

rT10v10 rT10v20 rT10v30

rT20v10 rT20v20 rT20v30

rT30v10 rT30v20 rT30v30

 (2.24)

=

 0 rT10v20 rT10v30

rT20v10 0 rT20v30

rT30v10 rT30v20 0

 (2.25)

=

 0 −rT20v10 rT10v30

rT20v10 0 −rT30v20

−rT10v30 rT20v30 0

 (2.26)

=

rT30v20

rT10v30

rT20v10

 (2.27)

Therefore, S = [ω] ∈ so(3), where ω =
[
rT30v20 rT10v30 rT20v10

]T ∈ R3.
We may now ask, given any point rj 6= ri for i ∈ {0, 1, 2, 3} on the rigid body we have been looking at,

what will its velocity vj be? Remember, all these points and vectors are in frame {s}. We derive the answer
by using the relative position rj0 and velocity vj0, and applying the derived rule in (2.21):

rTi0vj0 = −vTi0rj0, for i ∈ {1, 2, 3} (2.28)

=⇒

rT10

rT20

rT30

3×3

vj0 = −

vT10

vT20

vT30

3×3

rj0 (2.29)

=⇒ MT
sbvj0 = −ṀT

sbrj0 (2.30)

=⇒ vj0 = −
(
M−1
sb

)T
ṀT
sbrj0 (2.31)

=⇒ vj = v0 −
(
M−1
sb

)T
ṀT
sbrj0 (2.32)

This expression holds for any point rj , once we have chosen any four points ri for i ∈ {0, 1, 2, 3}. We can
simplify this expression by picking the four points to form an orthonormal basis, in which case MT

sb = M−1
sb ,

and with the right ordering, detMsb = 1. In other words, Msb = Rsb ∈ SO(3). Recall that

S = MT
sbṀsb = RTsbṘsb (2.33)

=⇒ ST = −S = ṘTsbRsb (2.34)

=⇒ ṘTsb = −SRTsb (2.35)

Then, we may rewrite the expression for vj as

vj = v0 −RsbṘTsbrj0 (2.36)

= v0 +RsbSR
T
sbrj0 (2.37)

= v0 +Rsb[ω]RTsbrj0 (2.38)

= v0 + [Rsbω]rj0, (2.39)

where ω =
[
rT30v20 rT10v30 rT20v10

]T
. We now rename ω to be ωb, the body angular velocity of the frame

{b} defined by Rsb and r0. Then, ωs = Rsbω = Rsbωb is the spatial angular velocity.

Table of Contents 19

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Putting it all together, given a set of points moving in frame {s} with constant distance to each other,
we can pick a point r0 whose velocity is v0 as a reference. Then, we pick three points whose relative position
vectors with r0 form an orthonormal basis for R3. The position of these points relative to r0 (as viewed in
{s}) points define a matrix Rsb. Their velocities relative to v0 define a body angular velocity ωb. Given
this construction, for any point with coordinates p in the frame {b}, we can derive its position in velocity in
frame {s} as

rj = r0 +Rsbp (2.40)

vj = v0 + [ωs]Rsbp, where (2.41)

ωs = Rsbωb = Rsb

rT30v20

rT10v30

rT20v10

 . (2.42)

In the equations above, all objects except p are defined in {s}.
The velocity vb of the origin of {b} relative to {s} as seen in {b} is vb = RTsbv0. Note that ωb may be

derived from quantities only measured in frame {b}. In frame {b}, if the observed position and velocity of
point j are r̄j and v̄j respectively, given by

r̄j = RTsb(rj − r0) (2.43)

v̄j = RTsb(vj − v0), (2.44)

then,

ωb =

r̄T3 v̄2

r̄T1 v̄3

r̄T2 v̄1

 . (2.45)

Therefore, the velocity of the frame {b} relative to frame {s} can be observed in frame {b}, and will be given
by the vectors vb, ωb, which form the body twist of {b}.

Note that we have also shown that Ṙsb = RSb[ωb] = [ωs]RSb. If we knew this ahead of time, we would
be able to derive

rj = r0 +Rsbpb (2.46)

=⇒ vj = ṙ0 + Ṙsbpb +Rsb ṗb︸︷︷︸
0

(2.47)

= vo + [ωs]Rsbpb (2.48)

To summarize, we have shown that the position and velocity of all points on a rigid body may be expressed
using the position and velocity of the origin, and the orientation and angular velocity of a frame rigidly fixed
to this body.

2.3 Geometric and Analytic Jacobians

Forward and inverse kinematics are about creating the map T 0
n(q) that provides the end effector pose(

o0
n(q), R0

n(q)
)
. if we view the end-effector as the task coordinates x, then forward kinematics is about

computing x given joint angles q, which we represent as the map f where

x = f(q).

In a similar way, when the link variables q change with time as q̇, what is the ‘velocity’ ξ of the end
effector? When the orientation of x is given by a vector of three numbers α, then ξ = ẋ. We may analytically
derive a linear relationship ξ = ẋ = ∂f

∂q q̇ = Ja(q)q̇ , and the Jacobian Ja(q) is called the analytic Jacobian.
An alternative is to take velocity ξ as the linear velocity of the origin of the end-effector frame, together

with the angular velocity of that frame, where coordinates of these velocities are in the base frame. Again,
we may derive a linear relationship,

ξ = J(q)q̇,

Table of Contents 20

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

however J(q) is not the partial derivative of any function, but is derived geometrically. It is therefore called
the geometric Jacobian.

2.3.1 Geometric Jacobian

We represent the end effector velocity as (v0
n, ω

0
n), where

(2.49a)v0
n = ȯ0

n

(2.49b)S(ω0
n) = Ṙ0

n

(
R0
n

)T
We saw that the desired characterization of the velocity ξ of the end effector is linear in the rate of change

of q. That is,

(2.50)ξ =

[
v0
n

ω0
n

]
= Jq̇ =

[
Jv
Jω

]
q̇,

where J is the geometric Jacobian. Note that some texts, like Modern Robotics, choose to put the angular
velocity first, and linear velocity second. The variable q̇i corresponds to the ith degree of freedom (DoF). In
the D-H convention, this motion along the ith DoF occurs relative to the z-axis of the i− 1th frame, which
is called joint i. In the convention adopted by URDFs and the Modern Robotics text, motion along the ith

DoF occurs relative to the z-axis of the ith frame.
This section follows the D-H convention. We derive the Jacobian column-by-column, where the ith column

corresponds to the ith joint variable derivative q̇i. To derive this ith column, we assume that only q̇i 6= 0, and
all other joints are locked. As a consequence, frame i − 1 is a fixed frame relative to the base frame, while
link i is moving since q̇i 6= 0. Moreover, the end-effector is fixed with respect to link i, and so its motion
is completely determined by q̇i. The velocity of this motion we consider is given by q̇i relative to axis zi−1,
the z-axis of frame i − 1. Therefore, applying (2.11), we may compute the linear and angular velocity of
the end-effector frame due to q̇i, when all other joints are locked. This computation leads to finding the ith

column Jvi of Jv to be

(2.51)Jvi =

{
zi−1 , if joint i is prismatic

zi−1 × (on − oi−1) , if joint i is revolute

We compute the ith column Jωi of Jω as

(2.52)Jωi
=

{
0 , if joint i is prismatic

zi−1 , if joint i is revolute

Here, we see that when constructing the ith column of j, which corresponds to the ith joint (and, so,
ith joint variable), we need to look at frame i − 1, which is located along joint i. Note that J is actually a
function J(q), since the axes zi, i ∈ {1, . . . , n} depend on q.

Example 4 (Planar Elbow Manipulator). Consider the two-degree of freedom planar elbow manipulator
shown in Figure 3.1. According to the D-H convention, Since there are two (moving) links, we have three
frames:

1. Frame {0} attached to the base

2. Frame {1} attached to link 1

3. Frame {2} attached to link 2

Let ci = cos qi, si = sin qi, cij = cos(qi + qj), sij = sin(qi + qj). We denote e3 =
[
0 0 1

]T
. Given any

value of q1 and q2, we can determine that

T 0
1 =

c1 −s1 0 L1c1
s1 c1 0 L1s1

0 0 1 0
0 0 0 1

 , T 0
2 = T 0

1 T
1
2 = T 0

1

c2 −s2 0 Lc2
s2 c2 0 0
0 0 1 0
0 0 0 1

 =

c12 −s12 0 L1c1 + Lc2c12

s12 c12 0 L1s1 + Lc2s12

0 0 1 0
0 0 0 1

Table of Contents 21

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

m1, I1

m2, I2

g

L1

Lc1

Lc2

x0

y0

x1

y1

x2
y2

q1

q2

Figure 2.2: D-H Convention

Therefore, in the frame {0}, we have z0 = e3 =
[
0 0 1

]T
, and z1 = R0

1e3 = e3 for any q1. Moreover, we
have

o0 =

0
0
0

 , o1 =

L1c1
L1s1

0

 , o2 =

L1c1 + Lc2c12

L1s1 + Lc2s12

0

 (2.53)

We wish to find v0
2 and ω0

2 as a function of q̇. Since the joints are all revolute, We may derive the geometric
Jacobian J(q) as

J(q) =

[
Jv
Jω

]
=

[
z0 × (o2 − o0) z1 × (o2 − o1)

z0 z1

]
(2.54)

=

0
0
1

×
L1c1 + Lc2c12

L1s1 + Lc2s12

0

 0
0
1

×
L1c1 + Lc2c12

L1s1 + Lc2s12

0

−
L1c1
L1s1

0

0
0
1

 0
0
1

 (2.55)

=

−L1s1 − Lc2s12

L1c1 + Lc2c12

0

 0
0
1

×
Lc2c12

Lc2s12

0

0
0
1

 0
0
1

 =

−L1s1 − Lc2s12 −Lc2s12

L1c1 + Lc2c12 Lc2c12

0 0
0 0
0 0
1 1

 (2.56)

�

For comparison, note the URDF/Modern Robotics convention for assigning frames in Figure 2.4 below.
Simply put, the frames are on the ‘other end’ of the link, which typically makes more sense. However, the
Jacobian will not change. What will change is the label we assign to intermediate terms used to derive
this same Jacobian. With this alternate numbering and location of frames, our expression for the Jacobian

Table of Contents 22

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

would become

J(q) =

[
Jv
Jω

]
=

[
z1 × (o3 − o1) z2 × (o3 − o2)

z1 z2

]

m1, I1

m2, I2

x0

y0

x1

y1

x2
y2

x3
y3

q1

q2

Figure 2.3: URDF frame convention, similar to Modern Robotics [2]. We need an additional frame {3}
at the center of mass of the last link, to get the right Jacobian. The dashed axes of a color represent the
locations of the frames attached to each link according to the D-H convention, for comparison.

2.3.2 Analytic Jacobian

The geometric Jacobian J(q) is not the partial derivative of any map from q to
(
o0
n(q), R0

n(q)
)
. In particular,

the angular velocity ω0
n is usually not the derivative of the coordinates representing the configuration.

Suppose we represent the position and orientation of the end effector using vectors d(q) ∈ R3 and
α(q) ∈ R3, so that

(2.57)X =

[
d(q)
α(q)

]
,

and

(2.58)Ẋ =

[
ḋ
α̇

]
= Ja(q)q̇,

where Ja(q) is known as the analytic Jacobian. It maps the rates of change of the link angles, q̇ to the rates
of change of the chosen configuration X of the end-effector.

To derive it, we use the geometric Jacobian. To do so, note that we can define the angular velocity ω in
terms of the rates of change of a parametrization such as Euler angles. For example, let α be Z − Y − Z
Euler angles (φ, θ, ψ) such that

R(α) = Rz,ψRy,θRz,φ.

Each element rij of R(α) depends on α. Therefore, each element ṙij(t) of Ṙ will depend on α and α̇. Since

Ṙ(α, α̇) = S(ω)R(α),

we may rearrange terms to derive the relationship

ω = B(α)α̇,

where the derivatives α̇ turn out to appear linearly in the expression (see RMC text). Then,

(2.59)J(q)q̇ =

[
v
ω

]
=

[
ḋ

B(α)α̇

]
=

[
I 0
0 B(α)

]
Ja(q)q̇,

Table of Contents 23

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

When detB(α) 6= 0, we can derive

(2.60)Ja(q) =

[
I 0
0 B−1(α)

]
J(q).

2.3.3 Singularities

Once we have an expression for the J , we can use it to find q̇ given some desired values for v0, ω0. To do so,
we must solve

(2.61)ξ = Jq̇

If J is an invertible 6× 6 matrix, we are done. Often, J is not invertible, because it is not square of because
it does not have full rank when square.

Singularities Suppose J ∈ Rm×n, where n is the number of simple joints in a kinematic chain. The rank
of J(q), denoted rank(J), is less than or equal to min(m,n), and the set of reachable velocities is a subspace
with dimension rank(J). Ideally, we want rank(J) = m so that any arbitrary task velocity can be achieved
at any configuration.

This situation fails when J has rank less than the dimension of ξ. The matrix J depends on q, and at some
configurations, J may lose rank. These configurations are known as singularities or singular configurations.

It’s not just that the singular point prevents calculation of q̇, but that J is ill-conditioned near it.

• Some singular points become unreachable under perturbations of the system mechanical parameters.

2.3.4 Decoupling Singularities

For a manipulator comprising a 3-DOF arm and a 3-DOF wrist, the Jacobian J(q) can be made to exhibit a
block diagonal structure that makes studying its singular configurations easier. The main step that achieves
this is to ensure that o6 coincides with the already coincident origins o3, o4, o5. Then,

(2.62)J =

[
J11 0
J12 J22

]
,

and so
(2.63)det J = det J11 det J22.

For the three-link articulated manipulator, we can derive that

(2.64)det J11 = a2a3 sin θ3 (a2 cos θ2 + a3 cos(θ2 + θ3)) .

2.3.5 Inverse Velocity

When n = m, except for singular configurations, there is a 1-1 relationship between joint and task velocities.
In this case, we may directly compute q̇ from ẋ = ξ as

q̇ = J(q)−1ξ. (2.65)

When n > m, there are more degrees of freedom available than the velocities we want to generate. This
situation is known as redundant manipulation. It is not necessary that n > 6 for redundancy in manipulation.
We can have redundancy in a 6 DoF manipulator (n = 6) when m < 6. For example, when the manipulator’s
gripper has a mounted camera, and we only want to orient the camera to observe an object, and the position
is not important. When rank(J(q)) = m, and m < n, we can reach any velocity ξ for the end-effector
frame at configuration q, through some choice of q̇. However the matrix J is not invertible, so we may not
use (2.65).

It can be shown that since rank(J) = m, the matrix product JJT is non-singular. Therefore, to compute
q̇ from ξ, we use the right pseudo-inverse J+ of J , given by

J+ = JT (JJT)−1.

Table of Contents 24

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Clearly, JJ+ = I. In general, however, J+J 6= I.
We may now solve for q̇ given ξ in the redundant manipulation case as

q̇ = J+ξ + (I − J+J)b,

where b ∈ Rn is an arbitrary vector that does not affect ξ. If we want to minimize the norm of q̇, we choose
b = 0. Note that if J is an invertible square matrix, then the expression above reduces to (2.65).

2.3.6 Manipulability

Suppose that ξ ∈ Rm, so that J(q) ∈ Rm×n. We use the minimum norm solution q̇ = J+ξ to obtain link
variable velocities from end-effector velocities.

We can derive
(2.66)‖q̇‖2 = ξT (JJT)−1ξ

If rank(J) = m, so that J is full rank, then we can define a manipulability ellipsoid in Rm as follows. Let
J = UΣV , the singular value decomposition.

Then
(2.67)ξT (JJT)−1ξ = (UT ξ)TΣ−2

m (UT ξ),

in which

(2.68)Σ−2
m =

σ−2

1

σ−2
2

. . .

σ−2
m

Substituting w = UT ξ, we finally get that

(2.69)‖q̇‖2 = wTΣ−2
m w =

m∑
i=1

w2
i

σ2
i

If we look at unit norm velocities in the joint space, these vectors form an ellipsoid defined by σ2
i in the

space w which is a rotated version of ξ.
The manipulability µ is then given by

(2.70)µ = Πm
i=1σi

Example 5 (Planar Elbow Manipulator). Given the Jacobian in Example 4, we find that

µ = |det J | = L1Lc2 |s2|.

When q2, the elbow angle, is small, we have the least ability to move in all directions. Another interpretation
is that when the elbow angle is zero, the kinematics of the two links resemble that of a single link (simple
pendulum). �

Manipulability Ellipsoid

The ellipsoid ξT (JJT)−1ξ = 1 where x is the task-space velocity indicates the motion corresponding to
different unit norm joint velocities. Effectively, the unit norm ball of joint velocities becomes this ellipsoid
in task space. The ellipsoid axes with larger length indicate the directions in which motion is amplified.

2.4 Inverse Kinematics

The inverse kinematics (IK) problem is to find q given X. If the forward kinematics map f , where X = f(q),
is one-to-one, then we may be able to manually derive its inverse f−1 and solve q = f−1(X). Robotics texts
will typically solve the problem for simple robots like the planar elbow manipulator.

Table of Contents 25

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

q1

q2

X1

X2

q∗ (unknown)

qk (current guess)

X (known)

f(qk)

f

f

∆q? ∆q?

qk + ∆q? (possible next guesses) f(qk + ∆q)?

f(qk + ∆q)?

Figure 2.4: In iterative schemes to solve inverse kinematics, we try to choose a step ∆q so that f(qk + ∆q)
is ‘closer’ to X than f(qk).

2.4.1 Optimization-Based Kinematics

Deriving the inverse of the forward kinematics function is usually hard outside the simple cases. Implementing
the forward kinematics is easy, so one approach is to randomly select candidate solutions qcand, compute
f(qcand), and see if it matches X. Instead of random selection, we can use ideas from optimization to search
for the right candidate:

IK: solve min
q

‖x− f(q)‖22︸ ︷︷ ︸
L(q)

(2.71)

In general this problem is nonlinear and non-convex, and different approaches may be implemented to
solve it depending on the robot.

A general method to solve such an optimization problem is using gradient descent, an iterative scheme.
Starting with a guess q0 for the candidate, we take a small step ∆q in some direction that will reduce L(q),
meaning we hope that L(q0 + ∆q) < L(q0). This direction is often take as the negative of the gradient of
L(q). We repeat this process until L(q) ≈ 0, where the gradient after each step changes. So, we repeatedly
solve

qk+1 = qk + ∆q (2.72)

= qk − η ∇qL(q)|q=qk (2.73)

= qk + 2η(X − f(qk)) ∇qf(q)|q=qk , (2.74)

where η is a learning rate or step-size parameter, and ∇q is the gradient with respect to q. Assuming ∇qf(q)
exists and is easy to calculate, qk will converge to a local solution q∗ such that X ≈ f(q∗).

Instead of discrete steps, we can solve an ODE:

q̇(t) = η(X − f(q))∇qf(q). (2.75)

We expect the ODE solution to approach a solution to the IK problem as t→∞.

2.4.2 Differential Inverse Kinematics

With recent advances in software for machine learning, it has become increasingly realistic to obtain gradients
of complicated functions f(q), using a technique called automatic differentiation (AD). Before AD, finding
the gradient was nearly impossible, and even then it might be expensive to compute depending on f(q).

Table of Contents 26

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

For the case where ∇qf(q) is not obtainable, how do we solve the optimization problem in (2.71)? The
key insight is that we can obtain a step ∆q in the joint space by applying inverse velocity kinematics to a
step ∆X in the task space. A good step ∆X is easy to choose:

∆X = X − f(qk), (2.76)

which is the direction from our current guess f(qk) to our target X. Then,

∆q = J(qk)+∆X = J(qk)+
(
X − f(qk)

)
, (2.77)

qk+1 = qk + ∆q (2.78)

= qk + ηJ(qk)+
(
X − f(qk)

)
, (2.79)

Instead of discrete steps, we can solve an ODE:

q̇(t) = ηJ(q(t))+ (X − f(q(t))) . (2.80)

Dropping the arguments to simplify the expression we get

q̇ = ηJ+ (X − f(q)) . (2.81)

This ODE is easy to implement since f(q) is easy to implement.

2.4.3 Trajectory Inverse Kinematics

Instead of a static target X, we may want to solve the IK problem for a trajectory X(t). That is, we want
to find a trajectory q(t) such that f(q(t)) = X(t) for all times t for which X(t) is defined. In that case, we
modify the inverse kinematics rule to solve

q̇(t) = ηJ(q(t))+ (ξ(t) + (X(t)− f(q(t)))) . (2.82)

where ξ(t) is the task velocity at time t. Dropping the arguments to simplify the expression we get

q̇ = ηJ+ (ξ + (X − f(q))) . (2.83)

We may interpret this approach as integrating q̇(t) = J+ξ(t) to produce q(t), but with an additional corrective
term based on the error between X(t) and f(q(t)).

2.5 Spatial and Body Jacobians

When the velocity of a frame is expressed using spatial or body twists, then we need a different set of
Jacobians to map q̇ to these twists. These are the spatial Jacobian Js and the body Jacobian Jb respectively.

The definitions of twists and formulae are in the text [2], and we apply the computations to the planar
elbow manipulator below.

Example 6 (Spatial and Body Jacobians). We need the joint axes to be represented as screws Bi in the
body frame of the end effector (for body Jacobian) or screws Si in the base frame (for spatial Jacobian),
when the joint angles are zero.

Once we have either these space vectors, a standard formula may be applied for different values of q. We
start with M , the transformation Tsb when q = 0. By inspection,

M =

1 0 0 (L1 + L2)
0 1 0 0
0 0 1 0
0 0 0 1

 (2.84)

Table of Contents 27

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

m1, I1 m2, I2

xb

yb

x1

y1

x2

y2

xb

yb

L1 = 1 L2 = 1

Figure 2.5: Length units are in meters. The spatial fixed frame {s} coincides with {1}.

Because these are revolute joints with zero pitch, we can identify screw axis S1 and S2 as

S1 =

[
z1

−z1 × o1

]
=

0
0
1
0
0
0

 , S2 =

[
z2

−z2 × o2

]
=

0
0
1
0
−L1

0

 (2.85)

Similarly, we may identify B1 and B2 as

B1 =

[
z1

−z1 × (o1)

]
︸ ︷︷ ︸

coords in frame {b}

=

0
0
1
0

L1 + L2

0

 , B2 =

[
z2

−z2 × (o2)

]
︸ ︷︷ ︸

coords in frame {b}

=

0
0
1
0
L2

0

 (2.86)

We may check that these derivations satisfy the general relationship

Bi = AdM−1Si.

Note that

M−1 =

1 0 0 −(L1 + L2)
0 1 0 0
0 0 1 0
0 0 0 1

 =

[
R p
0 1

]
(2.87)

=⇒ AdM−1 =

[
R 0

[p]R R

]
=

[
I 0
[p] I

]
=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 (L1 + L2) 0 1 0
0 −(L1 + L2) 0 0 0 1

 (2.88)

With the screw axes derived, we can construct the Jacobians Js and Jb, where we need to combine the screw
axis, M , and adjoint mappings. Specifically, the ith column Jsi of Js is given by

Jsi = Ad
e[S1]q1 ···e[Si−1]qi−1 (Si), for i = 2, . . . , n (2.89)

Table of Contents 28

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

, and Js1 = S1. For our planar manipulator, we therefore just need to work through Js2. To do so, note that

[S1] =

0

0
1

 0
0
0

0 0

 =

0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (2.90)

=⇒ e[S1]q1 =

[
Rz,q1 0

0 1

]
(2.91)

Therefore,

Js2 = Ade[S1]q1 (S2) =

[
Rz,q1 0

0 Rz,q1

]

0
0
1
0
−L1

0

 =

0
0
1
0
0
0

 (2.92)

=⇒ Js =
[
S1 Js2

]
=

0 0
0 0
1 1
0 −L1 sin q1

0 L1 cos q1

0 0

 (2.93)

=⇒ Js,v =

0 −L1 sin q1

0 L1 cos q1

0 0

 , Js,ω =

0 0
0 0
1 1

 (2.94)

Clearly,

JTsv

Fx0

Fy0
Fz0

 6= [− sin π
4

cos π4

]
, JTsv

Fx3

Fy3
Fz3

 6= [− sin π
4

cos π4

]
(2.95)

The ith column Jbi of Jb is given by

Jbi = Ad
e−[Bb]qn ···e−[Bi+1]qi+1 (Bi), for i = 1, . . . , n− 1, (2.96)

where Jbn = Bn. Now,

e−[B2]q2 =

[
Rz,−q2 α

0 1

]
, (2.97)

where α =

Iq2 + (1− cos q2)

 0 1 0
−1 0 0
0 0 0

+ (q2 − sin q2)

 0 1 0
−1 0 0
0 0 0

2

 0
−L2

0

 (2.98)

=

 q2 1− cos q2 0
cos q2 − 1 q2 0

0 0 q2

+

sin q2 − q2 0 0
0 sin q2 − q2 0
0 0 0

 0
−L2

0

 (2.99)

=

L2 cos q2 − L2

−L2 sin q2

0

 (2.100)

Table of Contents 29

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

To calculate the adjoint, we need to compute

[α]Rz,−q2 =

 0 0 −L2s2

0 0 L2 − L2c2
L2s2 L2c2 − L2 0

 c2 s2 0
−s2 c2 0

0 0 1

 =

 0 0 −L2s2

0 0 L2 − L2c2
L2s2 −L2c2 0

 (2.101)

Therefore,

Jb1 =

[
Rz,−q2 0

[α]Rz,−q2 Rz,−q2

]

0
0
1
0

L1 + L2

0

 (2.102)

=

0
0
1

L1s2

L2 + L1c2
0

 (2.103)

Finally,

Jb =

0 0
0 0
1 1

L1s2 0
L2 + L1c2 L2

0 0

 =⇒ Jb,v =

 L1s2 0
L2 + L1c2 L2

0 0

 , Jb,ω =

0 0
0 0
1 1

 (2.104)

�

2.6 Static Force/Torque Relationships

Let F =
[
Fx Fy Fx nx ny nz

]
be the vector of forces and moments at the end effector, expressed in

the base frame. Let τ be the corresponding vector of joint torques. If the Geometric Jacobian is J(q), then
F and τ are related by

(2.105)τ = JT (q)F

Note that some implementations construct J(q) with the linear portion Jv as the first three rows, and
others place Jω in the first three rows. Note that if the Jacobian is a spatial Jacobian or body Jacobian,
which converts q̇ to spatial and body twists respectively (see the Modern Robotics [2] text), then using F in
JTF would be incorrect.

2.6.1 Derivation

One way to derive this relationship is the principle of virtual work. The idea is to imagine infinitesmal
displacements δX and δq which satisfy the system constraints on motion. These displacements are called
virtual displacements,. The total work done by F and τ when achieving these virtual displacements is

(2.106)δw = FT δX − τT δq.

Since δX = J(q)δq, which is one constraint on the displacements due to the system, we obtain that

(2.107)δw = (FTJ − τT)δq.

The principle of virtual work says for a system in equilibrium, the total work done under any virtual
displacement satisfying the constraints must be zero. Thus, (2.105) holds.

Table of Contents 30

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

m1, I1

m2, I2

x0

y0

x1

y1

x2

y2

x3

y3

F

v

ω

N

π/6
π
4

q1 = π
4

q2 = − 3π
4

Figure 2.6: The first link has length L1 =
√

2m, the second link has length L2 = 1m.

Example 7 (Static Forces To Torques). Consider the planar elbow manipulator in Figure 2.6. The first
link has length

√
2m, the second link has length 1m The configuration is such that q1 = π/4 rad, and

q2 = −3π/4. The origin of the end-effector frame {3} (black) has velocity v, and experiences a force F .
Assume that ‖v‖ = 1, and ‖F‖ = 1.

The body frame is the end-effector {3}. The linear and angular velocities v and ω may be combined to
produce three quantities, based on the frame they are expressed in:

Name Task velocity Spatial Twist Body Twist
angular velocity ω0 ω0 ω3

linear velocity . . . v0 v0 − ω0 × o30 v3

. . . of point o3 o0 o3

Jacobian Task Spatial Body
Symbol J(q) Js Jb

In Figure 2.6, the linear velocity v and angular velocity ω of frame {3} as viewed in frames {3} and {0} are

{3} : v3 =

− sin π
6

cos π6
0

 , ω3 =

 0
0
ωz

 , {0} : v0 =

cos π6
sin π

6
0

 , ω0 =

 0
0
ωz

 . (2.108)

Table of Contents 31

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

From Example 4, we get

J(q) =

[
Jv
jω

]
=

−L1s1 − L2s12 −L2s12

L1c1 + L2c12 L2c12

0 0
0 0
0 0
1 1

 =

0 1
1 0
0 0
0 0
0 0
1 1

 (2.109)

=⇒ v0 =

q̇2

q̇1

0

 , ω0 =

 0
0

q̇1 + q̇2

 =⇒ q̇2 = cos
π

6
, q̇1 = sin

π

6
, ωz = cos

π

6
+ sin

π

6
(2.110)

Consider F , which is a force applied at o3, and no applied external torque (N = 0). In frame {0}, it has

coordinates F0 =
[
Fx0 Fy0 0 0 0 0

]T
. Given ‖F‖ = 1, we get

Fx0
= cos

π

4
, Fy0 = − sin

π

4
.

We may inspect the figure to see that the torque at joint 1 due to F depends only on Fy0 , and is Fy0 · 1,
since the moment arm is 1m.
Similarly, the torque at joint 2 due to F depends only on Fx0 , and is Fx0 · 1, since the moment arm is 1m.

We now see that because F is applied at o3 but with components parallel to {0}, the correct transformation
from F to resulting joint torques needs the Task Jacobian J(q). We use the Jacobian in (2.109) to compute
τ = J(q)TF0 to get

τ =

[
τ1
τ2

]
=

[
0 1 0 0 0 1
1 0 0 0 0 1

]

Fx0

Fy0
0
0
0
0

 =

[
Fy0 · 1
Fx0 · 1

]
=

[
− sin π

4
cos π4

]
(2.111)

If we used F3 in {3}, which would be determined by

Fx3
= sin

π

4
, Fy3 = cos

π

4
,

and all other components as 0, then using J(q) would give us the incorrect result:

τ = J(q)TF3 =

[
cos π4
sin π

4

]
.

From (2.104) When q2 = −3π/4, L1 =
√

2, L2 = 1, we get

Jb,v =

−1 0
0 1
0 0

 . (2.112)

Then,

τ = JTb F3 =

[
−1 0 0
0 1 0

]sin π
4

cos π4
0

+ JTb,ω

0
0
0

 =

[
− sin π

4
cos π4

]
, (2.113)

which is the correct answer.
�

If we wish to use the function geometric_jacobian provided by RigidBodyDynamics to map task forces
into joint torques, we must transform the applied forces into an equivalent force and torque applied at o0,
with coordinates inframe {0}. The function point_jacobian at a point x defined in a frame {f} maps q̇ to
the velocity of the origin of {f} as seen in frame {f}, which is the body linear velocity. If we want to use
the function point_jacobian at a point x, then the applied forces F must be converted into an equivalent
force and torque applied at x, with coordinates in frame {f}. This is precisely a body wrench in {f}.

Table of Contents 32

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

2.6.2 Force Ellipsoid

When the end-effector is moving in free space, the manipulability ellipsoid ξ(JJT)−1ξ = 1 indicates the way
a unit velocity in joint space will translate to motion directions in the end-effector space. This ellipsoid
captures the mapping from joint space velocities to task space velocities.

When the end-effector is at a constant pose, maybe because of contact forces applied to it, then we can
derive a but related ellipsoid. Since the map from the force to the torque is characterized by J(q)T , the
ellipsoid Ftip(JJ

T)Ftip = 1 now represents the set of forces generated in the task space given all possible
unit-norm vector of joint torques (more accurately, generalized forces) applied at the joint axes.

Table of Contents 33

Chapter 3

Dynamics

So far, our control was based of an independent joint model that isolated each link and used robustness to
account for this huge assumption. Gravity and dynamic coupling will limit the success of this approach in
highly complex or high-energy motions. Therefore, we need to start considering a coupled dynamics model.

3.1 Newton-Euler Formulations

The Newton-Euler formulation focuses on expressing expressing the dynamics of each link by treating it
as a free body with forces that enforce constraints. We look at some examples that sequentially increase
constraints and dimensions, starting from an constrained 2D point mass to a rigid body.

3.1.1 Two Dimensional Examples

We introduce some examples to build the intuition for the general 2D and 3D rigid body equations. Note
that the planar two dimension is always a subset of three dimensions when z ≡ 0 and all rotation axes are
parallel to the z axis.

m

Fixed object

hinge

g

L

(x, y)

fy

fx

Rx

RyExample 8 (Simple Pendulum). Let a mass m be located at
position (x, y) in a Cartesian coordinate frame. This mass is
constrained to stay at distance L from a hinge located at the
origin of this coordinate frame, so that x2 +y2 = L2. Applying
Newton’s laws to this system, we obtain

mẍ = Rx + fx (3.1)

mÿ = Ry + fy −mg (3.2)

The Euler equation boils down to zero net torque about mass
m at (x, y):

yRx − xRy = 0 (3.3)

We have three equations in four unknowns: ẍ, ÿ, Rx, and Ry.
The constraint x2 + y2 = L2 may be differentiated twice to obtain

xẍ+ yÿ = −ẋ2 − ẏ2 (3.4)

With this fourth equation, we may solve the linear system consisting of four equations in four unknowns ẍ,
ÿ, Rx, and Ry:

mẍ −Rx = fx
mÿ −Ry = fy −mg

+yRx −xRy = 0
xẍ +yÿ = −ẋ2 − ẏ2

=⇒

m 0 −1 0
0 m 0 −1
0 0 y −x
x y 0 0

ẍ
ÿ
Rx
Ry

 =

fx

fy −mg
0

−ẋ2 − ẏ2

 (3.5)

34

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

�

m1 m2

g

L1

Lc1

Lc2

(x2, y2)

(x1, y1)

(x, y)

f

m1

m1g

Rx

Ry

Fx

Fy

(x1, y1)

(x, y)

m2

m2g

f

Fx

Fy

(x, y)
(x2, y2)

Example 9 (Double pendulum). The double pendulum con-
sists of two masses m1 and m2. Mass m1 is attached to a
fixed frame through a hinge. Mass m2 is attached to mass m1

through another hinge. This mass is constrained to stay at
distance L from a hinge located at the origin of this coordinate
frame, so that x2 + y2 = L2.

Applying Newton’s laws to m1, we obtain

m1ẍ1 = Rx + Fx (3.6)

m1ÿ1 = Ry + Fy −m1g (3.7)

The Euler equations for m1 boil down to zero net torque about
mass m at (x, y):

y1Rx − x1Ry + (x− x1)Fy + (y1 − y)Fx = 0 (3.8)

Applying Newton’s and Euler’s laws to m2, we get

m2ẍ2 = −Fx (3.9)

m2ÿ2 = −Fy + f −m2g (3.10)

0 = −(y2 − y)Fx + (x2 − x)Fy (3.11)

We have six equations in eight unknowns: ẍ1, ÿ1, ẍ2, ÿ2,
Rx, Ry, Fx and Fy. The two distance constraints x2

1 +y2
1 = L2

c1
and (x2 − x)2 + (y2 − y)2 = L2

c2 may be differentiated twice to
obtain

x1ẍ1 + y1ÿ1 = −ẋ2
1 − ẏ2

1 (3.12)

(x2 − x)(ẍ2 − ẍ) + (y2 − y)(ÿ2 − ÿ) = −(ẋ2 − ẋ)2 − (ẏ2 − ẏ)2

(3.13)

Let r = L1/Lc1 . Then x = rx1 and y = ry1. Similar to the
simple pendulum, we may collect and rewrite all the equations
above to obtain the linear system:

m1 0 0 0 −1 0 −1 0
0 m1 0 0 0 −1 0 −1
0 0 0 0 y1 −x1 −(r − 1)y1 (r − 1)x1

0 0 m2 0 0 0 1 0
0 0 0 m2 0 0 0 1
0 0 0 0 0 0 −cy cx
x1 y1 0 0 0 0 0 0
−rcx −rcy cx cy 0 0 0 0

ẍ1

ÿ1

ẍ2

ÿ2

Rx
Ry
Fx
Fy

=

0
−m1g

0
0

f −m2g
0

−ẋ2 − ẏ2

−(ẋ2 − ṙx2)2 − (ẏ2 − rẏ1)2

(3.14)

where cx = (x2 − rx1), cy = (y2 − ry1). �

3.1.2 Solving Newton-Euler Equations

In the previous section, we saw that we can model point-masses with constrained motions using Newton’s
Laws leading to a set of linear equations in terms of the accelerations, constraint forces, and external forces.

Table of Contents 35

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

We can rewrite the simple pendulum dynamics in (3.5) or (3.14) by splitting the matrix into blocks to
obtain the block matrix equation: [

A1 A2

A3 A4

] [
a
R

]
=

[
f
b

]
, (3.15)

where a consists of the accelerations, R consists of the constraint forces, the variable f consists of external
forces we control, and b are the remaining (known) terms that depend on x, y, ẋ, ẏ etc. and forces that we
do not control, like gravity. For example, in the case of the simple pendulum we get

a =

[
ẍ
ÿ

]
, R =

[
Rx
Ry

]
, f =

[
fx
fy

]
, and b =

[
0

−ẋ2 − ẏ2 −mg

]
. (3.16)

There are two standard problems we solve using (3.15).

1. Forward Dynamics (FD): Solve for a given f

2. Inverse Dynamics (ID): Solve for f given a

In both cases, we know the joint configuration q, joint velocities q̇, and terms in b, however we do not know
the reaction forces R.

We will need to solve the Forward Dynamics problem whenever we want to simulate the motion of a
robot given selected actuator forces and known external forces acting on the robot. We will need to solve
the Inverse Dynamics problem when we want to achieve a certain motion and therefore need to know what
actuator torques or forces will do so.

Forward Dynamics Solution. One (inefficient) way to solve FD is by inverting the matrix on the left
hand side in (3.15): [

a
R

]
=

[
A1 A2

A3 A4

]−1 [
f
b

]
.

To avoid inverting the whole matrix, we derive closed form expressions

a = A−1
1 f −A−1

1 A2∆−1
(
b−A3A

−1
1 f

)
, (3.17)

R = ∆−1
(
b−A3A

−1
1 f

)
, (3.18)

where
∆ = A4 −A3A

−1
1 A2.

Note that we may not care about R in some situations. However, computing the smaller inverses A−1
1 and

∆−1 is still inefficient, which matters when trying to compute on real embedded systems. These inverses
take O(N3) calculations to compute, where there are N links in a body. The Articulated Body Algorithm
solves the FD problem using O(N) calculations.

Inverse Dynamics Solution. We can again derive closed-form expressions

f =
(
I +A2∆−1A3A

−1
1

)−1 (
A1a+A2∆−1b

)
(3.19)

R =
(
A4 −A3A

−1
1 A2

)−1 (
b−A3A

−1
1 f

)
(3.20)

Again, we may not care about R in some situations. Using these closed-form equations would again result
in an algorithm that takes O(N3) calculations. The Recursive Newton Euler Algorithm (RNEA) solves the
FD problem using O(N) calculations.

Table of Contents 36

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

3.1.3 Newton-Euler Equations For A Planar Rigid Body

The two examples in Section 3.1.1 treat links in a mechanism as point masses. We can begin to understand
continuum rigid body masses by constraining the double pendulum further, so that it acts like a rigid body
consisting of two particles (point masses).

Note that we can constrain the distance of (x2, y2) to any point (x̃, ỹ) = r(x1, y1) on the line connecting
the hinge to the first mass m1. For the double pendulum, we chose r = L1/Lc1 6= 1, but we now allow r to
be a variable. This ‘generalized’ view of the constraint leads to:

(3.21a)(x2 − rx1)(ẍ2 − rẍ1) + (y2 − ry1)(ÿ2 − rÿ1) = −(ẋ2 − rẋ1)2 − (ẏ2 − rẏ1)2

(3.21b)=⇒ x2ẍ2 − r(x1ẍ2 + x2ẍ1) + r2x1ẍ1 + y2ÿ2 − r(y1ÿ2 + y2ÿ1) + r2y1ÿ1

= −ẋ2
2 − r2ẋ2

1 − 2rẋ1ẋ2 − ẏ2
2 − r2ẏ2

1 − 2rẏ1ẏ2

(3.21c)=⇒ x2ẍ2 − r(x1ẍ2 + x2ẍ1) + y2ÿ2 − r(y1ÿ2 + y2ÿ1) + r2x1ẍ1 + r2y1ÿ1

= −r2ẋ2
1 − r2ẏ2

1 − ẋ2
2 − 2rẋ1ẋ2 − ẏ2

2 − 2rẏ1ẏ2

(3.21d)=⇒ x2ẍ2 + y2ÿ2 − r(x1ẍ2 + x2ẍ1 − y1ÿ2 + y2ÿ1) = −ẋ2
2 − ẏ2

2 − r(2ẋ1ẋ2 + 2ẏ1ẏ2)

We derived (3.21d) without any assumptions on r. If we constrain (x2, y2) to be at constant distance
from two points on pendulum with mass m1, corresponding to two values of r, say r1 and r2, then

x2ẍ2 + y2ÿ2 − r1(x1ẍ2 + x2ẍ1 − y1ÿ2 + y2ÿ1) = −ẋ2
2 − ẏ2

2 − r1(2ẋ1ẋ2 + 2ẏ1ẏ2) (3.22)

x2ẍ2 + y2ÿ2 − r2(x1ẍ2 + x2ẍ1 − y1ÿ2 + y2ÿ1) = −ẋ2
2 − ẏ2

2 − r2(2ẋ1ẋ2 + 2ẏ1ẏ2) (3.23)

=⇒ x1ẍ2 + x2ẍ1 − y1ÿ2 + y2ÿ1 = 2ẋ1ẋ2 + 2ẏ1ẏ2 (3.24)

This last expression, and the preceding calculations, allow us to conclude that if constraint (3.21a) holds for
two values of r, then it holds for any value of r. In words, when mass m2 is constrained to be at a
constant distance from two points on pendulum m1, then it is constrained to be at a constant
distance from all points on pendulum m1, including the hinge (r = 0) of the pendulum.

Before we proceed, we will reduce the number of variables we use to represent the motion of masses by
exploiting the constraints.

Example 10 (Simple Pendulum Using Angle). For the simple pendulum, we may manually eliminate ÿ,
Rx, and Ry to obtain

m(x2 + y2)ẍ = y2fx − xy(fy −mg)−mx(ẋ2 + ẏ2). (3.25)

This step is equivalent to solving the forward dynamics using the formula in (3.17). If we define an angle q
made by the pendulum with the positive x axis, with counter-clockwise sense positive, then x = L cos q, and
y = L sin q. These expressions allow us to rewrite (3.25) as

mL2q̈ +mgL cos q = fyx− fxy = τ, (3.26)

where τ is the torque at the hinge due to the external force f = [fx fy]T acting on m. As we will see later, the
Euler-Lagrangian approach directly would have directly led to such an equation, as would the Newton-Euler
equations for a planar rigid body rotating about fixed point. We introduce it here because removing the
constraints will make the development of multiple point-mass rigid bodies easier to follow. �

Table of Contents 37

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

m1

m2

g

L1

L2

(x2, y2)

(x1, y1)

d

m1
Fx

Fy

(x1, y1)

m2
Fx

Fy

(x2, y2)

Example 11 (Two-Mass Pendulum). Consider two simple
pendula respectively with masses m1 and m2, lengths L1 and
L2, and torques τ1 and τ2. Instead of cartesian position of the
mass, since we know they are constrained, we will represent
their motion using angles, as Example 10 shows how to derive.

If the angles of these pendula with the horizontal are q1 and
q2 respectively, we obtain the independent equations for each
as

m1L
2
1q̈1 +m1gL1 cos q1 = τ1 (3.27)

m2L
2
2q̈2 +m2gL2 cos q2 = τ2 (3.28)

How should we represent the motion after we add a
distance constraint? One step is to observe that we can
treat the constraint forces Fx and Fy on the two masses as
additional external torques:

m1L
2
1q̈1 +m1gL1 cos q1 = τ1 − y1Fx + x1Fy (3.29)

m2L
2
2q̈2 +m2gL2 cos q2 = τ2 + y2Fx − x2Fy (3.30)

The idea we use is simply that:

The forces that constrain the distance between m1 and m2 cannot cause any other motion.

Mathematically, the net constraint force F =
[
Fx Fy

]T
must lie along the line connecting the two masses.

This requirement leads to
Fx

x2 − x1
=

Fy
y2 − y1

This expression is very convenient, since it allows us to eliminate the constraint-forces-induced torques easily:

m1L
2
1q̈1 +m2L

2
2q̈2 +m1gL1 cos q1 +m2gL2 cos q2 = τ1 + τ2 + (y2 − y1)Fx + (x1 − x2)Fy︸ ︷︷ ︸

0

(3.31)

To reduce the two angles q1 and q2 to one angle, we apply the distance constraint

(x2 − x1)2 + (y2 − y1)2 = d2 (3.32)

=⇒ L2
1 + L2

2 − 2L1L2 cos(q2 − q1) = d2 (3.33)

=⇒ q2 = q1 + c (3.34)

The dynamics become

(m1L
2
1 +m2L

2
2)q̈1 +m1gL1 cos q1 +m2gL2 cos(q1 + c) = τ1 + τ2 (3.35)

�

Example 11 allows us to model a compound pendulum, where the mass may consist of an arbitrary
number of point masses, leading to a continuous mass distribution in the limit.

Example 12 (Compound Pendulum). Let each point-mass mi be located at (xi, yi). As shown in Exam-
ple 11, it is effectively constrained to have some constant distance Li from the hinge, once rigidly attached
to the simple pendulum rotating about that hinge. The line joining mi to the hinge has angle q1 + ci, and
the net equations are (∑

i

miL
2
i

)
q̈1 + g

∑
i

miLi cos(q1 + ci) =
∑
i

τi (3.36)

Table of Contents 38

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Let the total mass be m =
∑
imi. We can define the average location (x̄, ȳ) of these point-masses that

all move rigidly together as

x̄(q1) =

∑
imixi∑
imi

=

∑
imiLi cos(q1 + ci)

m
(3.37)

ȳ(q1) =

∑
imiyi∑
imi

=

∑
imiLi sin(q1 + ci)

m
. (3.38)

Let’s convert this average position into polar coordinates:

x̄(q1) = L cos q, ȳ(q1) = L sin q (3.39)

Some tedious algebra will show that L is independent of q1, and that q = q1 + c for some constant c.
Therefore, we get (∑

i

miL
2
i

)
q̈ +mgL cos q = τ, (3.40)

where τ =
∑
i τi. We see that the effect of gravity on the system comprising all these particles is the same as

a single particle located at the average mass location (x̄, ȳ) with mass m. The average location is called the
center of mass, and is related to the first moment of any continuous distribution. Given the average location,
we can define the average squared distance of mass from this average, and called the second moment of mass,
or the moment of inertia.

I =
1

m

∑
i

mi

(
(xi − x̄)2 + (yi − ȳ)2

)
(3.41)

Using x2
i = (x̄+ (xi − x̄))2, y2

i = (ȳ + (yi − ȳ))2, and some algebra will lead to the fact that(∑
i

miL
2
i

)
= I +mL2 (3.42)

Finally, we get the equation for a compound pendulum :(
I +mL2

)
q̈ +mgL cos q = τ, (3.43)

where m is the total mass, I is the moment of inertia about the center of mass, L and q are the polar
coordinates of the center of mass relative to the hinge. �

The compound pendulum model in Example 12 leads to the following well-known rotational version of
Newton’s second law:

Any rigid body rotating about a constant axis through its center of mass (L = 0) satisfies a
scalar ordinary differential equation

I q̈ = τ.

Recall that τ is the combined torque due to all the forces acting on all the particles making up the rigid
body. The equation above holds even if the center of mass is accelerating, since that acceleration does not
affect the position, velocity, or acceleration of the particles relative to the center of mass, meaning that the
stationary rotation axis derivations still apply. The only difference is that the acceleration of any point on
the rigid body is not determined solely by q̈. The acceleration of the center of mass (x̄, ȳ) is given by(∑

i

mi

)
¨̄x =

∑
i

miẍi =⇒ m¨̄x = F extx (3.44)(∑
i

mi

)
¨̄y =

∑
i

miÿi =⇒ m¨̄y = F exty , (3.45)

Table of Contents 39

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

where F extx and F exty are the components of the sum of all the external forces acting on the particles. Every
constraint force has an equal and opposite reaction constraint force, so all constraint forces cancel out under
summation of mass-times-acceleration over all particles, leaving only the external forces in the sum.

We have shown three things for rigid body motion in the plane:

• The motion of all points on a planar rigid body can be described in terms of the position of the center
of mass and an angle: (x̄, ȳ, q)

• The 2D acceleration of the center of mass ¨̄x, ¨̄y depends on the total mass m and the sum of forces
acting on all particles

• The angular acceleration q̈ depends on the second moment of mass, or the moment of inertia, relative
to the center of mass, and the sum of the torques at (x̄, ȳ) due to all the forces on the particles

Continuous Rigid Bodies. Instead of a finite number of point-masses making up a planar rigid body,
we may have a continuous distribution of mass. Consider a fixed spatial frame {s}. Instead of mass at a
point, we have a mass density ρ(x, y) at a point (x, y) in this frame. Then,

m =

∫ ∫
ρ(x, y)dxdy (3.46)

x̄ =
1

m

∫
ρ(x, y)xdx (3.47)

ȳ =
1

m

∫
ρ(x, y)ydy (3.48)

Is =

∫ ∫
ρ(x, y)(x2 + y2)dxdy = Ib +m(x̄2 + ȳ2), where (3.49)

Ib =

∫ ∫
ρ(x, y)

(
(x− x̄)2 + (y − ȳ)2

)
dxdy. (3.50)

The inertia Ib is the inertia relative to a frame {b} whose origin coincides with the center of mass, and whose
axes are aligned with those of {s}. In general, it is always convenient to place frames associated with centers
of mass.

Example 13. Three-link robot Jacobian Example 4.6 in [5]

3.1.4 Newton-Euler Equations For A 3D Rigid Body

We can apply Newton’s Laws to the system of point masses mi in 3D with coordinates r̄i in Cartesian frame
{b}. The intuition remains the same, but the notation gets more involved.

The total linear momentum p of these particles in frame {s} is

p =
∑
i

mivi =
∑
i

mi (v0 + [ωs]Rsbr̄i) (3.51)

=

(∑
i

mi

)
v0 + [ωs]Rsb

(∑
i

mir̄i

)
(3.52)

An important choice: If we pick r0, the origin of {b} as the unique point such that
∑
imir̄i = 0, and

define m =
∑
imi , then

p = mv0. (3.53)

Newton’s Second Law in {s} then yields

mv̇0 =
∑
i

fi (3.54)

Table of Contents 40

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

The total angular momentum hs in the frame {s} is

hs =
∑
i

mi[ri]vi =
∑
i

mi ([ri]v0 + [ri][ωs]Rsbr̄i) (3.55)

=

(∑
i

mi[ri]

)
v0 +

∑
i

mi ([ri][ωs]Rsbr̄i) (3.56)

= 0 +
∑
i

mi ([r0 +Rsbr̄i][ωs]Rsbr̄i) (3.57)

=
∑
i

mi ([r0][ωs]Rsbr̄i) +
∑
i

mi ([Rsbr̄i][ωs]Rsbr̄i) (3.58)

=

(
−
∑
i

mi [Rsbr̄i]
2

)
ωs (3.59)

= Isωs (3.60)

The quantity Is is the second moment of inertia of the rigid body in the frame of {s}. We may also define
the second moment of inertia in the frame {b}, as

Ib = −

(∑
i

mi [r̄i]
2

)
(3.61)

These definitions lead to

hb = Ibωb (3.62)

hs = Isωs = Rsbhb (3.63)

Is = RsbIbRTsb (3.64)

From their definitions, Ib is a constant, but Is varies with Rsb. Therefore, the Euler equation is applied
as follows

d

dt
hs =

∑
i

mi[ri]fi = τs (3.65)

=⇒ d

dt
(RsbIbωb) = τs (3.66)

=⇒ Rsb[ωb]Ibωb +RsbIbω̇b = τs (3.67)

=⇒ [ωs]Isωs + Isω̇s = τs (3.68)

We may express this equation in {b}, leading to

[ωb]Ibωb + Ibω̇b = τb, (3.69)

where τb = RTsbτs

Continuous Rigid Bodies. The equation for m is

m =

∫ ∫
ρ(x, y, z)dxdydz (3.70)

x̄s =
1

m

∫
ρs(x, y, z)xdx (3.71)

ȳs =
1

m

∫
ρs(x, y, z)ydy (3.72)

z̄s =
1

m

∫
ρs(x, y, z)zdz (3.73)

(3.74)

Table of Contents 41

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

where subscript s indicates quantities with respect to a fixed reference frame.
In a frame {b} whose origin is located at the center of mass of the body, the equation for Ib is

(3.75)Ib =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ,
where

Ixx =

∫ ∫ ∫
(y2 + z2)ρ(x, y, z)dxdydz (3.76)

Iyy =

∫ ∫ ∫
(x2 + z2)ρ(x, y, z)dxdydz (3.77)

Izz =

∫ ∫ ∫
(x2 + y2)ρ(x, y, z)dxdydz (3.78)

and

Ixy = Iyx = −
∫ ∫ ∫

xy ρ(x, y, z)dxdydz (3.79)

Ixz = Izx = −
∫ ∫ ∫

xz ρ(x, y, z)dxdydz (3.80)

Iyz = Izy = −
∫ ∫ ∫

yz ρ(x, y, z)dxdydz (3.81)

We don’t need to solve for accelerations of all point masses on a rigid body. Instead, we derive a smaller
number of rigid-body equations by constraining masses on a rigid body to have constant distance from one
another. We saw in Section 3.1.4 that we may replace positions ri = (xi, yi, zi) and their derivatives for
several particles with a position, orientation, and their derivatives involving a linear velocity and an angular
velocity of a single frame.

3.1.5 Newton-Euler Equations For Rigid Body Mechanisms

For a robot modeled as inter-connected rigid bodies, the Newton-Euler Inverse Dynamics approach treats a
rigid body as the basic element, but otherwise repeats the same process we applied to point-masses. Each
frame has a position, velocity, and acceleration. Each frame has external forces applied to it, but also reaction
forces corresponding to joints with other links.

To obtain the system dynamics, for each rigid body (previously just point-mass), we relate linear and
angular accelerations (previously just linear accelerations) of the center of mass frame (previously just xi, yi)
with the constraint forces from other rigid bodies (previously other point-masses) and external forces.

3.1.6 Recursive Newton Euler Algorithm

Once we model a set of rigid bodies using techniques from the previous sections, we are still dealing with a
system of equations of the form [

A1 A2

A3 A4

] [
a
R

]
=

[
f
b

]
, (3.82)

however a, f , and R involve spatial (3D) velocities, accelerations, forces, and torques seen in Section 3.1.4,
unlike the simpler point-mass cases we saw earlier.

One source of complexity in the Newton-Euler Inverse Dynamics formulation is that we are given infor-
mation in terms of the joint angles, and not the position and orientation of link frames relative to the base
frame. If we were given the latter, it would be easy to apply the rigid body equations to each links, and
solve for the constraint forces and external forces as a linear system, just like we did for pendula made of
point-masses.

Table of Contents 42

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Fortunately, we may derive the frame accelerations a from the joint angle accelerations using a recursive
procedure that starts from the base frame {0} and moves towards the end effector {n}. Once the frame
accelerations a have been computed, instead of solving all the linear equations for all frames simultaneously,
we may recursively solve for the external forces f required, starting from the end-effector frame {n} to the
base frame {0}. Just like for the point-mass examples, we will end up computing the constraint forces R
along the way. The first recursion is called the forward pass, the second is called the backward pass. The
details can be found in [5].

3.2 The Lagrangian

We use the Euler-Lagrange framework to obtain the robot dynamics model given by

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ + τfriction + τe, (3.83)

where q is the configuration, q̇ the joint rates of change, τe are torques due to the external forces, and τ are
the motor torques. Note that conservative forces and torques due to joint friction τfriction are not viewed
as external forces applied to the robot. The terms D(q), C(q, q̇), and G(q) are the mass or inertia matrix,
Coriolis matrix, and conservative force vector (usually gravity) respectively.

The vector q is often referred to as a generalized coordinate in dynamics. This coordinate represents
degrees of freedoms after accounting for all holonomic constraints in the system.

We can derive these equations by defining the Lagrangian L of the system, which is the difference between
the kinetic and potential energies of the system. This derivation leads to all terms on the left hand side
of (3.83). The terms on the right are essentially non-conservative external forces acting on the system.

3.2.1 On Frames

As alluded to in the first chapter, a big source of confusion in modeling robots is that the same physical
quantity may be described in infinitely many frames, and this infinite possibility may become a source of
error.

To obtain the correct equations of motion from Newton’s Laws, we must ensure that we are applying
Newton’s Laws in an inertial reference frame. The main consequence of this requirement is that we often for-
mulate quantities in the body-fixed frame of a link, and then transform them into the reference/base/spatial
frame.

3.2.2 Kinetic Energy

The kinetic energy of the robot is the sum of the kinetic energies of its link. Since each link is a rigid
body, we know how to calculate its kinetic energy. Each link has a mass m and principal inertia I about its
center-of-mass q that has velocity v and angular velocity ω in the world frame. The kinetic energy is given
by

(3.84)K =
1

2
mvT v +

1

2
ωTIω,

where I is the inertia of the link with respect to the world frame given by RIRT where R is orientation of
principal axes in world frame.

Table of Contents 43

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

When we combine these kinetic energies, we get

(3.85)

K =
∑
i

1

2
miv

T
i vi +

1

2
ωiIωi

=
∑
i

1

2
miq̇

TJTvi(q)Jvi(q)q̇ +
1

2
q̇TJTωi

(q)Ri(q)IiR
T
i (q)Jωi(q)q̇

=
1

2
q̇T

(∑
i

(
miJ

T
viJvi + JTωi

RiIiR
T
i Jωi

))
q̇ (ignoring (q))

=
1

2
q̇TD(q)q̇

=
∑
i,j

dij(q)q̇iq̇j

3.2.3 Potential Energy

Potential energy P due to gravity is

(3.86)P =

n∑
i=1

mig
[
0 0 1

]
c0i (q)

where c0i (q) is the location of the center of mass of link i in the world frame (and not the origin of the ith

frame).

3.3 Euler-Lagrange Equations

See the following online resource for a longer description than in standard robotics texts.
Given a Lagrangian L = K − P , we can derive an equation of motion for each generalized coordinate qk

as

(3.87)
d

dt

∂L
∂q̇k
− ∂L
∂qk

= τj

Given the expressions for K and P in Section 3.2, we end up with

n∑
j=1

dkj(q)q̈j +

n∑
i=1

n∑
j=1

cijk(q)q̇iq̇j + gk(q) = τk, k ∈ {1, . . . , n} (3.88)

where

cijk =
1

2

{
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

}
(3.89)

gk =
∂P

∂qk
(3.90)

These equations are combined into a single compact representation, called the Euler-Lagrangian model
of a robot’s dynamics, denoted as

(3.91)D(q)q̈ + C(q, q̇)q̇ +G(q) = τ,

where the k, j element of C(q, q̇) is

ckj =

n∑
i=1

cijk(q)q̇i. (3.92)

Adding non-conservative forces such as viscous friction and externally applied forces yields (3.83).

Table of Contents 44

https://tgvaughan.github.io/sicm/toc.html

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

m1, I1

m2, I2

g

L1

Lc1

Lc2

x0

y0

x1

y1

xc1

yc1

xc2yc2

q1

q2

Figure 3.1: Planar Elbow Manipulator with frames according to D-H Convention

Example 14 (Planar Elbow Manipulator). Refer to Example 4 for an example of the derivation of the
Jacobian. Note that in that example, the Jacobian is derived for the frame corresponding to {c2} here.
Similar steps work to derive the Jacobian for for the frame {c1} associated with m1, I1. We use the DH
joint variables as generalized coordinates.

We may derive velocities of {c1} and {c2}, through Jacobians (see Example 4), as

vc1 =Jvc1 q̇ =

−Lc1 sin q1 0
Lc1 cos q1 0

0 0

 q̇ (3.93)

vc1 =Jvc2 q̇ =

−L1 sin q1 − Lc2 sin(q1 + q2) −Lc2 sin(q1 + q2)
Lc1 cos q1 + Lc2 cos(q1 + q2) Lc2 cos(q1 + q2)

0 0

 q̇ (3.94)

Also,

(3.95)Jω1 =

0 0
0 0
1 0

 , Jω2 =

0 0
0 0
1 1

 , Rω1 = Rz,q1 , Rω2 = Rz,q1+q2 .

Given these expressions for the Jacobians, and knowing the inertia tensors in the respective center-of-
mass frames, we may construct the inertia matrix D(q) using Equation (3.85). Since we have two links, we
need to compute four terms, which we do below.

First, we have

JTv1Jv1 =

−Lc1 sin q1 0
Lc1 cos q1 0

0 0

T −Lc1 sin q1 0
Lc1 cos q1 0

0 0

 (3.96)

=

[
L2
c1 0
0 0

]
. (3.97)

Table of Contents 45

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Second, we compute

JTv2Jv2 =

−L1 sin q1 − Lc2 sin(q1 + q2) −Lc2 sin(q1 + q2)
Lc1 cos q1 + Lc2 cos(q1 + q2) Lc2 cos(q1 + q2)

0 0

T −L1 sin q1 − Lc2 sin(q1 + q2) −Lc2 sin(q1 + q2)
Lc1 cos q1 + Lc2 cos(q1 + q2) Lc2 cos(q1 + q2)

0 0

(3.98)

=

[
L2

1 + L2
c2 + 2L1Lc2 cos q2 L2

c2 + 2L1Lc2 cos q2

L2
c2 + 2L1Lc2 cos q2 L2

c2

]
(3.99)

Notice how several terms combine through standard trigonometric identities, leaving a simpler expression
than what comes out of raw multiplication.

Since every column of Jω1 and Jω2 is aligned with the z-axis, rotation about z leaves these matrices
unchanged. Therefore, RTz,q1Jω1 = Jω1 and RTz,q1+q2Jω2 = Jω2. Therefore, we get

JTω1Rz,q1I1R
T
z,q1Jω1 = JTω1I1Jω1 (3.100)

=

0 0
0 0
1 0

T ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ Izz,1

0 0
0 0
1 0

 (3.101)

=

[
Izz,1 0

0 0

]
, (3.102)

and

JTω2Rz,q1+q2I2R
T
z,q1+q2Jω2 = JTω2I2Jω2 (3.103)

=

0 0
0 0
1 1

T ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ Izz,2

0 0
0 0
1 1

 (3.104)

=

[
Izz,2 Izz,2
Izz,2 Izz,2

]
. (3.105)

where the terms in places marked with ∗ don’t matter, so we don’t assign symbols to them. Therefore

D(q) =
(
m1J

T
vc1Jvc1 + JTω1Rz,q1I1R

T
z,q1Jω1

)
+
(
m2J

T
vc2Jvc2 + JTω2Rz,q1+q2I2R

T
z,q1+q2Jω2

)
=m1

[
L2
c1 0
0 0

]
+

[
Izz,1 0

0 0

]
+m2

[
L2

1 + L2
c2 + 2L1Lc2 cos q2 L2

c2 + 2L1Lc2 cos q2

L2
c2 + 2L1Lc2 cos q2 L2

c2

]
Jvc2 +

[
Izz,2 Izz,2
Izz,2 Izz,2

]
=

[
m1L

2
c1 +m2(L2

1 + L2
c2 + 2L1Lc2 cos q2) + Izz,1 + Izz,2 m2(L2

c2 + 2L1Lc2 cos q2) + Izz,2
m2(L2

c2 + 2L1Lc2 cos q2) + Izz,2 m2L
2
c2 + Izz,2

]
(3.106)

For convenience, we may write

d11(q) = m1L
2
c1 +m2(L2

1 + L2
c2 + 2L1Lc2 cos q2) + Izz,1 + Izz,2 (3.107)

d12(q) = d21(q) = m2(L2
c2 + 2L1Lc2 cos q2) + Izz,2 (3.108)

d22(q) = m2L
2
c2 + Izz,2 (3.109)

Let h = −m2L1Lc2 sin q2. Then, applying (3.89) using the mass matrix terms above, we get

c111 = c222 = c122 = 0, c121 = c211 = c221 = h, c112 = −h. (3.110)

We then use (3.92) to obtain

(3.111)C(q, q̇) =

[
hq̇2 hq̇2 + hq̇1

−hq̇1 0

]

Table of Contents 46

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Finally, we apply (3.86) to get

(3.112)P = m1gLc1 sin q1 +m2g(L1 sin q1 + Lc2 sin(q1 + q2))

Therefore, we can derive the components of G(q) =
[
g1(q) g2(q)

]T
using (3.90) to obtain

g1(q) = m1gLc1 cos q1 +m2gL1 cos q1 +m2gLc2 cos(q1 + q2) (3.113)

g2(q) = m2gLc2 cos(q1 + q2) (3.114)

Putting it all together, the equations become

D(q)q̈ + C(q, q̇)q̇ +G(q) = 0 (3.115)

We may now consider external non-conservative forces. If we consider a viscous damping coefficient b at
each joint, then the external torque at a joint qi due to damping is −bq̇i, so that the combined equations
with damping become

D(q)q̈ + C(q, q̇)q̇ +G(q) = −
[
b 0
0 b

]
q̇ = −Bq̇ (3.116)

We may also apply a torque τi about the joint angles qi, to obtain

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ −Bq̇ (3.117)

�

3.3.1 Derivation

Consider mechanism consisting of k particles, each with mass mi, and a position ri ∈ R3 in an inertial
frame. We assume that the vector q ∈ Rn, called the generalized coordinates, represents a minimum number
of degrees of freedom of the mechanism such that every position ri is a function of q:

ri = ri(q1, q2, . . . , qn).

Simply based on this relationship, we may derive

δri =

n∑
j=1

∂ri
∂qj

δqj (3.118)

=⇒ ṙi = vi =

n∑
j=1

∂ri
∂qj

q̇j (3.119)

=⇒ ∂vi
∂q̇j

=
∂ri
∂qj

(3.120)

We may also derive

d

dt

∂ri
∂qj

=

n∑
l=1

∂2ri
∂qj∂ql

q̇l (3.121)

=
∂

∂qj

(
n∑
l=1

∂ri
∂ql

q̇l

)
(3.122)

=
∂vi
∂qj

(3.123)

We will use these relationships between partial derivatives of ri and vi below.

Table of Contents 47

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Let a total force Fi act on particle mi. Some of these forces are externally applied, and some of these
forces arise due to constraints. Let the sum of external forces on mi be fi, and the sum of constraint forces

be f
(a)
i . Then

Fi = fi + f
(a)
i (3.124)

Consider an infinitesmal displacement δri, also called a virtual displacement for each particle. These
virtual displacements must be compatible with the constraints acting between particles.

We now focus on constrainted systems in equilibrium, meaning r̈i = 0. The net force on each particle is
zero, so that the total work done over all particles is zero.:

k∑
i=1

FTi δri = 0 (3.125)

The main insight is that for certain types of constraints, the constraint forces cannot do any work. This
statement is known as the principle of virtual work. This statement is another way of saying that the
allowable virtual displacements have to be perpendicular to all constraint forces. In particular, for robotic
systems, we focus on distance-preserving constraints, for which the principle of virtual work holds. It leads
to

k∑
i=1

(
f

(a)
i

)T
δri = 0 (3.126)

Since the total work done is zero, we get the relationship

k∑
i=1

(fi)
T
δri = 0 (3.127)

So, using the principle of virtual work, we are able to relate external forces to displacements, and ignore the
constraint forces.

Suppose that r̈i 6= 0, so that the particles are not in equilibrium. We can still obtain a relationship
between external forces and particle displacements if we use D’Alembert’s principle, which requires us to
treat the change in momentum as an external force. Doing so, we get the new equation

k∑
i=1

(fi −mir̈i)
T
δri = 0 (3.128)

=⇒
k∑
i=1

fi
T δri −

k∑
i=1

mir̈
T
i δri = 0 (3.129)

This equation is essentially an expression for the Euler-Lagrange equations, and we just need to modify
and substitute terms to get the familiar expression. We start by noting that

k∑
i=1

fi
T δri =

k∑
i=1

fi
T

n∑
j=1

∂ri
∂qj

δqj (3.130)

=

n∑
j=1

(
k∑
i=1

fTi
∂ri
∂qj

)
δqj (switch sum order) (3.131)

=

n∑
j=1

ψjδqj , (3.132)

where ψj =
∑k
i=1 fTi

∂ri
∂qj

is called the generalized force corresponding to generalized coordinate qj .

Table of Contents 48

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

We now deal with the second term in (3.129), namely
∑k
i=1mir̈

T
i δri. Observe that

d

dt

[
miṙ

T
i δri

]
= mir̈

T
i δri +miṙ

T
i

d

dt
δri. (3.133)

Therefore,

k∑
i=1

mir̈
T
i δri =

k∑
i=1

(
d

dt

[
miṙ

T
i δri

]
−miṙ

T
i

d

dt
δri

)
(3.134)

=

k∑
i=1

 d

dt

miṙ
T
i

n∑
j=1

∂ri
∂qj

δqj

−miṙ
T
i

d

dt

n∑
j=1

∂ri
∂qj

δqj

 (3.135)

=

n∑
j=1

(
k∑
i=1

(
d

dt

[
miṙ

T
i

∂ri
∂qj

]
−miṙ

T
i

d

dt

∂ri
∂qj

))
δqj (3.136)

=

n∑
j=1

(
k∑
i=1

(
d

dt

[
miv

T
i

∂vi
∂q̇j

]
−miv

T
i

∂vi
∂qj

))
δqj , (3.137)

where we have used (3.120) and (3.123) in the last step. The motivation for doing so is that we can relate
the equation above to the total Kinetic energy of the system, which is

K =

k∑
i=1

1

2
miv

T
i vi, (3.138)

by taking partial derivatives:

∂K

∂qj
=

k∑
i=1

miv
T
i

∂vi
∂qj

,
∂K

∂q̇j
=

k∑
i=1

miv
T
i

∂vi
∂q̇j

. (3.139)

We use these partial derivatives of K in (3.137) to get

k∑
i=1

mir̈
T
i δri =

n∑
j=1

(
d

dt

∂K

∂q̇j
− ∂K

∂qj

)
δqj (3.140)

Finally, we can substitute (3.132) and (3.140) in (3.129)

n∑
j=1

(
ψj −

d

dt

∂K

∂q̇j
+
∂K

∂qj

)
δqj = 0 (3.141)

Assume that the generalized forces ψj consists of two terms, one due to conservative forces generalized and
the other due to non-conservative generalized forces.

A conservative force is the partial derivative with respect to position of a potential energy term. Therefore,
we rewrite ψj as

ψj = − ∂P
∂qj

+ τj , (3.142)

where P (q) is the total potential energy of the system and τj is the non-conservative generalized forces
corresponding to qj .

If we define L = K − P , then we can rewrite (3.141) as

n∑
j=1

(
d

dt

∂L
∂q̇j
− ∂L
∂qj
− τj

)
δqj = 0 (3.143)

Table of Contents 49

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Since this equation must hold for all possible virtual displacements δqj , the coefficients of δqj must be zero.
In other words,

d

dt

∂L
∂q̇j
− ∂L
∂qj

= τj , for j ∈ {1, . . . , n}, (3.144)

which are the Euler-Lagrange equations. Again, these equations may be combined to form the Euler Lagrange
equations of the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ. (3.145)

3.4 Properties of the Euler-Lagrange Equations

3.4.1 Skew Symmetry and Passivity

Proposition 3. The matrix Ḋ(Q)− 2C is skew symmetric.

Proof. The (k, j)th element of the matrix N = Ḋ(Q)− 2C is

(3.146)

nkj = ḋkj − 2ckj

=

n∑
i=1

∂dkj
∂qi

q̇i − 2

n∑
i=1

cijkq̇i

=

n∑
i=1

[
∂dkj
∂qi

− cijk
]
q̇i

=

n∑
i=1

[
∂dkj
∂qi

− 2
1

2

{
∂dkj
∂qi

+
∂dki
∂qj

− ∂dij
∂qk

}]
q̇i

=

n∑
i=1

[
∂dij
∂qk

− ∂dki
∂qj

]
q̇i

The expression for njk will be

(3.147)njk =

[
∂dik
∂qj

− ∂dji
∂qk

]
q̇i

Since dij = dji and dik = dki, we see that njk = −nkj . Therefore, N is skew symmetric

This skew symmetry property is related to a concept known as passivity, discussed in Section 3.5.

3.4.2 Bounds on Inertia Matrix

For a system with revolute joints, there exist λm and λM such that

(3.148)λmIn×n ≤ D(q) ≤ λMIn×n <∞

If the joints are not revolute, then the upper bound by ∞ goes away. The remaining inequalities are still
valid, since the matrix D(q) is always real, symmetric, and positive definite.

3.4.3 Linearity in Parameters

Unsurprisingly, we can derive a function Y (q, q̇, q̈) and parameter set θ such that

(3.149)D(q)q̈ + C(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)θ

The key idea is that for the same robot (same mechanism), Y is unchanging, and the equations are linear
in the parameters θ.

Table of Contents 50

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

3.5 Passivity

Passivity is a property that arises in several types of systems. In the case of dynamical systems, one
interpretation is that a passive system (the system exhibits passivity) doesn’t produce energy of its own.
Electrical circuits made with passive components behave this way, which is where the term passivity comes
from. Passive systems have some well-understood behaviors such as

1. Stability

2. L2 gain stability

3. Stable behavior under feedback interconnections

Consider a system

ẋ(t) = f(x(t), u(t)) (3.150)

y(t) = h(x(t), u(t)), (3.151)

where

• x ∈ Rn: state

• y ∈ Rm: output

• u ∈ Rp: input

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t)),

u(t) y(t)

This system interacts with the environment through time-varying inputs u(t) and outputs y(t), and this
interaction influences the state x(t).

Remark 2. For many systems, the input and output variables match the effort and flow variables of
one-port models used in network-impedance-based modeling.

One way to define this interaction is through two functions known as the supply rate S(y, u) and the
storage function V (x).

Definition 8. Supply Rate. The supply rate is a function S:Rm × Rp → R that quantifies the amount of
interaction with the environment.

Definition 9. Storage Function. A storage function is a non-negative function V :Rn → R≥0 of the state.

Example 15. The state of a capacitor is the charge qc contained in it. A good choice of the storage function
is typically the electrical energy stored in the component

V (qc) =
1

2C
q2
c ,

where C is the capacitance of the capacitor.
The input is the current flow ic and the output is the voltage ec across the component, however some

circuit applications involve switching the two definitions. The supply rate is the power provided/taken from
the capacitor:

S(ec, ic) = ecic.

Note that a capacitor satisfies

qc = Cec,
d

dt
qc = ic.

Definition 10 (Passivity.). A system with state x is said to be passive with respect to an input-output pair
y, u if there exists a supply rate S(y, u) and storage function V (x) such that

V (t1)− V (t0) ≤
∫ t1

t0

S (y(τ)u(τ)) dτ, ∀t0, t1 ≥ t0.

Table of Contents 51

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

A passive system is one where the change in its storage function is always less than the integral of the
supply rate.

Example 16. Continued Let’s compute the time derivative of the storage function:

d

dt
V (qc) =

(
∂V

∂qc

)
q̇c =

(
1

C
qc

)
q̇c (3.152)

=
1

C
qcq̇c =

1

C
(Cec) (ic) (3.153)

= ecic (3.154)

=⇒ V̇ (t) = S (ec(t), ic(t)) (3.155)

=⇒ V (t1)− V (t0) ≤
∫ t1

t0

S (ec(τ), ic(τ)) dτ (3.156)

Therefore, we conclude that a capacitor is passive with respect to input ec and output ic, with storage function
given by the energy and supply rate by the electrical power. Passivity here means that the capacitor doesn’t
create energy, its total energy is always no greater than the energy contained in the total power supplied to
the capacitor.

3.5.1 Passivity in Robots

For robotic mechanisms, we consider the output to be the joint velocities q̇, the input is the non-conservative
torques τ applied at the joints by the environment, and the state is (q, q̇).

A candidate storage function is the total energy of the system

V (q, q̇) = KE(q, q̇) + PE(q),

where K is the kinetic energy

K =
1

2
q̇TD(q)q̇,

and PE(q) is the potential energy. Note that potential energy may be zero at many configurations, so that
a storage function is usually NOT a Lyapunov function.

The dynamics become

D(q)q̈ + C(q, q̇)q̇ +
∂PE(q)

∂q
= τ,

where we have so far assumed that the potential energy contains only the gravitational energy, so that
∂PE(q)
∂q = G(q). Note that technically the gradient ∂PE(q)

∂q is not a vector, but a dual vector (co-vector), but
we don’t stress this difference here. Since this term depends on potential energy, it represents conservative
forces, of which gravitational force is an example. The term τ contains the non-conservative external forces,
where . These external forces usually include:

• Motor torques τm

• Damping at joints −Bq̇

• Contact forces JT (q)F , where J(q) is the Jacobian from q to coordinates of a frame defined at the
point of contact.

Other forces are possible, but we focus on these.
The power supplied to the robot is q̇T τ , which serves as the supply rate.
Let’s calculate the time-derivative of the storage function:

Table of Contents 52

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

V̇ = q̇TD(q)q̈ +
1

2
q̇T Ḋ(q)q̇ +

(
∂PE(q)

∂q

)T
q̇ (3.157)

= q̇TD(q)D−1(q)

(
τ − C(q, q̇)q̇ − ∂PE(q)

∂q

)
+

1

2
q̇T Ḋ(q)q̇ +

(
∂PE(q)

∂q

)T
q̇ (3.158)

= q̇T τ +
1

2
q̇T
(
Ḋ(q)− 2C(q, q̇)

)
q̇ (3.159)

= q̇T τ (3.160)

= S(y, u) (3.161)

Again, we can conclude that a robot is passive from externally applied non-conservative forces/torques
to the joint velocity.

3.5.2 Applications

Bipedal Robots

Potential-energy shaping is frequently used to dictate the behavior of a robot by modifying the potential
energy of that robot. Gravity compensated PD control is an example of potential-energy shaping. A non-
trivial example is low-power walking of bipedal robots on flat ground and uphill [4]. The idea was that some
mechanisms walk steadily down slopes with no energy inputs. The energy lost at foot-strike balanced out
the energy gained from potential energy. By comping up with a suitable potential energy function, those
same motions could be achieved on flat ground, and do not require much additional energy inputs.

Teleoperation

Remote physical interaction used to perform poorly due to the issue of time-delay in the medium transferring
real-time physical signal information between the master device and the remote device. Passivity theory
suggested that the instability was due to a fake added energy resulting from the delay in signals. Loosely
speaking, the power-content of out-of-phase signals is different from the real power present in synched
versions. This power-mismatch built up energy, causing instability. In effect, the time-delay in the medium
made it become a fake source of power that flowed into the master and remote devices. The solution was to
make the medium itself passive, so that the three systems together: master, medium, and remote, formed a
interconnected system that was passive by construction [3].

Power System Control

Electrical systems are also networks of components, and passivity naturally applies to the analysis and
control of such systems [1].

3.6 Actuator Models

We have to understand the physical implementation of the torques τ that act on the links to move them.

3.6.1 Electric Actuators

To control a joint i, corresponding to link angle θi, we typically rigidly attach links i − 1 and i to the
housing/stator and shaft/rotor of a rotary actuator respectively. For prismatic joints, these links i− 1 and
i are rigidly attached to the housing and piston of a linear actuator, respectively. The output of the motor
becomes the force/torque τ , unless a gear-like mechanism is introduced, at which point the torque τ on the
link is some multiple of the motor’s output, say τm.

We consider permanent magnet DC motors. Other kinds include AC motors and brushless DC motors.

Table of Contents 53

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

A model for the motor torque is τ = Kmia, if the flux in the motor is constant. The current is generated
by a voltage source, and has dynamics

(3.162)L
d

dt
ia +Ria = V − Vb,

where L is the motor inductance, R is the winding resistance, Vb is the back EMF and is proportional to
ωm, the motor speed.

3.6.2 SISO Joint Model

This section justifies the most naive approach: independent servo control for each motor attached to each
joint. For slow motions, the SISO model we derive is adequate, especially when the gear reductions are large.
The gear ratio is typically in the range of 20 to 200 or more.

We have the actuator inertia Ja and gear inertia Jg driven by the motor torque τm, with gear friction
coefficient Bm. The gear reduces θm to θs by ratio r. The second shaft is connected to an intertia Jl and
driven by load torques τl.

The dynamics governing θm are

(3.163)Jmθ̈m +Bmθ̇m = τm − τl/r
= Kmia − τl/r

We can rewrite (3.162) and (3.164b) as

(3.164a)(Ls+R)Ia(s) = V (s)−Kb sΘm(s),

(3.164b)(Jms
2 +Bms)Θm(s) = KmIa(s)− τl(s)/r

We combine these equations to obtain

(3.165)s ((Ls+R)(Jms+Bm) +KbKm) Θm(s) = KmV (s)− (Ls+R)

r
τl(s).

The electrical time constant L/R is much smaller than the mechanical time constant Jm/Bm. So, we can
divide by R and set L/R to zero, obtaining.

(3.166)s

(
(Jms+Bm) +

KbKm

R

)
Θm(s) =

Km

R
V (s)− 1

r
τl(s).

Setting u = KmV/R and d = −τl/r, we obtain the motor equation as

(3.167)Jθ̈m +Bθ̇m = u(t)− d(t).

Alternatively,
(3.168)(Js2 +Bs)Θm(s) = U(s)−D(s)

This model views the joint angle through the motor angle, and the load due to the other links are a
disturbance.

3.6.3 Flexible Joint Models

Harmonic gear mechanisms have low backlash, high torque transmission, and compact size. However, they
use a flexspline that introduces flexibility. The effect of joint flexibility is to introduce oscillatory modes,
which restricts the bandwidth of the control behavior so that these modes are not excited to resonance.

We model the flexibility as a single spring with spring constant k[N/m2]. Consider such a flexible spring
between the motor and the load. The equations are given by

Jlθ̈l +Blθ̇l + k(θl − θm) = 0, and (3.169)

Jmθ̈l +Bmθ̇l + k(θm − θl) = u, (3.170)

Table of Contents 54

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

where u is input torque applied to the motor shaft.

pl(s) = Jls
2 +Bls+ k (3.171)

pm(s) = Jms
2 +Bms+ k (3.172)

Θl(s)

U(s)
=

k

pl(s)pk(s)− k2
(3.173)

Θm(s)

U(s)
=

pl(s)

pl(s)pk(s)− k2
(3.174)

(3.175)

The open-loop characteristic equation is

(3.176)JlJms
4 + (JlBm + JmBl) s

3 + (k(Jl + Jm) +BlBm) s2 + k(Bl +Bm)s

To understand this equation, consider the case where viscous friction is absent. The open-loop characteristic
equation is s2(JlJms

2 +k(Jl+Jm)), which has a double pole at the origin and two complex conjugate poles of
the imaginary axis. That’s a neutrally stable system. The frequency of the imaginary poles are proportional
to
√

(k). For systems with small values of Bl and Bm and high stiffness k, we expect the poles to be close
to this situation, indicating that this system is hard to control.

The flexible joint model can be given a state x ∈ R4 where

(3.177)x1 = θl, x2 = θ̇l, x3 = θm, x4 = θ̇m.

The state space model is
(3.178a)ẋ1 = x2

(3.178b)ẋ2 = − k
Jl
x1 −

Bl
Jl
x2 +

k

Jl
x3

(3.178c)ẋ3 = x4

(3.178d)ẋ4 =
k

Jm
x1 −

k

Jm
x3 −

Bm
Jm

x4 +
1

Jm
u

which we can represent compactly as the linear system

(3.179)ẋ = Ax+Bu

(3.180)A =

0 1 0 0

− k
Jl
−Bl

Jl
k
Jl

0

0 0 0 1
k
Jm

0 − k
Jm

−Bm

Jm

 , B =

0
0
0
1
Jm

 .

Table of Contents 55

Chapter 4

Control

We first look at methods that treat the each joints as a single-input-single-output that only experiences the
presence of the other links in the robots as a disturbance. These methods can often do quite well. For highly
dynamic motion involving significant changes in energy, we need to switch to multi-joint approaches.

4.1 Independent Joint Control

For each link i, we construct a trajectory qdi (t), implying q̇di (t). The problem then becomes how to make our
link angles track those desired angles and rate of change of angles. Mathematically, we want

lim
t→∞

qi(t)→ qdi (t).

4.1.1 Routh Hurwitz Criterion

• The second-degree polynomial, P (s) = s2 +a1s+a0 has both roots in the open left half plane (and the
system with characteristic equation P (s) = 0 is stable) if and only if both coefficients satisfy ai > 0.

• The third-order polynomial P (s) = s3 + a2s
2 + a1s+ a0 has all roots in the open left half plane if and

only if a2, a0 are positive and a2a1 > a0.

4.1.2 P Control

The simplest control strategy is Proportional control:

(4.1)u(t) = −kp(θm(t)− θd(t)).

The closed-loop model becomes

(4.2)(Js2 +Bs)Θm(s) = −kpΘm(s) + kpΘd(s)−D(s),

or

(4.3)Θm(s) =
kp

Js2 +Bs+ kp
Θd(s)−

1

Js2 +Bs+ kp
D(s).

The error, is therefore

(4.4)E(s) = Θd(s)−Θm(s) =
Js2 +Bs

Js2 +Bs+ kp
Θd(s)−

1

Js2 +Bs+ kp
D(s).

As long as kp > 0 and disturbances are bounded we get stability. For step disturbance d(t) = D and
reference θd(t) = θd, we apply the final value theorem to see that

(4.5)ess = lim
s→0

sE(s) = − D

Kp

56

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

So, we can make the errors zero and the effect of disturbance small. What we can’t do is shape the
transient response, since we have limited control over the closed loop poles. To rectify this, we must use a
PD control.

4.1.3 PD Control

To gain more control over the response, we use a Proportional-Derivative controller:

(4.6)u(t) = −kp(θm(t)− θd(t))−Kdθ̇m(t).

The closed-loop model becomes

(4.7)(Js2 +Bs)Θm(s) = −kpΘm(s) + kpΘd(s) + kdsθm(s)−D(s),

or

(4.8)Θm(s) =
kp

Js2 + (B + kd)s+ kp
Θd(s)−

1

Js2 + (B + kd)s+ kp
D(s).

As long as kp > 0, kd > 0, and disturbances are bounded, the closed loop system is stable. Moreover, we
can move both poles arbitrarily.

In practice, we can’t move the poles wherever due to actuator saturation. An easier way to at least get
ess to be zero is to use integral action.

4.1.4 PID Control

(4.9)u(t) = −kp(θm(t)− θd(t))−Kdθ̇m(t)− kI
∫ t

0

(θm(η)− θd(η))dη,

(4.10)U(s) =

(
kp +

kI
s

)
(Θd(s)−Θm(s))−KdΘm(s).

(4.11)Θm(s) =
kps+ kI

Js3 + (B + kd)s2 + kps+ kI
Θd(s)−

s

Js3 + (B + kd)s2 + kps+ kI
D(s).

(4.12)E(s) =
Js3 + (B + kd)s

2

Js3 + (B + kd)s2 + kps+ kI
Θd(s)−

s

Js3 + (B + kd)s2 + kps+ kI
D(s).

Same final value theorem test gives us that ess = 0 for all constant step reference and constant disturbances.
Applying Routh-Hurwitz criterion, we get that kp, kd, kI > 0 and

(4.13)kI <
kp(B + kd)

J

4.1.5 FeedForward Control

The control approaches so far worked for constant references and disturbances. What happens when the
reference is time varying? One approach is to use a feedforward control input.

Let the plant be G(s), the controller be H(s), and feedforward transfer function be F (S). Then,

(4.14)U(s) = F (s)Θd(s) +H(s)Θd(s)

One can show that if F (s) = 1/G(s) and F (s) is stable, then E(s) = Θd(s)− Y (s) = 0.
Let

G(s) =
q(s)

p(s)
, H(s) =

c(s)

d(s)
, and F (s) =

a(s)

b(s)
. (4.15)

Table of Contents 57

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Then

(4.16)T (s) =
Θm(s)

Θd(s)
=
q(s) (c(s)b(s) + a(s)d(s))

b(s) (p(s)d(s) + q(s)c(s))
,

and

(4.17)
E(s)

Θd(s)
=
d(s) (q(s)a(s)− b(s)p(s))
b(s) (p(s)d(s) + q(s)c(s))

.

We can get E(s) ≡ 0 if q(s)a(s)− b(s)p(s) = 0, or

q(s)

p(s)
=
b(s)

b(a)
(4.18)

=⇒ F (s) =
1

G(s)
(4.19)

The effect of this choice when H(s) is a PD control is that

(4.20)
(
Js2 + (B +Kd)s+ kp

)
E(s) = −D(s).

The closed loop system can be modeled as

(4.21)Jë(t) + (B +Kd)ė(t) + kpe(t) = −d(t).

If d(t) = 0 then e(t)→ 0 for kp > 0, kd > 0.

4.1.6 Control Of Flexible Joints

There are two issues that affect the performance of the independent joint control strategies derived so far.
The first is the issue of actuator saturation, the second is the effect of flexibility in the actuator or link.

The effect of saturation is to create integrator wind-up, and reduce the rise time in response to step
functions. Furthermore, ramps may be untrackable.

The effectiveness of a PD control will depend on whether the signal is from the motor or the load. The
short message is:

1. If you use θm, you can control θm well but are then letting θl be driven by passive dynamics.

2. If you use θl you can control θl but you have to be less aggressive to not excite a resonant feedback
due to the spring.

k
pl(s)

1
pm(s)

θm

θl

k

u

+

+

Figure: Model from voltage (u = KmV/R) to load angle θl.

k
pl(s)

1
pm(s)

θm

θl

k

u

+

+
kp + kds

θd +

−
e

Figure: Regulation using PD Control when sensor reads load angle θl.

Table of Contents 58

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

k
pl(s)

1
pm(s)

θm

θl

k

u

+

+
kp + kds

θd +

−
e

Figure: Regulation using PD Control when sensor reads motor angle θm.

A single measurement of only one out of θm or θl might not be suitable. If you use feedback from both
θm and θl, you create four gains that are hard to design using typical frequency-domain techniques. To
formulate this control, we use the state space models in (3.180).

Note that the input u is a scalar. If we know all elements of x, we can choose a linear feedback

(4.22)u = −kTx+ r

where r is the reference. This system is controllable, we can choose k to assign the poles of A−BkT however
we place, as long as complex poles have their conjugates as poles.

4.2 Multivariable Control

We derived an independent joint model for the robot dynamics, encompassing link and actuators, and
designed controllers based on this model. Instead, we may consider the full dynamics model which combines
the Euler-Lagrangian model for the robot link dynamics with the actuator models to obtain an equation
that looks like

(4.23)M(q)q̈ + C(q, q̇)q̇ +Bq̇ +G(q) = u,

where u denotes the input due to the voltage, whereas τ was the torque acting on the link joint. In particular,

uk = rk
Kmk

Rk
Vk,

where θmk
= rkqk, and M(q) = D(q) + J , and J is diagonal with r2

kJmk
as kth diagonal element.

4.2.1 PD+ Control

In the absence of gravity, a PD control for set-point tracking works for the full dynamics too! However, we
show this using a Lyapunov function instead of the final value theorem. Let u = −KP (q− qd)−KD q̇+G(q).
The Lyapunov function we use is

(4.24)V =
1

2
q̇TM(q)q̇ +

1

2
(q − qd)TKP (q − qd)

(4.25)

V̇ = q̇TM(q)q̈ +
1

2
q̇T Ṁ(q)q̇ + q̇TKP (q − qd)

= q̇T (u− C(q, q̇)q̇ +KP (q − qd)−G(q)−Bq̇) +
1

2
q̇T Ṁ(q)q̇

= q̇T (u+KP (q − qd) +G(q)−Bq̇) +
1

2
q̇T
(
Ṁ(q)− 2C

)
q̇

= −q̇T (KD +B)q̇

Using La Salle’s invariance principle, the fact that V̇ ≤ 0 enables us to conclude that V̇ → 0 so that
q → qd and q̇ → 0.

La Salle’s invariance principle states that for a candidate Lyapunov function V (x) (continuous, positive
definite) if V̇ ≤ 0 then solutions x(t) from all initial conditions will approach the largest set invariant set
M = {x ∈ Rn:V (t) ≡ 0}.

For (4.23) with a PD control feedback and Lyapunov function (4.24), V̇ ≡ 0 =⇒ q̇ ≡ 0 =⇒ q̈ ≡ 0 =⇒
u = −KP (q − qd) ≡ 0 =⇒ q ≡ qd.

Table of Contents 59

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

D(q)q̈ + C(q, q̇)q̇ +G(q) = τ
Actuator
J,B

CTC
(4.27)

Linear
Control
(4.29)

Inner Loop

Outer Loop

qd(t) aq u τ q, q̇

Figure 4.1: Joint space inverse dynamics control

4.2.2 Inverse Dynamics Control

Consider
(4.26)M(q)q̈ + C(q, q̇)q̇ +G(q) +Bq̇ = u,

We create an inner-loop outer-loop control as shown in Figure 4.2. Let

CTC: u = M(q)aq + C(q, q̇)q̇ +G(q) +Bq̇. (4.27)

The closed loop simply becomes

(4.28)M(q)q̈ = M(q)aq =⇒ q̈ = aq

We can choose aq to be a linear PD control:

aq = q̈(t) +KP (qd(t)− q(t)) +KD(q̇d(t)− q̇(t)). (4.29)

If e(t) = q(t)− qd(t), then the equation above reduces to

ë+KD ė+KP e = 0.

It is straightforward to choose gains KD and KP so that e(t)→ 0 as t→∞.

4.2.3 Task Space Inverse Dynamics Control

Let X be the end-effector pose with orientation given by a minimal representation of SO(3). Then,

(4.30)Ẍ = Ja(q)q̈ + J̇a(q)q̇

If we choose
(4.31)aq = Ja(q)−1

(
aX − J̇a(q)q̇

)
then the joint space inverse dynamics control implies a task space dynamics of

(4.32)Ẍ = aX

and we can now track task space trajectories Xd(t). The caveat is that Ja(q) must be non-singular. If the
task is not the full end-effector pose, but coordinates of smaller size, Jacobian pseudoinverses may be used.

4.2.4 Robust Inverse Dynamics Control

The issue with inverse dynamics control is that the guarantees assume perfect cancellation of nonlinear
dynamics to obtain the linearized system. When the model is not perfectly known, we want our control
performance to be robust to the errors, and perhaps adapt to them as well.

Consider the true system
(4.33)M(q)q̈ + C(q, q̇)q̇ +G(q) = u.

Table of Contents 60

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Robot Mechanism
Actuator
J,B

CTC

Task to
Joint
(4.31)

Linear
Control

Inner Loop

Outer Loop

xd(t) aX aq u τ q, q̇

Figure 4.2: Task Space Inverse Dynamics. Notice that the inner loop is the same as for joint space inverse
dynamics / computed torque control.

We design our control based on the assumed system Consider

(4.34)M̂(q)aq + Ĉ(q, q̇)q̇ + Ĝ(q) = u.

We model the closed loop as
(4.35)q̈ = aq + η(q, q̇, q̈, aq)

where

(4.36)

η(q, q̈, aq) = M(q)−1
(

(M(q)− M̂(q))aq + (C(q, q̇)− Ĉ(q, q̇))q̇ +G(q)− Ĝ(q)
)

= M−1
(
M̃aq + C̃q̇ + G̃

)
= Eaq +M−1

(
C̃q̇ + G̃

)
Let e = (q̃, ˜̇q). Selecting aq = q̈d(t)−K0q̃ −K1

˜̇q + δa, where the last term is to be designed, we get

(4.37)ė =

[
0 I
−K0 −K1

]
e+

[
0
I

]
(δa+ η)

Suppose we can bound η as ‖η‖ ≤ ρ(e, t), we can then design δa to guarantee ultimate boundedness of e.
Let V = eTPe where ATP +PA = −Q. Since A can be made Hurwitz by choosing K0 and K1, we know

that for each Q > 0 there exists P > 0 that satisfies the Lyapunov equation.
We have that

(4.38)V̇ = eTPAe+ eTATPe+ 2eTPB(δa+ η)

= −eTQe+ 2eTPB(δa+ η)

We choose

(4.39)δa =

{
−ρ(e, t) BTPe

‖BTPe‖ , if ‖BTPe‖ 6= 0

0 , if ‖BTPe‖ = 0

Let w = BTPe. Then the second term in (4.38) is

wT
(
−ρ w

‖w‖
+ η

)
≤ −ρ‖w‖+ ‖w‖‖η‖ (wT η ≤ ‖w‖‖η‖)

≤ ‖w‖(−ρ+ ‖η‖)
≤ 0 (‖η‖ ≤ ρ(e, t))

So, V̇ ≤ −eTQe < 0.
All of this works if ‖η‖ ≤ ρ(e, t). To define such a bound, consider

(4.40)

η = Eaq +M−1
(
C̃q̇ + G̃

)
= Eδa+ E(q̈d(t)−K0q̃ −K1

˜̇q) +M−1
(
C̃q̇ + G̃

)
=⇒ ‖η‖ ≤ α‖δa‖+ γ1‖e‖+ γ2‖e‖2 + γ3

Table of Contents 61

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

If we can find ‖E‖ = α < 1, and constants γi above, we can define

(4.41)ρ(e, t) =
1

1− α
(
γ1‖e‖+ γ2‖e‖2 + γ3

)
.

For E = M−1M̃ = M−1M̂ − 1 we can always ensure α < 1 by defining M̂ as

(4.42)M̂ =
2

M +M
I

where M ≤ ‖M−1‖ ≤M .

Continuous Robust Control

The robust controller (4.39) is discontinuous, but ensures that e(t) → 0. We can use a continuous approxi-
mation at the cost of only being able to show that the errors are uniformly ultimately bounded (UUB). An
open ball Br(y) ∈ Rn is a set {x ∈ Rn: ‖x− y‖ < r}.

A system is UUB with respect to ball Br(0) if for every initial condition the error e(t) there exists T <∞
such that e(t) ∈ Br(0) ∀t ≥ T . The trouble is this ultimate bound becomes large when ρ(e, t) is large.

(4.43)δa =

{
−ρ(e, t) BTPe

‖BTPe‖ , if ‖BTPe‖ > ε

−ρ(e,t)ε BTPe , if ‖BTPe‖ ≤ ε

So, V̇ = −eTQe+ 2wT (δa+ η). When ‖w‖ ≤ ε

(4.44)

V̇ = −eTQe+ 2wT (δa+ η)

≤ −eTQe+ 2wT (−ρ
ε
w + ρ

w

‖w‖
)

≤ −eTQe− 2
ρ

ε
‖w‖2 + 2ρ‖w‖

which is clearly maximized at ‖w‖ = ε/2
Thus

(4.45)V̇ ≤ −eTQe+ ε
ρ

2

We want to find the smallest ball in error coordinates e outside of which V̇ < 0. Clearly, V̇ < 0 when
eTQe > ερ/2. Since eTQe ≥ λmin(Q)‖e‖2, V̇ ≥ 0 when λmin(Q)‖e‖2 ≥ ερ/2. So, V̇ < 0 outside of the set

(4.46)δ =

(
ερ

2λmin(Q)

)1/2

The UUB ball comes from the smallest ball containing the smallest level set that contains Bδ(0).

4.2.5 Adaptive Inverse Dynamics Control

The error in model estimate affects ρ(ε, t) which ruins the lowest achievable error. Ideally, we want smaller
model errors to achieve lower error. Luckily, we can learn models on-the-fly using adaptive control theory.

The idea is to create a dynamical system whose state is the parameters we want to estimate. We feed it
an input that makes the estimated parameters reach a set that permits the state errors to converge.

We want to control the system

(4.47)M(q)q̈ + C(q, q̇)q̇ +G(q) = Y (q, q̇, q̈)θ = u.

Choosing u = Y (q, q̇, aq)θ̂, where aq = q̈d(t)−K0q̃ −K1
˜̇q we get

(4.48)¨̃q +K1
˙̃q +K0q̃ = M−1Y (q, q̇, q̈)θ̃ = Φθ̃,

Table of Contents 62

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

where θ̃ = θ̂ − θ.
We get the ODE

(4.49)ė = Ae+BΦθ̃

with same matrices as in the robust case.
How should we pick θ̂, given that we don’t know θ? Consider a function of e, θ̂, θ given by

(4.50)V = eTPe+ θ̃TΓθ̃.

For P > 0 and Γ > 0, V = 0 when e = 0 and θ = θ̂.
Let K0 and K1 be chosen so that A is Hurwitz. Implies there exists Q > 0 such that ATP + PA = −Q.

We have
(4.51)V̇ = −eTQe+ 2θ̃T

(
ΦTBTPe+ Γ

˙̂
θ
)

If we knew θ we’d ensure that the second term was negative definite. However, since we don’t, we set
the second term to zero, by choosing

(4.52)
˙̂
θ = −Γ−1ΦTBTPe

It’s like a nonlinear integral control!

Analysis We have that V̇ is non-positive and is the square of a term. Therefore V (t)−V (t0) ≤
∫ T

0
eT (s)Qe(s)ds <

∞. This makes e(t) a square integrable function. Now, if we can show that its derivative ė(t) is bounded,
we can show that e(t)→ 0.

Lemma 1 (Barabalat). Suppose f :R 7→ R is a square integrable function and further suppose that its
derivative ḟ is bounded. Then f(t)→ 0 as t→∞.

So, why is ė bounded? Since V (t) is bounded so are e(t) and θ̃(t). Since e(t) is bounded so are q̃ and ˙̃q.
This implies that ¨̃q is bounded, so that ė(t) is bounded. Requires bounded q̈d(t).

4.3 Passivity-Based Control

The fact that robots, when viewed as rigid n-link mechanisms, are passive enables some nonlinear control
approaches that have advantages over PD control in joint space.

4.3.1 Potential-Shaping Control

Passivity provides an easy way to achieve a certain type of set-point regulation. If the torques τ include a
term of the form −Bq̇, where B > 0, either due to motor friction or controlled damping, we can conclude
that

V̇ = −q̇TBq̇ ≤ 0.

Where does q(t) reach? If the potential energy PE(q) has a local minimum q?, then we can show that
q(t)→ q? at least locally (when q(0) is close to q?).

If we want q† to be the equilibrium, where q† 6= q?, we just need to define a new potential energy PE†(q)
which has only one minimum at q†, and then use the motor control

τm = −Bq̇ +
∂PE(q)

∂q
− ∂PE†(q)

∂q
,

and the storage function
V (q, q̇) = KE(q, q̇) + PE†(q),

to arrive at the conclusion that q(t)→ q†.
Note that this analysis does not account for the presence of any interaction force F .

Table of Contents 63

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.3.2 Passivity-based Tracking

Suppose we want to track the trajectory qd(t). Let

e =

[
q(t)− qd(t)
q̇(t)− q̇d(t)

]
=

[
q̃
˙̃q

]
.

Assume that the model of the robot is

M(q)q̈ + C(q, q̇)q̇ +
∂PE(q)

∂q
= τm,

We define a controller as

(4.53)τm = M(q)a+ C(q, q̇)v +
∂PE(q)

∂q
−Kr, where

v = q̇d − Λq̃ (4.54)

a = v̇ = q̈d − Λ ˙̃q (4.55)

r = q̇ − v = ˙̃q + Λq̃, (4.56)

with K, Λ diagonal matrices of positive gains.

Note that

ṙ = q̈ − a (4.57)

Applying the control law, we get

M(q)q̈ + C(q, q̇)q̇ +
∂PE(q)

∂q
= M(q)a+ C(q, q̇)v +

∂PE(q)

∂q
−Kr (4.58)

=⇒M(q)(q̈ − a) + C(q, q̇)(q̇ − v) +Kr = 0, (4.59)

(4.60)

so that the closed loop becomes
(4.61)M(q)ṙ + C(q, q̇)r +Kr = 0.

Choose a storage function V (q, q̇), which in this case is also a Lyapunov function:

(4.62)V =
1

2
rTM(q)r + q̃TΛKq̃

(4.63)

V̇ = rTM(q)ṙ + rT Ṁ(q)r + 2q̃TΛK ˙̃q

= rT (−C(q, q̇)r −Kr) + rT Ṁ(q)r + 2q̃TΛK ˙̃q

= −rTKr + 2q̃TΛK ˙̃q +
1

2
rT
(
Ṁ(q)− 2C

)
r

= −(˙̃q + Λq̃)TK(˙̃q + Λq̃T) + 2q̃TΛK ˙̃q

= −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q

= −eTQe

If M(q) is bounded then we can conclude that e = 0 ⇐⇒ V = 0 so that the origin is GAS. Again, our
analysis assumes that F = 0.

The conclusion of global asymptotic stability seems to suggest passivity-based control has no advantage
over inverse dynamics control, which achieves the same behavior. The advantage appears in the robust and
adaptive control approaches, where the constraints on M(q) are relaxed. Robust control required bounds on
the error and mass matrix terms. Implementing the adaptive controller requires knowledge of acceleration
(due to Φ) and invertible M(q).

Table of Contents 64

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.3.3 Passivity-Based Robust Control

The control is
(4.64)u = M̂(q)a+ Ĉ(q, q̇)v + Ĝ(q)−Kr = Y (q, q̇, a, v)θ̂ −Kr

The closed-loop becomes
(4.65)M(q)r + C(q, q̇)r +Kr = Y (θ̂ − θ)

Let θ̂ = θ0 + δθ where ‖θ̃‖ = ‖θ − θ0‖ ≤ ρ. The same Lyapunov candidate as in for passivity gives

(4.66)V̇ = −eTQe+ rTY (δθ + θ̃)

The same UUB analysis goes through where w = rTY , δθ = δa and θ̃ = η. Note that the uncertainty
characterization is simpler, and prior knowledge is easily baked in.

4.3.4 Passivity-Based Adaptive Control

The closed-loop is again
(4.67)M(q)r + C(q, q̇)r +Kr = Y (θ̂ − θ)

The Lyapunov function is

(4.68)V =
1

2
rTM(q)r + q̃TΛKq̃ +

1

2
θ̃TΓθ̃

and the update law becomes

(4.69)
˙̂
θ = −Γ−1Y (q, q̇, a, v)r

Again we see that

(4.70)V̇ = −q̃TΛTKΛq̃ − ˙̃qTK ˙̃q − θ̃T (Y T r + Γ
˙̂
θ)

As in the previous adaptive control analysis, we use Barbalat’s Lemma to conclude e(t) → 0 and ‖θ̃‖
remains bounded.

4.3.5 Passivity-based Interaction

When F 6= 0, we cannot ensure tracking using the previous arguments, because

V̇ = q̇T τm + q̇TJT (q)F (4.71)

= q̇T τm + ξTF, (4.72)

(4.73)

where ξ is the velocity of the contact frame, in which the contact force is F .

Like impedance control, if we know how the environment behaves (the force it generates at the contact
in response to motion of the contact), we may be able to choose τm intelligently to achieve force tracking or
position tracking.

Passivity control allows us a different type guarantee: if the environment is passive, then the robot-
environment can be made stable by choosing τm to make the robot passive, without knowing anything
else about the environment, like its impedance.

Let the robot and environment storage functions be Vr and Ve respectively. If the only interaction is at
the robot-environment contact, we get the the supply rate to the robot is

Sr = q̇T τm + ξTF.

The important idea is that the supply rate of the environment is

Se = −ξTF.

Table of Contents 65

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Therefore, we can define a new storage function

Vre = Vr + Ve,

and see that
V̇re = q̇T τm.

Assuming that the storage functions are bounded when the state is bounded, we can make the system stable
by choosing τm = 0.

Saying more than that requires us to know the storage function and supply rate of the environment. If
we know that, for example, that F = Kξ, which would destabilize the system, we may choose τm = −ρ(ξ)Kq̇
where ρ(ξ) ≥ ‖ξ‖2.

4.4 Force Control

The robot control tasks we have focused on involve a desired, possibly time-varying, position of the end
effector. This end-effector trajectory (task-space trajectory) dictates a trajectory q(t) for the robot joint
coordinates q. Many tasks are sufficiently characterized by the position of the end-effector.

In some cases, the task for the robot involves generating desired forces rather than just positions. Simple
examples involve pushing delicate objects on a table-top, polishing or grinding, assembly tasks, throwing a
ball.

We may achieve force control in two ways:

1. Directly through measurement of the applied force and error-based feedback

2. Indirectly through changes in static configuration.

4.4.1 Direct Force Control

Consider the usual Euler Lagrangian equations M(q)q̈+C(q, q̇)q̇+G(q) = τ + JTFtip(t). If we can measure
Ftip(t) through some sensor, and have a desired force Fd at the end-effector, we can construct an error

Fe = Fd − Ftip(t).

Force Sensors. There are typically three locations for placing sensors that measure the forces acting on
the robot. They are the wrist, the joints, and the end-effector. The wrist sensor is usually a force-and torque
sensor placed between the end-effector and the final robot link. A force sensor measures the torques about
the actuator shaft. The end-effector sensors are often tactile sensors placed on the fingers of grippers.

Direct Force Control. Let’s choose the control

τ = G(q)− JTFd︸ ︷︷ ︸
feed-forward

− JT
(
KpFe +Ki

∫
Fe(s)ds

)
︸ ︷︷ ︸

feedback

(4.74)

The closed-loop equations become

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + JTFtip(t) (4.75)

M(q)q̈ + C(q, q̇)q̇ +G(q) = G(q)− JTFd − JT
(
KpFe +Ki

∫
Fe(s)ds

)
+ JTFtip(t) (4.76)

In general, this system is hard to analyze. For quasi-static motions, where q̈ ≈ 0 and q̇ ≈ 0, we get

(≈ 0) + (≈ 0) +G(q) = G(q)− JTFd − JT
(
KpFe +Ki

∫
Fe(s)ds

)
+ JTFtip(t) (4.77)

=⇒ 0 = JT
(

(I +Kp)Fe +Ki

∫
Fe(s)ds

)
(4.78)

=⇒ 0 = (I +Kp)Ḟe +KiFe (if J(q) is non-singular) (4.79)

Table of Contents 66

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

So, if q̈(t) ≈ 0, q̇(t) ≈ 0, J(q) is non-singular, Kp ≥ 0 and Kd > 0, then Fe → 0. As you might guess, direct
force control is difficult to achieve in practice.

Problems: There’s a potential contradiction where we apply a time-varying torque τ(t) 6= 0 at the robot’s
joints but need q̈, q̇ = 0. This situation might exist when the end-effector is in contact with something that
doesn’t move much. By contrast, what happens when the end-effector loses contact? The measured force
drops to zero, and the end-effector accelerates due to Fe! Unexpected changes in contact turn out to be
disastrous for force controllers intended to work on a particular contact configuration. These issues make
force control unpopular except for very structured situations, requiring advanced methods.

Partial Solution: Add damping −Kdq̇ to achieve slow motion

4.4.2 Configuration-based Force Control

Consider the usual equations M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + JTFtip(t). When the robot is stationary, and
the end-effector is in contact with a surface, we obtain

G(q) = τ + JT (q)Ftip(t) (4.80)

The idea is to then solve this equation, say for q∗ and τ∗, when Ftip(t) = Fd, a desired force, and then design
a controller τ that stabilizes the configuration and torque at these values. That is, q(t)→ q∗ and τ(t)→ τ∗.
For example,

τ = G(q∗)− JT (q∗)Fd︸ ︷︷ ︸
τ∗

+Kp(q − q∗) +Kdq̇︸ ︷︷ ︸
stabilization

.

Task: Analyze this control law.
Note that this approach does not monitor Ftip, but focuses on configuration q. In practice, this approach

avoids the challenges of implementing an accurate force sensor.

4.4.3 Coordinate Frames and Constraints

The forces acting on a robot often come about due to contact with the environment. This contact occurs
at specific surfaces and points, and represent position constraints. The forces acting on the robot then arise
as reactions to the existence of these constraints. For example, your finger moving in free space would not
sense any pressure at the finger tip, until it is pressed against a surface. Even when you sense a pressure due
to a force, the magnitude depends on whether the surface is pushing on you, or whether you are pushing on
the object, versus maintaining a light stationary contact.

Reciprocal Bases

In more formal descriptions of mechanics, the linear and angular velocity ξ = (v, ω) and force and moment
F = (f, n) are considered dual to each other. When these quantities are defined in a frame attached to a
body, the quantities ξ and F are called (body) twists and wrenches respectively, and are both six-dimensional.
The usual symbols for a twist and a wrench are V and F .

Given a configuration space corresponding to a mechanical system, twists belong to the tangent space
M and wrenches belong to the co-tangent space F, and their product corresponds to power. In fact, each
configuration has its own tangent space and co-tangent space. See Chapter 1 of [2] for a description of these
concepts. The main point used here is that M and F are vector spaces.

The numerical value of the power depends on the bases we choose for the spaces M and F. For consistency,
the power we calculate must be the same for any pair of bases we choose, if these two pairs of bases are
linearly related. This consistency is achieved by using reciprocal bases.

Definition 11 (Reciprocal Bases). If {e1, . . . , e6} is a basis for M and {f1, . . . , f6} is a basis for F, these
two bases are reciprocal if

(4.81)eTi fj =

{
1 , if i = j

0 , if i 6= j.

Table of Contents 67

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Definition 12. A twist V ∈M and wrench F ∈ F are called reciprocal if

(4.82)VTF = vT f + ωTn = 0

The advantage of using reciprocal bases for M and F is that the product VTF has the invariance we
want. Therefore, the reciprocity condition (4.82) is invariant with respect to the choice of reciprocal bases.

Natural and Artificial Constraints

The adjectives natural and artificial are simply a way to distinguish between restrictions on motion that
naturally arise out of physical contact, and restrictions that we artificially choose to get a task done.

We discuss first discuss natural constraints which are defined using (4.82). The intuition is that the
power consumed by a twist and wrench to satisfy a natural constraint is zero. A natural constraint typically
comes from the environment the robot is interacting with. The total power consumed by such a twist and
wrench may be non-zero, but none of that power consumption is due to the natural constraint.

Natural constraints in turn define artificial constraints, which arise due to specifying reference values for
input motion and force control tasks. These are constraints we impose on the motion to complete a given
task. The natural constraints together with the artificial constraint provide a complete reference for V and
F .

Compliance frame A compliance frame ocxcyczc (also called a constraint frame) is a frame in which the
task is easily described. For example, consider

1. inserting a peg into a hole, or

2. turning a crank.

(These examples are described in [5]).

4.4.4 Hybrid Force / Position Control

If we want to track a trajectory xd(t) in the task space, we may use a control

τacc = D(q)aq + C(q, q̇)q̇ +G(q), where (4.83)

aq = J(q)−1
(
aX − J̇(q)q̇

)
, and (4.84)

aX = ẍd(t)−KP (x− xd(t))−KD(ẋ− ẋd(t)). (4.85)

This controller works (x(t)→ xd(t)) when no external force is present on the robot (and the model is known
perfectly). This requirement implies that the robot shouldn’t contact anything in the environment.

If we want to achieve a force Fd at a contact point, we may use the controller

τf = G(q)− JTaF = G(q)− JTFd − JT
(
Kp(Fd − Ftip) +Ki

∫
(Fd − Ftip(s))ds

)
(4.86)

As mentioned earlier, this controller produces complex motion in general, but for quasi-static motions (q̈ ≈ 0
and q̇ ≈ 0), we see that Ftip(t)→ Fd.

The two controllers seem to only work in conditions that are incompatible: position control at end-effector
requires no contact forces, and force control at the end-effector requires no motion. If we choose the spatial
directions along which we want motion or force well, we may be able to still use both controllers at the same
time, leading to what is known as hybrid force/position control.

To achieve tracking of a desired task-space position xd(t) and force Fd(t), we first define task space accel-
erations aX and task-space forces aF . The core idea is to ensure that motion corresponding to acceleration
aX ∈ R6 and the force aF ∈ R6 lie along mutually orthogonal directions, so that along each of these direc-
tions, the conditions for either force control or position control are satisfied, allowing the two controllers to
work together. The next example shows a simplified case.

Table of Contents 68

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

X

(x1,x2)

f(t)

Figure 4.3: Simple contact in 2D

Example 17 (Simple Hybrid Force/Position Control). Consider the state x ∈ R2, x =
[
x1 x2

]T
. Let the

dynamics be
mẍ = Fc + Fext(t),

where c stands for control, and ext stands for external. We can choose Fc, but Fext(t) is from the environment.
Assume that

Fext(t) =

[
0
f(t)

]
. We get

m

[
ẍ1

ẍ2

]
=

[
Fc,1
Fc,2

]
+

[
0
f(t)

]
(4.87)

The external force f(t) could exist for many reasons, but we focus on the case where it is the reaction force
that arises out of contact with an environment. For an illustration, see Figure 4.3.

This example is simple enough to see that we can implement a position control along x1 to track a motion
x1,d(t), by choosing

Fpos = m

[
ẍ1,d(t)−KP (x− x1,d(t))−KD(ẋ− ẋ1,d(t))

0

]
. (4.88)

To achieve an intended contact force fd(t), we choose the force controller

Fforce = m

[
0

−fd(t)− kp (fd(t)− f(t))− ki
(∫ t

0
fd(s)− f(s)ds

)]
. (4.89)

Notice that we previously saw that Fpos works when there is no contact, and Fforce works when there is
no motion. The force equation is trickier, because it requires contact to exist and the reaction force to be
positive. However, applying the corresponding control will maintain contact.

The key point is that implementing the combined control

Fc = Fpos + Fforce (4.90)

when both motion and force exist will work, because the desired motion and forces are perpendicular to each
other. If we don’t obey this requirement, these controllers will interfere with each other, and we may neither
achieve the desired position nor achieve the desired force. �

For the general case, consider the manipulator equations

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + JT (q)Ftip (4.91)

Given any aX and aF , we may use the control

τhyb = M(q)aq + C(q, q̇)q̇ +G(q)− JT (q)aF , where (4.92)

aq = J(q)−1
(
aX − J̇(q)q̇

)
, (4.93)

Table of Contents 69

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

to obtain the closed loop

Ẍ = aX + J(q)M(q)−1JT (q)(Ftip − aF). (4.94)

We may relate this closed-loop again to what we know about the separate controllers. If Ftip = 0,
we choose aF = 0 and we could choose aX to get x(t) → xd(t). If the robot was quasi-static, so that
Ẍ ≈ 0, then if J(q)M(q)−1JT (q) is non-singular we could choose aF = Fd, so that Ftip = Fd, or define
aF = Fd −KP (Ftip − Fd)−KI

∫
(Ftip(s)− Fd)ds to get a self-correcting system where Ftip → Fd.

If we choose aF and aX such that the resulting motion twist and the contact force wrenches are orthogonal,
then we still get the desired convergence in position and forces, despite the robot experiencing both motion
and contact. The idea is to view equation (4.94) differently:

Ẍ = aX + J(q)M(q)−1JT (q)(Ftip − aF). (4.95)

If we choose aX and aF correctly, we may view this equation as the sum of two independent equations, where
independence is in terms of the subsets of R6 in which the motion and forces reside:

Ẍ = aX , 0 = J(q)M(q)−1JT (q)(Ftip − aF). (4.96)

If aX and aF are now designed appropriately, the motion stays in its subspace, and the contact forces stay
in their own independent subspace, like in Example 17. The PD position control (which assumes no external
forces) and PI force control (which assumes no motion) strategies will be appropriate.

An appropriate design for aX and aF depends on what the robot is in contact with. When the robot is
in contact with flat walls, like in example 17, these are easy to design. When the robot is in contact with
objects that have complex shapes or changing contacts, the design gets more complicated.

4.5 Network Models and Impedance

Introduction The reciprocity condition ξTF = 0 mean that the forces of constraint do no work in di-
rections of motion compatible with motion constraints. This property holds under ideal conditions of no
friction and perfectly rigid robot and environment. In practice, compliance and friction alter the nature of
constraints and constraint forces.

For example, when a robot pushes against a compliant surface, the contact experiences both non-zero
normal reaction forces and non-zero motion, so that the work ξTF is non-zero. If the stiffness of the surface
is k, then the force is kx, and the total work done is

(4.97)

W =

∫ t

0

ẋ(u)kx(u)du

=

∫ t

0

d

du

1

2
kx(u)2du

=
1

2
k(x(t)2 − x(0)2)

The work done increases with k, as does the force required to induce a velocity ẋ. This impact of stiffness
on the relationship between force, velocity and energy is captured by the more general notion of impedance.

4.5.1 One-Port Model

The robot and environment are modeled as one-port nodes in a network (See main text for details). Each
node has a one port consisting of two interaction terminals and corresponding port variables effort Fi and
flow Vi. The power consumed or dissipated by the node is V Ti Fi. The relationship between these port
variables depend on the dynamics of the system.

Table of Contents 70

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

1-Port

+

Fi
-

Vi

4.5.2 Impedance

The relationship between flow and effort for a system is given by the impedance operator of that system.
For linear systems, we have the definition below

Definition 13. For a one-port network, the impedance Z(s) is

Z(s) =
F (s)

V (s)
.

Electrical Circuit Analogy

The term impedance has an obvious analogue in electrical circuits. In fact, many concepts of mechanical
impedance have names derived from electrical systems.

Electrical impedance may be thought of as a generalized form of electrical resistance, where we define this
general electrical resistance (electrical impedance) as the ratio of the voltage produced across a component
when we pass a current through it. Thus, the corresponding concept in mechanical systems is that the
mechanical impedance is the force (voltage/effort) produced when we make an object move with a certain
velocity (current/flow).

In Hogan’s words

Several important constraints on the behavior of physical systems can be identified. Along
each degree of freedom, instantaneous power flow between two or more physical systems (e.g.,
a physical system and its environment) is always definable as the product of two conjugate
variables, an effort (e.g., a force, a voltage) and a flow (e.g . a velocity, a current). An obvious
but important physical constraint is that no one system may determine both variables. Along any
degree of freedom a manipulator may impress a force on its environment or impose a displacement
or velocity on it, but not both.

Seen from the environment along any degree of freedom, physical systems come in only two
types: admittances, which accept effort (e.g. force) inputs and yield flow (e.g. motion) outputs;
and impedances, which accept flow (e.g., motion) inputs and yield effort (e.g., force) outputs.
The concepts of impedance and admittance are familiar to designers of electrical systems as
frequency-dependent generalizations of resistance or conductance and are usually regarded as
equivalent and interchangeable representations of the same system. For a linear system operating
at finite frequencies this is true, but manipulation is fundamentally a nonlinear problem, and for
a nonlinear system it is not true; the two representations are in general not interchangeable.

Example 18 (Examples of Impedances).

• Mass:
F (t) = MV̇ (t) =⇒ F̂ (s) = MsV̂ (s) =⇒ ZM (s) = Ms.

• Damper:
F (t) = BV (t) =⇒ F̂ (s) = BV̂ (s) =⇒ ZB(s) = B.

• Spring:

F (t) = Kx(t) =⇒ F̂ (s) =
K

s
V̂ (s) =⇒ ZK(s) =

K

s
.

�

Table of Contents 71

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

−+

Fs

Z(s)

(a) Thevenin equivalent circuit

Z(s)Vs

(b) Norton equivalent circuit

Figure 4.4: Equivalent one-port networks.

Example 19. For a S-M-D with dynamics Mẍ+Bẋ+Kx = F , we have

(4.98)Z(s) = Ms+B +
K

s
.

Classification of Impedance Operators

1. Inertial: iff |Z(0)| = 0
Example: Mass, Z(s) = Ms.

2. Resistive: iff 0 < |Z(0)| <∞
Example: Damper, Z(s) = B.

3. Capacitive: iff |Z(0)| =∞
Example: Spring, Z(s) = K/s.

Admittance

The reciprocal relationship is often called admittance Y (s)

Y (s) =
V (s)

F (s)
.

A physical system is an admittance if it can accept forces and produce negligible motion. A physical system
is an impedance if it can accept motion and produce negligible forces. Hogan’s main point is that a robot is
often viewing the world as admittance, since it get’s reaction forces from unmoving surfaces. Therefore, the
robot needs to be controlled like an impedance. That is, we should seek to make it generate contact forces
based upon the contact motion.

Thevenin and Norton Equivalents

We can represent any one-port network consisting of multiple nodes as an equivalent network containing
just one impedance and a source. Figure 4.4 depicts these equivalent circuits. In a Thevenin equivalent
network, the impedance Z(s) is placed in series with a source of effort Fs. In a Norton equivalent network,
the impedance Z(s) is placed in parallel to a source of flow Vs. These sources represent references (see
artificial constraints) or external disturbances. Capacitive impedances are modeled as Thevenin equivalent
circuits, and inertial impedances

4.5.3 Robot Impedance

The task space inverse dynamics control approach allows us to think of impedance of a robot in terms
of (4.98), even though the relationship between velocity and force for the full model (4.23) is quite complex.

The impedance of the robot determines the force response of the end-effector to a velocity input at the
end-effector. That is,

(4.99)F (s) = Z(s)V (s).

Table of Contents 72

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Task Space Robot Impedance

Defining the impedance of a nonlinear system is difficult. Fortunately, we can focus on defining the impedance
of the robot in the task space. Given a system

(4.100)M(q)q̈ + C(q, q̇)q̇ +Bq̇ +G(q) = u+ JT (q)Fe,

we can impose the control

(4.101)u = M(q)aq + C(q, q̇)q̇ +Bq̇ +G(q)− JT (q)af ,

to obtain the closed loop
(4.102)q̈ = aq +M(q)−1JT (q)(Fe − af).

The joint acceleration q̈ will depend on our choices for aq and af . In turn, the task acceleration is

Ẍ = J(q)q̈ + J̇(q)q̇ (4.103)

= J(q)
(
aq +M(q)−1JT (q)(Fe − af)

)
+ J̇(q)q̇ (4.104)

= J(q)aq + J̇(q)q̇︸ ︷︷ ︸
aX

+ J(q)M(q)−1JT (q)︸ ︷︷ ︸
W (q)

(Fe − af) (4.105)

Let

aX = J(q)aq + J̇(q)q̇ + J(q) (4.106)

=⇒ aq = Ja(q)−1
(
aX − J̇a(q)q̇

)
, and (4.107)

W (q) = J(q)M−1(q)JT (q). (4.108)

The closed-loop task space dynamics are then

(4.109)Ẍ = aX +W (q)(Fe − af),

The term aX is the desired acceleration in the task space X and W (q) is the mobility tensor.
If W (q) is non-singular, then we set af = Fe, and achieve any force regulation task by modifying aX

appropriately. Therefore, we design impedance controllers for the system

(4.110)Ẍ = aX .

4.5.4 Robot and Environment Interaction

The interaction between the robot and environment is modeled as a network of one-ports, where the connec-
tions between nodes occur at the interaction ports of the nodes, and flow and effort are transmitted between
interacting nodes.

Robot
Zr(s)

+

F

-

V

Environment
Ze(s)

+

F

-

V

4.5.5 Impedance Control

When a robot interacts with physical objects, defining the interaction by impedance of the robot is often
easier than specifying the exact motion of the robot end-effector relative to the environment.

Table of Contents 73

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Example 20 (Apparent Inertia). Consider a mass M to which we apply a force F in order to move it
around. The mass itself has an actuator that applies a force u, so that the full model is Mẍ = u−F . When
u = 0, the system behaves like

Mẍ = −F.

We can control this system through a choice of u so that it appears to us (we are the ones applying a
force F) as a lighter mass m′ < M by using the control u = −mF , m > 0. When we do so, we get

Mẍ = u− F = −mF − F (4.111)

=⇒Mẍ = −(1 +m)F (4.112)

=⇒ M

1 +m
ẍ = −F (4.113)

=⇒ m′ẍ = −F (4.114)

The new apparent mass is m′ = M
1+m < M .

This kind of control is used in exoskeletons, where instead of forcing the limbs to move a specific way,
we simply focus on reducing the apparent weight of the body. �

In general, suppose we want the system (4.23) to behave like a system with inertia, damping, and stiffness
in the task space given by

(4.115)Mdẍ+Bdẋ+Kdx = F.

We would need to implement a task space inverse dynamics control as described in Section 4.5.3 to achieve
the closed-loop behavior in (4.110), and choose aX as

(4.116)aX = M−1
d (F −Bdẋ−Kdx)

Our closed-loop model (4.115) is a spring-mass-damper model with desired parameters. When there is
no external force (F = 0), clearly x→ 0 for Md, Bd,Kd > 0.

The force F appears a bit artificial, and it is, because we assumed we are attempting to design aX based
on (4.110), which relies on knowing Fe so that we set af = Fe in (4.109). If we remove the need to measure
Fe, and just set af = 0 and aX = M−1

d (−Bdẋ−Kdx), we would instead obtain the closed-loop equation

Mdẍ+Bdẋ+Kdx = MdW (q)Fe (4.117)

The value of admittance-based trajectory tracking is clearer now. We get a system where x(t) acts like a
spring-mass-damper acted upon by an unknown force, and its motion in response to these unknown forces
can be tuned as we like. This idea is used a lot in haptics, where we want to tune Md, Bd and Kd to produce
the sensation of artificially interacting with a variety of objects, even though the actual haptic interface has
almost no impedance when unpowered.

We can also define an impedance control relative to a trajectory xd(t), so that our impedance control
achieves trajectory tracking when no disturbance forces exist.

(4.118)aX = +ẍd(t) +M−1
d (F (t)−Bd (ẋ(t)− ẋd(t))−Kd (x(t)− xd(t)))

If we define e(t) = x(t)− xd(t), then the closed-loop error dynamics becomes

Mdë(t) +Bdė(t) +Kde(t) = F (t).

Again, when F (t) = 0, then e(t) → 0, otherwise the error system behaves like an admittance, where the
system error moves in reaction to F (t). However, the standard choices of Md, Bd and Kd in practice make
this impedance-based trajectory tracking indistinguishable from task space inverse dynamics control with a
linear controller in the outermost loop.

Table of Contents 74

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.5.6 Hybrid Impedance Control

When we fix the robot impedance, the velocity or force at the contact depends on what the environment
does. Instead, we’d like to fix either the robot’s force or velocity to a reference value.

To achieve this goal, we need to exploit the environment’s characteristics when possible. The main
achievement of impedance control is that we do not have to know anything about the environment beyond
one simple thing: is Ze(0) = 0 or is Ze(0) = ∞? That knowledge is enough to design a controller that
achieved our goals (position or force-tracking) no matter what the interaction force happens to be.

In contrast, in position control, we required that the environment offer no force in response to the robot’s
motion, so that Ze(s) = 0 for all s. For force control, we required that Ze(s) =∞ for all s. With impedance
control, we now only require a condition on Ze(s) when s = 0, instead of forcing the system to be one way
or another for all s.

Example 21 (Inertial Environment).

Robot
Zr(s)

+

F

−

V

Environment
Ze(s)

Vs

We may equate the force at contact to obtain

Zr(s) (Vs(s)− V (s)) = Ze(s)V (s) (4.119)

Zr(s)Vs(s)− Zr(s)V (s) = Ze(s)V (s) (4.120)

V (s)

Vs(s)
=

Zr(s)

Ze(s) + Zr(s)
(4.121)

V (s)− Vs(s)
Vs(s)

= − Ze(s)

Ze(s) + Zr(s)
(4.122)

EV (s) = − Ze(s)

Ze(s) + Zr(s)
Vs(s) (4.123)

Under a step input Vs(s) = Vd/s, the steady state error will be zero if Ze(s) = 0 and Zr(s) 6= 0. Note that
this happens even though there is some non-zero interaction force at the contact point between the robot
and the environment!

A unit step for Vs(s) corresponds to a linearly increasing desired position (a ramp). Therefore, if Zr(s)
is non-inertial, and Ze(s) is inertial, we can achieve velocity tracking. Clearly, if Ze(s) was capacitive, the
error would not go to zero.

To execute this observation on our manipulator, we need to choose aX in (4.110) appropriately. To do
so, notice that

Ẍ = aX =⇒ sV (s) = aX(s) (4.124)

Our design effectively wants to enforce

F (s) = Zr(s)(Vs(s)− V (s)),

where Zr(s) is non-inertial. Let Zr(s) = Mcs+Zrem(s), where Zrem(s) is a proper rational transfer function.
Then, we want

F (s) = Mcs (Vs(s)− V (s)) + Zrem(s) (Vs(s)− V (s)) (4.125)

=⇒ sV (s) = sVs(s)−
F (s)

Mc
+
Zrem(s)

Mc
(Vs(s)− V (s)) (4.126)

Table of Contents 75

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

If we choose Zrem(s) = B +K/s, so that it is proper and also makes Zr(s) capacitive, so that it is dual
to Ze(s) (which is inertial), then the equation above implies

aX(t) = ẍd(t)−
F

Mc
+

B

Mc
(ẋd(t)− ẋ(t)) +

K

Mc
(xd(t)− x(t)) , (4.127)

which reduces to impedance-based trajectory tracking (4.118) along a single direction. �

Example 22 (Capacitive Environment).

Robot
Zr(s)

−+
Fs

+

F

−

V

Environment
Ze(s)

We may equate the velocity at contact to obtain

Fs(s)− F (s)

Zr(s)
=

F (s)

Ze(s)
(4.128)

Ze(s)Fs(s)− Ze(s)F (s) = Zr(s)F (s) (4.129)

Ze(s)Fs(s) = (Ze(s) + Zr(s))F (s) (4.130)

F (s)

Fs(s)
=

Ze(s)

Ze(s) + Zr(s)
(4.131)

F (s)− Fs(s)
Fs(s)

= − Zr(s)

Ze(s) + Zr(s)
(4.132)

EF (s) = − Zr(s)

Ze(s) + Zr(s)
Fs(s) (4.133)

We can see that for step input force Fs(s) = Fd/s, we have that the error in the interaction force will
become zero when Zr(0) is finite. Furthermore, this happens even though there may be non-zero motion of
the contact point between the robot and the environment!

To implement the control, note that at the contact we need

Fs(s)− F (s) = Zr(s)V (s).

Again, let Zr(s) = Ms+ Zrem(s). Then

Fs(s)− F (s) = MsV (s) + Zrem(s)V (s) (4.134)

sV (s) =
Fs(s)− F (s)

M
− Zrem(s)

M
V (s) (4.135)

For Zr(s) to be inertial and non-capacitive, we want Zrem(s) = B. Then,

aX = M−1 (Fd(t)− F (t)−Bẋ) ,

which is force control in the task space with damping. �

These single degree-of-freedom designs lead to a hybrid impedance controller where the robot applies dif-
ferent control strategies along different directions in the contact frame based on the environment’s impedance
along those directions. This idea is a generalization of hybrid force/position control.

Table of Contents 76

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.6 Optimal Control

If we keep seeing that the control isn’t able to follow the trajectory returned by the previous methods,
perhaps we need to constrain trajectories using control. This approach leads to an optimal control problem.

In continuous time, we have

min J(q(t), u(t))

subject to q(t) satisfies dynamics and state constraints

u(t) satisfies input constraints

We may also formulate discrete time versions of this problem.

4.6.1 Linear Quadratic Regulator

This section is inspired by Sergey Levine’s slides. When time is discrete, the dynamics are linear, and the cost
function is quadratic in state and control, the optimal control problem may be solved in a straightforward
way. Consider a finite time horizon t ∈ {0, 1, 2, . . . , T}.

At each time t ∈ {0, 1, 2, . . . , T}, we have

xt+1 = At

[
xt
ut

]
+ at; ct(xt,ut) =

1

2

[
xt
ut

]T
Ct

[
xt
ut

]
+

[
xt
ut

]T
ct

Let J =
∑T
t=0 ct(xt, ut)

Now, at time T , we have only one decision to make: pick uT . The cost of doing so is exactly cT (xT ,uT)
The cost for the first T − 1 time steps are some value that is effectively constant at time T , so that the total
cost will be QT (xT , uT)

QT (xT ,uT) = const +
1

2

[
xT
uT

]T
CT

[
xT
uT

]
+

[
xT
uT

]T
cT

To find the best uT , we minimize this expression. It’s gradient w.r.t. uT is

∇uT
QT (xT , uT) = xTTCxT ,uT

+ uTTCuT ,uT
+ cTuT

, where

CT =

[
CxT ,xT

CxT ,uT

CxT ,uT
CuT ,uT

]
, cT =

[
cxT

cuT

]
.

Setting ∇uT
QT (xT , uT) = 0 we obtain

uT = −C−1
uT ,uT

(CxT ,uT
xT + cuT

) = KTxT + kT ,

which is a linear (well, affine) feedback control.
To cut a long story short, we may substitute for uT in QT (xT ,uT), and we will see that

QT (xT ,KTxT + kT) = V (xT) = xTTVTxT + xTTvT ,

for some appropriate matrix VT and vT that depends on the problem’s parameters.
The main idea is that we can repeat the same step at time T − 1, with the convenient result that linear

dynamics makes QT−1(xT−1, uT−1) is also a quadratic function of its arguments. So, at time T − 1 we can
expect a linear feedback in xT−1 to be optimal, and the value function V (xT−1) will be quadratic in xT−1,
and this convenient structure persists backwards in time till t = 0. This convenience is easily broken when
any of the cost functions are not quadratic, or the dynamics are nonlinear.

This procedure nicely illustrates some of the core ideas in optimal control of dynamical systems. We
solve for the best control by moving backwards in time from the final time, by building up an estimate of
the cost-to-go (V). The function Qt(xt,ut) is known as the Q-function in reinforcement learning, and V is
the value function (which is being maximized there, not minimized as we did here).

Table of Contents 77

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-10.pdf

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

4.7 Summary

Topic Equation
Euler-Lagrange Eqns D(q)q̈ + C(q, q̇)q̇ +G(q) = τ
Euler-Lagrange Eqns + Actuator M(q)q̈ + C(q, q̇)q̇ +G(q) +Bq̇ = u
Euler-Lagrange Eqns + Force D(q)q̈ + C(q, q̇)q̇ +G(q) = u+ JTF
Euler-Lagrange Eqns + Actuator + Force M(q)q̈ + C(q, q̇)q̇ +G(q) +Bq̇ = u+ JTF

Euler-Lagrange Eqns + Actuator + Joint elasticity

Controller Equations Notes

Joint Space PD u = −Kp (q − qd(t))−Kd (q̇ − q̇d(t)) Great for high-gear ratio
motors, qd(t) constant

Joint Space PD+ u = G(q)−Kp (q − qd(t))−Kd (q̇ − q̇d(t)) Reduces gains required for
qd(t) constant

Joint Space CTC u = M(q)aq + C(q, q̇)q̇ +G(q)
aq = q̈d(t)−Kp (q − qd(t))−Kd (q̇ − q̇d(t))

Inner-outer loop design

Task Space CTC u = M(q)aq + C(q, q̇)q̇ +G(q)

aq = J+
(
aX − J̇ q̇

)
aX = ẍd(t)−Kp (x− xd(t))−Kd (ẋ− ẋd(t))

Tracking requires no con-
tact force

Direct Force Control u = G(q)− JTFd − JT
(
KpFerr +Ki

∫
Ferrdy

)
Tracking requires no con-
tact motion

Config-based Force Control u = G(q∗)− JT (q∗)Fd −Kp (q − q∗)−Kdq̇ Avoids measuring Ftip

Hybrid Force/Position Control u = M(q)aq + C(q, q̇)q̇ +G(q)− JTaF
aq = J+

(
aX − J̇ q̇

)
aX = ẍd(t)−Kp (x− xd(t))−Kd (ẋ− ẋd(t))
aF = Fd +KpFerr +Ki

∫
Ferrdy

aX and aF must keep po-
sition and force directions
orthogonal

Impedance Control

Hybrid Impedance Control

Robust Control

Adaptive Control

Passivity-based Control

Robust PBC

Adaptive PBC

Table of Contents 78

Chapter 5

Motion Planning

Definition 14 (Path). A path in Rn is a continuous function γ from the unit interval I = [0, 1] to Rn.

Definition 15 (Trajectory). A trajectory q(t) in Rn is a a continuous function q from the an interval of
time [t0, tf] to Rn.

Definition 16 (Graph). A graph G is an ordered pair G = (V,E) where

• V is a set

• E is a set of (ordered) pairs of elements in V

The interpretation of G is that V is a set of nodes, and E describes directed edges that indicate an
‘immediate’ operation from one node to another.

5.1 Path And Trajectory Planning

The trajectory planning problem can be cast as an optimization problem. Suppose we can measure the
‘goodness’ of a trajectory by a function J . We want to find a solution q∗(t) of the problem:

min
q(t)

J(q(t)) (5.1)

subject toRobot doesn’t destroy itself or things (5.2)

Other concerns (5.3)

This version of the problem doesn’t worry about control, unlike optimal control formulations. Out pops
q∗(t) and we then try and use the trajectory tracking controllers developed in previous controllers which
make q(t)→ q∗(t).

These trajectory tracking problems are typically solved using heuristics. One alternative to finding a
trajectory q(t) is to start by finding a path. Then, attach time to the path to get a trajectory.

A prototypical approach, with a description of the complexity:

• Figure out the Obstacle-free configuration space (can be very difficult)

• Sample points in free space (easy)

• Connect points in free space (can be difficuly)

– Potential Field + random walk
– Probabilistic Road Maps
– Rapidly-exploring Random Trees

• Attach time to the path formed by connecting points.

– Use polynomial function of sufficient degree to specify initial point, final point, initial velocity,
final velocity, and add accelerations. Finding coefficients given start and end times and values is
a linear optimization problem.

Some of these methods are described in the next sections.

79

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Algorithm 1 Gradient Descent

Require: q0, qf , U(q), ε > 0. {U(q) must be positive demi-definite}
Ensure: qk ≈ minq U(q)
q0 ← qs
i← 0 {Loop counter}
while U(q) > ε do

qi+1 ← qi − αi

‖∇U(q)‖∇U(q)
i← i+ 1

end while
return {qj}j∈{1,...,i}

5.2 Potential Field Planning

The aim is to define a continuous real-valued function U :Q → R where Q is the configuration space such that
configuration qf is the unique minimum of the U . A gradient descent algorithm for minimizing U generates
a sequence of points in the state space corresponding to a path from an initial point q0 to the final point qf .
The function U is called a potential function, and its gradient defines a force F as

(5.4)F = −∇U(q)

The idea for this approach comes from the behavior of particles with inertia moving in potential fields
that imply certain forces acting on the particle.

The simplest way to construct U is to express it as a sum of the form

(5.5)U(q) = Uatt(q) + Urep(q),

where Uatt is an term designed to ‘attract’ q to qf . For example,

(5.6)Uatt(q) =

{
1
2‖q − qf‖

2
2 , if ‖q − qf‖2 ≤ d

d‖q − qf‖2 − 1
2d

2 , if ‖q − qf‖2 > d

The terms Urep will ‘repel’ the point q from obstacles during the gradient descent. Let ρ(q) be the
shortest distance of a point q from any obstacle. One example of such a term is

(5.7)Urep(q) =

 1
2

(
1
ρ(q) −

1
ρ0

)2

, if ρ(q) ≤ ρ0

0 , if ρ(q) > ρ0

The function ρ(q) can be discontinuous, unless we define ρ0 to be small enough.

5.2.1 Gradient Descent

Algorithm 1 implements gradient descent for a function U(q).

5.2.2 Task Space Potentials

Sometimes defining ρ(q) is hard, but defining the obstacles in the task space is easy. In this situation, one
may prefer to define a potential field in the task space, compute that gradient, and map the gradient to the
configuration space.

We represent the robot by the frame origins o0
i (q) for i ∈ 1, . . . , 6. Sometimes, we also include additional

points to represent parts of the robots not close to these frame origins, to account for the physical space
occupied by the robots.

We define potential functions for each point o0
i (q) and compute the gradient. These gradients represent

‘forces’ Fi in task space that should act on the frame origins. To obtain the corresponding force in coordinate
space, we use the transformation τi = JTv Fi.

Table of Contents 80

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

5.3 Probabilistic Road Maps

The probabilistic roadmap planner is a motion planning algorithm in robotics, which solves the problem of
determining a path between a starting configuration of the robot and a goal configuration while avoiding
collisions.

Motion planning using a PRM involves a construction phase and a query phase.

5.3.1 Construction

The construction phase involves building a graph, which is a set of nodes and a set of edges.

1. Take random samples from the configuration space of the robot

2. Test for membership in free space

3. If in free space, add node to PRM graph

4. select subset of existing nodes based on proximity

5. Connect new node to selected nodes by straight line paths, check for collisions by sampling along these
paths

6. If there are no collisions for a path, add corresponding edge to PRM

5.3.2 Query

Once a sufficiently dense PRM is available, one can query the algorithm to connect any initial and goal
points. Connect initial and goal points to nearest nodes creating a graph corresponding to that query. Use
Djikstra’s shortest path algorithm to connect the initial and final nodes in the graph. The paths along the
edges of the shortest path yield the planned path.

5.3.3 Analysis

Given certain relatively weak conditions on the shape of the free space, PRM is provably probabilistically
complete, meaning that as the number of sampled points increases without bound, the probability that the
algorithm will not find a path if one exists approaches zero. The rate of convergence depends on certain
visibility properties of the free space, where visibility is determined by the local planner. Roughly, if each
point can ”see” a large fraction of the space, and also if a large fraction of each subset of the space can ”see”
a large fraction of its complement, then the planner will find a path quickly.

5.4 RRT

First, a quick summary of RRT(∗)

1. A fundamental assumption to these planning methods is that we can represent the task as a sequence
of nodes.

2. RRT is about computing (growing) an under-approximating abstraction of a complex state space with
a tree topology.

3. Two important questions:

(a) How to find a new leaf

(b) Where to connect new leaf to the tree?

4. Loosely, RRT answers 3a by random sampling, and 3b by nearest-node in underlying space (more
accurate details below).

5. RRT* improves RRT by using weights for the edges, and ensuring that all paths to leaves are minimum-
weight.

Table of Contents 81

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

6. Informed RRT* answers 3a for a subclass of edge weights, namely, length. For shortest-path problems
between two given points, to provably reduce length of current path by sampling, it is necessary to
sample a particular ellipsoid defined by points and the current optimal path.

RRT(∗) works off of a transition system TS = (S,Act,→, I, AP,L) that abstracts the underlying dynam-
ical system whose motion we wish to plan for. The states S are a finite set of points in the state space of the
dynamical system. For RRT(∗), an action is to attempt to reach another state. Therefore, Act = S. The
available transitions are encoded in →. The key point is that TS models a tree, therefore only one action
actually results in a transition in each state, to a unique successor node not identical to the current state. I
is the root node/state of the tree. For RRT(∗), an obvious simple definition of AP is AP = {goal, waypoint}.

The goal of RRT∗is to find a minimum cost path from the initial state I to the goal state in the dynamical
system. The goal states are s ∈ S such that L(s) = goal. Note the identification of states in TS and the
dynamical system’s state space. TS is not fixed, but grown incrementally, one state at a time. These states
come from the underlying dynamical system. To justify that TS simulates the dynamical system, RRT∗also
needs the following functions.

• sample

• nearest neighbor

• (local) steer

• collision check

• nearest vertex

• cost or distance

The cost is required when finding an optimal path, though it can trivially be taken as 0 to make any found
path optimal.

We start the growth of TS by obtaining a sample z from X using sample. The point of z is to become
a temporary goal for the nodes in the tree, to help it extend into unexplored regions. We find the nearest
neighbor sv to candidate z in S, using nearest neighbor. The steer function in RRT returns a point y that
minimizes distance from y to z while being only so far away from v.

The reason for using y and not z is that for a new point to accepted, there must be a transition from S
to it. In RRT without dynamics, the assumption is that the free space is connected, so there must be such
a transition. However, if z is far from v, the connection is likely to pass through an obstacle. Therefore, we
first find y, and attempt to connect it to the tree after it passes a collision check. Since y is not too far from
v, it is more likely that the path from y to v is collision-free.

In RRT or RRT∗with dynamics, the steer function finds an (optimal) trajectory between y and v, where
again y is closest possible to z, but only so far from v. The trajectory returned by the steer function confirms
that we can connect y to v. Again, there may be an obstacle in the way, and collision check determines if
the entire trajectory is safe from collision. Once the trajectory is shown to be collision-free, we can add sy
with a transition from its nearest neighbor. Again, to prevent wasted collision checks, we aim to add y and
not z, since the latter could be far from v.

In RRT∗we then rewire the connections between the outputs of nearest vertex to sy using cost-information.
This rewiring makes sure that the transitions in TS encodes optimal paths.

5.4.1 RRT∗ Simulation

This section focuses on the example provided, and the concern that RRT∗ is not likely to find the shorter
path through the gap. The folder RRT Star 2D contains code that implements the RRT∗ algorithm for
motion planning in two dimensions. There are no dynamic constraints. This code was downloaded from
MATLAB’s forums, and modified. There might be some errors in the re-wiring step, but it runs well enough
to see how the RRT tree grows as samples are added.

Figure 5.1 shows the tree without rewiring (in black), with the optimal path in red. The initial state is
the origin in the lower left corner, the goal state is the red check mark. Figure 5.2 shows a branch of the
tree that successfully passed through the narrower gap.

Table of Contents 82

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

(a)

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

(b)

(c)

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400

500

600

700

800

900

1000

(d)

Figure 5.1: A 2D path planning scenario with two obstacles, with a red check mark indicating the goal at
(750, 200). The origin (0, 0) is the root node. The tree obtained using RRT∗ is in black. (a) The shortest
path in the tree found by RRT∗ does not pass through the narrow gap. (b) RRT∗ may ignore shorter and
wider gaps. (c) The gap is not even explored, unlike in a) (d) The optimal path goes through the gap.

Table of Contents 83

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

(a) (b)

Figure 5.2: Another run of RRT∗ on the 2D path planning example where the gap is never explored. (a)
The entire tree and optimal path. (b) A blow-up of nodes close to the left entrance. Node A and B interact
with the obstacles to create a very small region within which samples can successfully grow the tree through
the gap. Examples of successful samples are the blue cross marks. The samples marked in red (even the
sample in free space) would be rejected, since any sufficiently long path from points A or B passes through
an obstacle.

Observations. The outputs of the nearest-neighbor, the steer, and the collision check functions
interact with the existing nodes to promote or inhibit growth of the tree through the gap. For a path to be
found through the gap, the following two situations seem to be necessary

• Nodes near the entrance should be ‘in front’ of the gap.

• The tree in the longer path must not be well developed.

Figure 5.2 shows two two nodes at points A and B that inhibit growth of the tree through the gap since
they create a very small region that a sample must lie in to successfully create a new node of the tree lying
within the gap. For any sample to create a branch through the gap, it will have to select A or B as the
nearest node. Unfortunately, the obstacle intersects paths between most of such samples and the nodes at
A and B, causing a rejection of those samples. This inhibition allows the other branch to grow longer while
no progress is made on the branch through the gap most of the time (unless the small region is sampled).

Figure 5.3 depicts the location of a node near the left end of the gap that would enable growth of the
tree through the gap. The growth is possible because a vey large set of samples can lead to successfully
placing new nodes within the gap. However, if the alternate branch has grown significantly, then again the
path through the gap is not discovered. The new samples that could have promoted growth from C instead
select D as their closest node, and grow the branch emanating from D.

Importance Sampling This mechanism hopefully convinces the reader that the issue is not that samples
will rarely fall within the gap. The issue is that the components of the RRT∗ algorithm interact in a way
that makes the usefulness of a sample non-deterministic.

One simple way to overcome the second necessary condition above is to use new samples to grow all
‘branches’. The technical problem is characterizing how many ‘branches’ there are, and which set of nodes
belong to which branch. There are probably algorithms for versions of this problem already, if not the exact
problem. Solving this problem is a way of incorporating some notion of topology into the RRT∗ algorithm.

The first necessary condition is perhaps a place for important sampling, where one identifies these bot-
tleneck node placement situations and avoids placing nodes there, or promotes placement of nodes in ‘ex-
tendable’ positions.

Table of Contents 84

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

200 300 400 500 600 700 800

200

300

400

500

600

700

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

C

D

Figure 5.3: Point C, in the absence of point D, will be extended through the gap by samples in a large
region, potentially represented by the red check marks. Note that if a one of the blue check marks closer to
point A in Figure 5.2b were sampled, they would become points similar to point C here. If the alternate
branch grows, and a node exists at point D, then the samples above the blue line would be closer to node
D, inhibiting growth of the branch through the gap.

5.5 Trajectories From Paths

The algorithms we’ve mentioned so far provide a sequence of points that belong to a path joining q0 and qf .
We can connect any two points by a straight line, thereby defining a path between the two points.

What we want is a trajectory, which means that we associate each point on the path with a time in
a continuous manner. We may also want the path to be sufficiently smooth, so that the derivatives are
bounded. Since each point corresponds to a unique time, the first and second derivatives of a trajectory
correspond to velocity and acceleration respectively.

The full problem is known as trajectory optimization.
Typically, we are converting line segments defined by end points into trajectories. The start and end

points are fixed, and we assume that the task define the velocities and accelerations only at the end points.
We will search for trajectories that satisfy these requirements on the end points from the set of polynomial
trajectories.

5.5.1 Polynomials

We consider each joint coordinate separately, since they are independent scalars. Suppose we know that

q(t0) = q0, q(tf) = qf (5.8)

q̇(t0) = v0, q̇(tf) = vf (5.9)

We have four constraints, and so we use a cubic polynomial to generate q(t) satisfying these constraints:

(5.10)q(t) = a0 + a1t+ a2t
2 + a3t

3.

Table of Contents 85

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

We rewrite this into the linear equation

q0 =a0 + a1t0 + a2t
2
0 + a3t

3
0 (5.11)

v0 =a1 + 2a2t0 + 3a3t
2
0 (5.12)

qf =a0 + a1tf + a2t
2
f + a3t

3
f (5.13)

vf =a1 + 2a2tf + 3a3t
2
f (5.14)

(5.15)

1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

a0

a1

a2

a3

 =

q0

v0

qf
vf

The determinant of the matrix is (tf − t0)4, so that a solution exists on all non-trivial time intervals.
If we want to specify accelerations, we need quintic polynomials, and obtain similar equations. Why

specify accelerations? So that there are no discontinuities when combining multiple segments, which would
require infinite jerk.

5.5.2 Parabolic Blends

Divide the time interval [t0, tf] into three segments where the velocity on the middle segment is specified,
and the first and last segment represent smooth transitions between zero velocity and the specified middle
segment velocity.

Minimum Time Trajectories Final time is not fixed, just need to when to switch from positive maximum
acceleration to negative maximum acceleration.

5.5.3 Cubic Splines in Hermite Form

5.5.4 Bezier Splines

Table of Contents 86

Appendix A

Vector Spaces

A.1 Vector Spaces

Definition 17 (Group). A group G is a set together with a binary operation · that satisfies the following
properties for all a, b, c ∈ G:

(i) Closure: a · b ∈ G;

(ii) Associativity: a · (b · c) = (a·)b · c;

(iii) Existence of identity element e ∈ G such that a · e = e · a = a;

(iv) Existence of inverse element d ∈ G such that d · a = a · d = e.

Example 23. Real numbers form a group under addition.

Example 24. Real numbers without 0 form a group under multiplication.

Definition 18 (Field). A field F is a set together with two operations – addition +:F × F 7→ F and
multiplication ·:F× F 7→ F – that satisfy the eight axioms listed below.

(i) Addition and multiplication are associative

(ii) Addition and multiplication are commutative

(iii) Existence of additive and multiplicative identity elements

(iv) Existence of inverse element for addition for each v ∈ V

(v) Existence of inverse element for multiplication for each v ∈ V except for the additive identity

(vi) Distributivity of multiplication with respect to addition

Example 25. Real numbers are a field under usual addition and multiplication.

Definition 19 (Vector space). A vector space over a field F is a set V together with two operations – vector
addition +:V × V 7→ V and scalar multiplication ·:F× V 7→ V – that satisfy the eight axioms listed below,
for all u, v, w ∈ V and a, b ∈ F.

(i) Addition is associative: u+ (v + w) = (u+ v) + w;

(ii) Addition is commutative: u+ v = v + u;

(iii) Existence of identity element 0 ∈ V such that v + 0 = v;

(iv) Existence of inverse element x ∈ V such that v + x = 0;

87

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

(v) Compatibility of scalar multiplication with respect to field multiplication: a · (bv) = (a · b)b;

(vi) Existence of identity element e ∈ F under scalar multiplication such that ev = v;

(vii) Distributivity of scalar multiplication with respect to vector addition: a · (u+ v) = a · u+ b · v;

(viii) Distributivity of scalar multiplication with respect to field addition: (a+ b) · u = a · u+ b · u.

Example 26. The set of n-tuples of real numbers, denoted Rn, over the field of real numbers form a vector
space when addition and scalar multiplication of these n-tuples are taken to be element-wise addition and
scalar multiplication. The 0 vector is the vector with all elements 0, and the inverse of v ∈ Rn is −v = (−1)·v.

Definition 20 (Vector Space Basis). A basis B of a vector space V is a set of vectors in V such that all
other vectors can be written as a finite linear combination of the elements of B.

Remark 3 (Basis for Rn). A basis for vector space Rn contains exactly n linearly independent vectors.

Remark 4 (Coordinates for Rn). A basis for Rn equips each point x ∈ Rn with a coordinate given by the
n coefficients of the basis vectors in the linear combination that yields x.

Definition 21 (Inner Product Space). An inner product on a vector space V defined over a field F is a
function 〈·, ·〉:V × V 7→ F with the following properties

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;

(ii) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉, for all x, y, z ∈ V and a, b ∈ F;

(iii) 〈x, x〉 ≥ 0, for all x ∈ V , and 〈x, x〉 = 0 ⇐⇒ x = 0.

An inner product space is a vector space equipped with a suitable inner product.

An inner product defines the notion of angle between two vectors, specifically defining when two vectors
are orthogonal (perpendicular) to each other.

Example 27. Vector space Rn equipped with the usual dot product forms an inner product space. Two
vectors in Rn are orthogonal when the angle between them is 90◦.

Definition 22 (Norm). A norm on a vector space V defined over field F (which is a subfield of the complex
numbers C) is a function p:V 7→ R with the following properties:

For all a ∈ F and x, y ∈ V ,

(i) p(x+ y) ≤ p(x) + p(y);

(ii) p(ax) = |a|p(x);

(iii) If p(x) = 0 then x = 0.

A norm defines a notion of size of vectors.

Example 28. An inner product space V with field R may be equipped with a norm p as follows:

p(u) =
√
〈u, u〉.

Remark 5. For real vector spaces defined over R, the symbol ‖·‖ is often used to denote the norm, instead
of p(·).

Definition 23 (Metric). A metric on a space X is a function d:X ×X 7→ R with the following properties

(i) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 ⇐⇒ x = y;

(ii) d(x, y) = d(y, x), for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

A metric defines a notion of distance on a space.

Example 29. An inner product space V may be equipped with a norm ‖·‖, which then defines a metric
d:V × V → R as

d(u, v) = ‖u− v‖.

Table of Contents 88

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

A.2 A Concept Chart

In Figure A.1, try to use directed arrows to indicate how different concepts lead to one another.
Hint: the ‘Point in Space’ may be viewed as the root node.

Point in
Space

Vector Space

Coordinate
Frames

Rigid
Body Pose

Homogenous
Transfor-
mations

Rotation
Matrix
SO(3)

Euler Angle
(Proper /

Tait-Bryan)
Basis

Similarity
Transform

Axis Angle

Angular
Velocity
so(3)

Figure A.1: Topics as nodes in a graph.

Table of Contents 89

Appendix B

Linear Algebra

B.1 Matrix-Vector Products

A linear map T :V →W applied to a vector v ∈ V is usually depicted as a matrix of numbers multiplied by
a column of numbers. These quantities are representations of the matrix and vector respectively given bases
for V and W .

Let’s consider W = V = R3. The matrix-vector product is then

T (v) =

a b c
∗ ∗ ∗
∗ ∗ ∗

de
f

 . (B.1)

The main point is that we are typically taught to compute this row-wise, so that we compute

(row-wise:) T (v) =

ad+ be+ cf
→

ad+ be+ cf
∗d+ ∗e+ ∗f

→
ad+ be+ cf
∗d+ ∗e+ ∗f
∗d+ ∗e+ ∗f

 (B.2)

This approach is effective for computing, but not for understanding. As Gilbert Strang suggests, conceptually,
we should think of this linear mapping of a vector by a matrix using a column-wise approach:

(column-wise:) T (v) = d

a∗
∗

+ e

b∗
∗

+ f

c∗
∗

 (B.3)

Effectively, the vector coefficients define a linear combination of the columns of the matrix. As some like to
suggest, the best way to think about something may be different than the best way to compute it.

90

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
https://en.wikipedia.org/wiki/Mathukumalli_Vidyasagar

Appendix C

Analysis

C.1 Topology

A set X is a collection of distinct objects. When we define a concept of closeness between elements of a set,
we equip the set with a topology. The importance of an abstract concept like topology in practice is that it
allows us to predict the effect of imprecision and approximation; of being close but not quite exact.

C.1.1 Neighborhoods

More concretely, we define neighborhoods that are subsets of X with specific properties.

Definition 24 (Topological Space via Neighborhoods). Let N(x) be the neighborhood function that provides
the neighborhoods of x ∈ X. X with N(x) defines a topological space if it satisfies the following axioms:

i) If N is a neighborhood of x (N ∈ N(x)), then x ∈ N

ii) If N ⊂ X contains an element of N(x), then N ∈ N(x)

iii) The intersection of two neighborhoods of x is also a neighborhood of x

iv) Any neighborhood N of x includes a neighborhood M of x such that N is a neighborhood of each point
of M .

Example 30. The real number line R, with N being a neighborhood of x if it contains an open interval
containing x, forms a topological space. An open interval of the real line is a connected line segment that
does not contain the end points.

The set of neighborhoods of x, which is N(x), is mind-bogglingly large. For example, we could create a
countably infinite set of disjoint intervals of the real line where only one of these intervals contains x, and
this infinitely large set would still be called a neighborhood of x.

To see that this set X = R with N(x) as given satisfies the requirements of being a topological space, we
mainly need to apply the definition and keep in mind the properties of open intervals.

i) By definition, if N ∈ N(x), then x ∈ N
ii) If a set M contains a subset N that belongs to N(x), then there’s an open interval U such that

x ∈ U ⊂ N . Since N ⊂M , in turn we may say that x ∈ U ⊂M , which implies that M ∈ N(x)

iii) If N1 and N2 are two neighborhoods, they contain open intervals U1 and U2 such that x ∈ U1, x ∈ U2.
Clearly U3 = U1 ∩ U2 6= ∅, since it contains x. Moreover, U3 is an open interval since it is a non-empty
intersection of two open intervals. Since x ∈ U3 ⊂ N1 ∩ N2, and U3 is an open interval, we conclude
that N1 ∩N2 is a neighborhood of x, so N1 ∩N2 ∈ N(x).

iv) Any neighborhood N of x contains at least one open interval U that contains x. For each y in U , we may
treat N as a neighborhood of y, since y ∈ U ⊂ N , and U is an open interval. Thus, any neighborhood
N of x contains a set U such that N is a neighborhood of each point in U .

91

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Remark 6. Several mathematical proofs are as tedious but straightforward as this. Apply the recent
definitions, using a few arguments involving mathematical properties/facts/definitions that are considered
to be widely known (properties of open intervals of the real line, in this case).

C.1.2 Open Sets

An alternate characterization of topological spaces can be given in terms of a collection τ of subsets of X
that satisfy specific properties:

Definition 25 (Topological Space via Open Sets). A topological space if an ordered space (X, τ), where X
is a set and τ is a collection of subsets of X satisfying

1. The empty set and X belong to τ

2. Any arbitrary union of members of τ still belongs to τ

3. The intersection of finite number of members of τ still belongs to τ .

The elements of τ that satisfy the conditions above are called the open sets and the collection τ is called
a topology on X.

To make things confusing, one can use neighborhoods to define open sets:

Definition 26 (Open Sets via Neighborhoods). Given a set of neighborhoods, a subset U ⊂ X is open if U
is a neighborhood for all points in U .

Example 31. Returning to Example 30, the closed interval I = [0, 1] is a neighborhood of any point in I
except for 0 and 1, since you can’t fit an open interval containing 0 (or 1) into I. By contrast, the open
interval I ′ = (0, 1) is a neighborhood for all points in I ′. Therefore, it is an open set. In general, unions of
open intervals are precisely the open sets in the real line.

What is the corresponding version in Rn of an open interval in R? Euclidean distance allows us to come
up with one answer. An open set is a ball Br(x), where x ∈ Rn, r > 0 is a radius, and

Br(x) = {y ∈ Rn: ‖y − x‖ < r}.

It is important to use < r rather than ≤ r to ensure that Br(x) is open, much like [0, 1] is not open in R but
(0, 1) is.

Example 32 (Topology Of Rn). The Euclidean vector space Rn equipped with a metric forms a topology
where the open sets are balls centered at any point and with any radius.

Table of Contents 92

Appendix D

Dynamical Systems & Control

D.1 Dynamical Systems

A general dynamical system has a state x(t) ∈ X at time t, where X is the state space of the system. For
mechanical system, the state often comprises both the configuration q and its derivative q̇.

Many dynamical systems have an n-dimensional state space, and the evolution of the state with time is
given by an ordinary differential equation:

(D.1)ẋ(t) = f(x, t).

For many systems, f only depends on the current state, not on time. These systems are known as
autonomous systems.

A controlled dynamical system typically also allows an additional signal u known as the control signal:

(D.2)ẋ(t) = f(x, u, t).

Suppose f is time-invariant, and we choose a state-based feedback control u = k(x). The dynamics
becomes

(D.3)ẋ(t) = f(x, k(x)) = fcl(x),

which is again an autonomous system.

D.1.1 Solutions Of ODEs

A solution x∗: [t0, tf] 7→ X is a function that maps each time t in the interval [t0, tf] to a unique state x ∈ X,
denoted x∗(t). The state at time t0 is called the initial condition.

If one is given a map x̄: [t1, t2] 7→ X, then (̄t) is a solution to the ODE if for all t̄ ∈ [t1, t2]

(D.4)
d

dt
x̄(t)|t̄ = f(x̄(t̄), t̄)

D.1.2 Stability

The study of dynamical systems is often concerned with the existence of equilibria and the properties of
these equilibria. For now, we focus on autonomous systems.

Definition 27 (Equilibrium). An equilibrium point xe ∈ X is a point such that f(xe, t) = 0 for all t.

The main property of equilibria is their stability.

Definition 28 (Stable). An equilibrium point xe is stable if for every ε > 0, there exists δ > 0 such that
every solution x(t) with initial condition x(t0) ∈ Bδ(xe) is such that x(t) ∈ Bε(xe).

In other words, solutions that start close stay close, no matter how small you define staying close to be.

93

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Definition 29 (Asymptotically Stable). An equilibrium point xe is asymptotically stable if it is stable and
for every solution x(t) with initial condition x(t0) ∈ Bδ(xe) for some δ > 0

(D.5)lim
t→∞

x(t) = xe

In other words, solutions not only stay close, they return back to xe in a long enough time frame.

Definition 30 (Exponentially Stable). An equilibrium point xe is asymptotically stable if it is stable and
for every solution x(t) with initial condition x(t0) ∈ Bδ(xe) for some δ > 0

(D.6)lim
t→∞

x(t) = xe

In other words, solutions not only stay close, they return back to xe in a long enough time frame.

D.2 Linear Dynamical Systems

Consider the linear dynamical system
(D.7)ẋ(t) = Ax(t) +Bu.

If u ≡ 0, then the dynamical system is stable if Re(λ) ≤ 0 where λ is any eigenvalue of A. If u ≡ 0, then
the dynamical system is asymptotically stable if Re(λ) < 0.

Suppose that there is an eigenvalue λus ∈ C of A such that Re(λus) > 0. The system is unstable when
run in open loop (u ≡ 0). Suppose we choose u = −Kx. Then

(D.8)ẋ(t) = (A−BK)x(t).

Naturally, we want to choose K so that all eigenvalues of A−BK have non-negative real part.

D.2.1 Transfer Functions

The state-based representation focuses on the system state. Instead, we can define an output y = Cx+Du,
and understand the system not through its (internal) state x, but merely through the relationship between
its input u and output y. That is, given some input signal u(t), what will the output signal y(t) be?

As seen in introductory courses (ME 340), working in the frequency domain is a much easier way to
answer this question, leading to a transfer function representation:

(D.9)Y (s) = G(s)U(s),

where
(D.10)G(s) = C(sI −A)−1B +D.

For a single-input single-output system, the transfer function G(s) is the quotient of two real polynomial
functions of the complex variable s = σ + jω, i.e., G(s) = n(s)/d(s). For multi-input multi-output systems,
the transfer function G(s) is a matrix of such SISO transfer functions.

The roots si = σi+ jωi of the equation d(s) = 0 are known as the poles of the transfer function. Stability
requires that all poles are in the closed left half plane, i.e., σi ≤ 0 for all poles si.

D.2.2 Controllability and Observability

Given the linear time-invariant system

ẋ = Ax+Bu (D.11)

y = Cx+Du (D.12)

, we can reduce out ability to acquire information about the system state and the ability to influence the
system’s evolution to two concepts: observability and controllability.

Table of Contents 94

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

D.2.3 Controllability

If we know all elements of x, we can choose a linear feedback

(D.13)u(t) = −Kx(t) + r(t)

where r is the reference for x(t). How useful is our ability to choose K? Can we always find a K that will
make x(t) behave in some desired way?

A LTI system (A,B,C,D) is controllable if and only if the matrix

C =
[
B AB A2B · · · An−1B

]
is full rank.

If our system is controllable, we can choose K to assign the poles of A−BK however we like, as long as
complex poles have their conjugates as poles.

The flip side of this unfettered power is that we need to know every element of x, which means we
need some sensors to measure them. Mathematically, we need C to be the identity, or at least some some
non-singular square matrix.

D.2.4 Observability

What if we only measure a subset of x? In other words, what happens if C is not a matrix of rank n? Are
we still able to figure out x and use it our idea of x in the feedback control rule u = −Kx+ r?

The notion of observability describes whether we can do this. A LTI system (A,B,C,D) is observable
if and only if the matrix

O =

C
CA
CA2

...
CAn−1

is full rank. Once a system is observable, we may design state estimators that will use y, u, and a model
of the system to estimate the full state x, where the estimate is often denoted as x̂. For an observable
LTI system with perfect knowledge of the model, we can achieve x̂(t) → x(t). In other words, despite not
measuring the whole state, we can eventually know what it is.

The practical application is that sensors for some physical quantities are easier to build than for others,
and we may get by without sensing those hard-to-measure quantities if the easy-to-measure variables result
in an observable system.

Table of Contents 95

Bibliography

[1] V. H. Garcia-Rodriguez, J. R. Garcia-Sanchez, R. Silva-Ortigoza, E. Hernandez-Marquez, H. Taud,
M. Ponce-Silva, and G. Saldana-Gonzalez. Passivity based control for the boost converter-inverter-dc
motor system. In 2017 International Conference on Mechatronics, Electronics and Automotive Engineer-
ing (ICMEAE), pages 77–81, 2017.

[2] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. Cambridge
University Press, USA, 1st edition, 2017.

[3] Emmanuel Nuno, Luis Basanez, and Romeo Ortega. Passivity-based control for bilateral teleoperation:
A tutorial. Automatica, 47(3):485 – 495, 2011.

[4] Mark W. Spong. Passivity based control of the compass gait biped. IFAC Proceedings Volumes, 32(2):506
– 510, 1999. 14th IFAC World Congress 1999, Beijing, Chia, 5-9 July.

[5] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control. Wiley
and Sons, New York, USA, 2006.

96

	Space and Motion
	Introduction
	Euclidean Space
	Summary & Preview
	Cartesian Coordinates
	Body-Fixed Frames

	Homogenous Transformations
	Notation
	Example 2 Coordinate Transformation

	Rigid Body Pose
	Rotations
	Basic Rotations
	Composition of Rotations
	Example 3 Simple Pendulum
	Parametrizations of SO(3)

	Kinematics
	Kinematic Chains
	Serial Kinematic Chains
	Denavit-Hartenberg Convention

	Velocity of Frames
	Linear Velocity
	Angular Velocity
	Task-space Velocity
	Derivation
	Another Derivation

	Geometric and Analytic Jacobians
	Geometric Jacobian
	Example 4 Planar Elbow Manipulator
	Analytic Jacobian
	Singularities
	Decoupling Singularities
	Inverse Velocity
	Manipulability
	Example 5 Planar Elbow Manipulator

	Inverse Kinematics
	Optimization-Based Kinematics
	Differential Inverse Kinematics
	Trajectory Inverse Kinematics

	Spatial and Body Jacobians
	Example 6 Spatial and Body Jacobians

	Static Force/Torque Relationships
	Derivation
	Example 7 Static Forces To Torques
	Force Ellipsoid

	Dynamics
	Newton-Euler Formulations
	Two Dimensional Examples
	Example 8 Simple Pendulum
	Example 9 Double pendulum
	Solving Newton-Euler Equations
	Newton-Euler Equations For A Planar Rigid Body
	Example 10 Simple Pendulum Using Angle
	Example 11 Two-Mass Pendulum As Constrained Double Pendulum
	Example 12 Compound Pendulum
	Newton-Euler Equations For A 3D Rigid Body
	Newton-Euler Equations For Rigid Body Mechanisms
	Recursive Newton Euler Algorithm

	The Lagrangian
	On Frames
	Kinetic Energy
	Potential Energy

	Euler-Lagrange Equations
	Example 14 Planar Elbow Manipulator
	Derivation

	Properties of the Euler-Lagrange Equations
	Skew Symmetry and Passivity
	Bounds on Inertia Matrix
	Linearity in Parameters

	Passivity
	Example 15 (Capacitor)
	Example 16 (Capacitor continued)
	Passivity in Robots
	Applications

	Actuator Models
	Electric Actuators
	SISO Joint Model
	Flexible Joint Models

	Control
	Independent Joint Control
	Routh Hurwitz Criterion
	P Control
	PD Control
	PID Control
	FeedForward Control
	Control Of Flexible Joints

	Multivariable Control
	PD+ Control
	Inverse Dynamics Control
	Task Space Inverse Dynamics Control
	Robust Inverse Dynamics Control
	Adaptive Inverse Dynamics Control

	Passivity-Based Control
	Potential-Shaping Control
	Passivity-based Tracking
	Passivity-Based Robust Control
	Passivity-Based Adaptive Control
	Passivity-based Interaction

	Force Control
	Direct Force Control
	Configuration-based Force Control
	Coordinate Frames and Constraints
	Hybrid Force / Position Control
	Example 17 Hybrid Force/Position Control

	Network Models and Impedance
	One-Port Model
	Impedance
	Example 18 Examples of Impedances
	Example 19 (Spring-Mass-Damper Impedance)
	Robot Impedance
	Robot and Environment Interaction
	Impedance Control
	Example 20 Apparent Inertia
	Hybrid Impedance Control
	Example 21 Inertial Environment
	Example 22 Capacitive Environment

	Optimal Control
	Linear Quadratic Regulator

	Summary

	Motion Planning
	Path And Trajectory Planning
	Potential Field Planning
	Gradient Descent
	Task Space Potentials

	Probabilistic Road Maps
	Construction
	Query
	Analysis

	RRT
	RRT* Simulation

	Trajectories From Paths
	Polynomials
	Parabolic Blends
	Cubic Splines in Hermite Form
	Bezier Splines

	Vector Spaces
	Vector Spaces
	Example 23 (Group: Real Numbers)
	Example 24 (Group: Real Numbers without 0)
	Example 25 (Field: Real Numbers)
	Example 26 (R^n)
	Example 27 (R^n)
	Example 28 (R^n)
	Example 29 (Metric on R^n)

	A Concept Chart

	Linear Algebra
	Matrix-Vector Products

	Analysis
	Topology
	Neighborhoods
	Example 30 (Neighborhoods in R)
	Open Sets

	Dynamical Systems & Control
	Dynamical Systems
	Solutions Of ODEs
	Stability

	Linear Dynamical Systems
	Transfer Functions
	Controllability and Observability
	Controllability
	Observability

