ME/AER 676 Robot Modeling \& Control Spring 2023

Homogenous Coordinate Transformations

Hasan A. Poonawala
Department of Mechanical Engineering
University of Kentucky

Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Same Vector Space, Different Bases

A basis and an origin together form a coordinate frame or reference frame.

Change Of Basis

The coordinate $(1,0)$ will produce different points under different bases.

Change Of Basis

The coordinate $(1,0)$ will produce different points under different bases.

When we use a different basis, the coordinates assigned to a point must change, in order to correctly regenerate that point using the new basis.

Change Of Basis

The coordinate $(1,0)$ will produce different points under different bases.

When we use a different basis, the coordinates assigned to a point must change, in order to correctly regenerate that point using the new basis.

Let A, B, C, \ldots be different coordinate frames.
A point p then has coordinates $p^{A}, p^{B}, p^{C} \ldots$ corresponding to each basis.

Change Of Vector Space Basis

Given p^{A}, what is p^{B}, or p^{C} ?

Answer:

$$
p^{B}=\left(T_{B}^{A}\right)^{-1} p^{A}
$$

where

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right],
$$

and $\left(e_{B}^{i}\right)^{A}$ is the coordinates in frame A of the $i^{\text {th }}$ basis vector of frame B.

Example

Problem: Find p^{B} if $p^{A}=(1,1)$.
Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =e_{A}^{1} \\
e_{B}^{2} & =e_{A}^{1}+e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Apply the formula:

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Change Of Vector Space Basis

Full derivation:

The vector e_{B}^{i} has coordinates $\left(e_{B}^{i}\right)^{A}=\left(T_{1 i}, T_{2 i}, \ldots, T_{n i}\right)$ in frame A.

Change Of Vector Space Basis

Full derivation:

The vector e_{B}^{i} has coordinates $\left(e_{B}^{i}\right)^{A}=\left(T_{1 i}, T_{2 i}, \ldots, T_{n i}\right)$ in frame A.

Let the coordinates of p in frame A be $p^{A}=\left(\alpha_{1}^{A}, \alpha_{2}^{A}, \ldots, \alpha_{n}^{A}\right)$, so that the point p can be expressed as

$$
p \Longleftrightarrow \sum_{j}^{n} \alpha_{j}^{A} e_{A}^{j}
$$

Change Of Vector Space Basis

Full derivation:

The vector e_{B}^{i} has coordinates $\left(e_{B}^{i}\right)^{A}=\left(T_{1 i}, T_{2 i}, \ldots, T_{n i}\right)$ in frame A.

Let the coordinates of p in frame A be $p^{A}=\left(\alpha_{1}^{A}, \alpha_{2}^{A}, \ldots, \alpha_{n}^{A}\right)$, so that the point p can be expressed as

$$
p \Longleftrightarrow \sum_{j}^{n} \alpha_{j}^{A} e_{A}^{j}
$$

Note that p is an abstract point equivalent to the coordinate-given combination of the basis $\left\{e_{A}^{1}, e_{A}^{2}, \ldots, e_{A}^{r}\right\}$.

Change Of Vector Space Basis

Full derivation:

The vector e_{B}^{i} has coordinates $\left(e_{B}^{i}\right)^{A}=\left(T_{1 i}, T_{2 i}, \ldots, T_{n i}\right)$ in frame A.

Let the coordinates of p in frame A be $p^{A}=\left(\alpha_{1}^{A}, \alpha_{2}^{A}, \ldots, \alpha_{n}^{A}\right)$, so that the point p can be expressed as

$$
p \Longleftrightarrow \sum_{j}^{n} \alpha_{j}^{A} e_{A}^{j}
$$

Note that p is an abstract point equivalent to the coordinate-given combination of the basis $\left\{e_{A}^{1}, e_{A}^{2}, \ldots, e_{A}^{r}\right\}$.

Similarly, if $p^{B}=\left(\beta_{1}^{B}, \beta_{2}^{B}, \ldots, \beta_{n}^{B}\right)$, then

$$
p \Longleftrightarrow \sum_{i}^{n} \beta_{i}^{B} e_{B}^{i}
$$

Change Of Vector Space Basis

So, we can write

$$
\begin{equation*}
e_{B}^{i}=\sum_{i}^{n} T_{j i} e_{A}^{i} ; \quad p \Longleftrightarrow \sum_{i}^{n} \beta_{i}^{B} e_{B}^{i} ; \quad p \Longleftrightarrow \sum_{j}^{n} \alpha_{j}^{A} e_{A}^{j} \tag{1}
\end{equation*}
$$

Change Of Vector Space Basis

So, we can write

$$
\begin{equation*}
e_{B}^{i}=\sum_{i}^{n} T_{j i} e_{A}^{i} ; \quad p \Longleftrightarrow \sum_{i}^{n} \beta_{i}^{B} e_{B}^{i} ; \quad p \Longleftrightarrow \sum_{j}^{n} \alpha_{j}^{A} e_{A}^{j} \tag{1}
\end{equation*}
$$

Combining the first and second equation in (1), we get

$$
\begin{align*}
p & \Longleftrightarrow \sum_{i}^{n} \beta_{i}^{B} e_{B}^{i}=\sum_{i}^{n} \beta_{i}^{B}\left(\sum_{j}^{n} T_{j i} e_{A}^{j}\right) \\
& \Longleftrightarrow \sum_{j}^{n}\left(\sum_{i}^{n}\left(\beta_{i}^{B} T_{j i}\right)\right) e_{A}^{j} \tag{2}
\end{align*}
$$

Comparing (2) to the third equation in (1), we get

$$
\alpha_{j}^{A}=\sum_{i}^{n}\left(\beta_{i}^{B} T_{j i}\right) .
$$

Change Of Vector Space Basis

The expression

$$
\alpha_{j}^{A}=\sum_{i}^{n}\left(\beta_{i}^{B} T_{j i}\right)
$$

represents a linear transformation of the coordinates of a point.

Change Of Vector Space Basis

The expression

$$
\alpha_{j}^{A}=\sum_{i}^{n}\left(\beta_{i}^{B} T_{j i}\right)
$$

represents a linear transformation of the coordinates of a point.

$$
p \Longleftrightarrow\left[\begin{array}{llll}
e_{A}^{1} & e_{A}^{2} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{A} \\
\alpha_{2}^{A} \\
\vdots \\
\alpha_{n}^{A}
\end{array}\right]=\left[\begin{array}{llll}
e_{B}^{1} & e_{B}^{2} & \cdots & e_{B}^{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1}^{B} \\
\beta_{2}^{B} \\
\vdots \\
\beta_{n}^{B}
\end{array}\right]
$$

Change Of Vector Space Basis

The expression

$$
\alpha_{j}^{A}=\sum_{i}^{n}\left(\beta_{i}^{B} T_{j i}\right)
$$

represents a linear transformation of the coordinates of a point.

$$
p \Longleftrightarrow\left[\begin{array}{llll}
e_{A}^{1} & e_{A}^{2} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{A} \\
\alpha_{2}^{A} \\
\vdots \\
\alpha_{n}^{A}
\end{array}\right]=\left[\begin{array}{llll}
e_{B}^{1} & e_{B}^{2} & \cdots & e_{B}^{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1}^{B} \\
\beta_{2}^{B} \\
\vdots \\
\beta_{n}^{B}
\end{array}\right]
$$

The coordinates of e_{B}^{i} in frame A give:

$$
e_{B}^{1}=\left[\begin{array}{lll}
e_{A}^{1} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{c}
T_{11} \\
\vdots \\
T_{n 1}
\end{array}\right], e_{B}^{2}=\left[\begin{array}{lll}
e_{A}^{1} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{c}
T_{12} \\
\vdots \\
T_{n 2}
\end{array}\right], \ldots
$$

Change Of Vector Space Basis

We can collect these expressions for point e_{B}^{i} as

$$
\left[\begin{array}{llll}
e_{B}^{1} & e_{B}^{2} & \cdots & e_{B}^{n}
\end{array}\right]=\left[\begin{array}{llll}
e_{A}^{1} & e_{A}^{2} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right],
$$

So that

$$
\left[\begin{array}{llll}
e_{B}^{1} & e_{B}^{2} & \cdots & e_{B}^{n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1}^{B} \\
\beta_{2}^{B} \\
\vdots \\
\beta_{n}^{B}
\end{array}\right]=\left[\begin{array}{llll}
e_{A}^{1} & e_{A}^{2} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1}^{B} \\
\beta_{2}^{B} \\
\vdots \\
\beta_{n}^{B}
\end{array}\right]
$$

Change Of Vector Space Basis

Since

$$
p=\left[\begin{array}{llll}
e_{A}^{1} & e_{A}^{2} & \cdots & e_{A}^{n}
\end{array}\right]\left[\begin{array}{c}
\alpha_{1}^{A} \\
\alpha_{2}^{A} \\
\vdots \\
\alpha_{n}^{A}
\end{array}\right],
$$

we find that transforming coordinates is a linear operation represented by matrix operations:

$$
\left[\begin{array}{c}
\alpha_{1}^{A} \\
\alpha_{2}^{A} \\
\vdots \\
\alpha_{n}^{A}
\end{array}\right]=\left[\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1}^{B} \\
\beta_{2}^{B} \\
\vdots \\
\beta_{n}^{B}
\end{array}\right]
$$

More compactly: $p^{B}=\left(T_{B}^{A}\right)^{-1} p^{A}$, where to example

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

Change Of Origin

Suppose points p, q have coordinates p^{A}, q^{A} in a frame A. Consider frame B whose origin is at p, with the same basis elements for its vector space as the frame A. What is q^{B} ?

$\stackrel{\circ}{9}$

Change Of Origin

Suppose points p, q have coordinates p^{A}, q^{A} in a frame A. Consider frame B whose origin is at p, with the same basis elements for its vector space as the frame A. What is q^{B} ?

The coordinates of q in frame B is the same as coordinates of the vector $v=q-p$ in the basis common to both frame A and B.

Change Of Origin

Suppose points p, q have coordinates p^{A}, q^{A} in a frame A. Consider frame B whose origin is at p, with the same basis elements for its vector space as the frame A. What is q^{B} ?

$\stackrel{\circ}{9}$

The coordinates of q in frame B is the same as coordinates of the vector $v=q-p$ in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B will be the same as that in frame A.

Change Of Origin

Suppose points p, q have coordinates p^{A}, q^{A} in a frame A. Consider frame B whose origin is at p, with the same basis elements for its vector space as the frame A. What is q^{B} ?

$\stackrel{\circ}{9}$

The coordinates of q in frame B is the same as coordinates of the vector $v=q-p$ in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B will be the same as that in frame A. So, $q^{B}=q^{A}-p^{A}$.

In general, $q^{B}=q^{A}-($ coordinates of origin of B in $A)$

Change Of Frames

Combining previous discussions, we get that to map coordinates from one frame to another we :

1. express the coordinates of the basis vectors of one frame in the other (through, say, matrix T_{B}^{A}),
2. express the coordinates of the origin of one frame in another (through, say coordinate vector o_{B}^{A}),
3. use the map

$$
p^{B}=\left(T_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right)
$$

Checkpoint

- We relate points by picking an origin and using a vector space

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points
- These coordinates correspond to a frame: origin + basis

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points
- These coordinates correspond to a frame: origin + basis
- All coordinates are n-tuples, we can't say anything about the basis from the coordinates.

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points
- These coordinates correspond to a frame: origin + basis
- All coordinates are n-tuples, we can't say anything about the basis from the coordinates.
- If we know the bases and origins, we can transform coordinates from one frame to another.

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points
- These coordinates correspond to a frame: origin + basis
- All coordinates are n-tuples, we can't say anything about the basis from the coordinates.
- If we know the bases and origins, we can transform coordinates from one frame to another.

Checkpoint

- We relate points by picking an origin and using a vector space
- Coordinates of vectors, given a basis, become coordinates of points
- These coordinates correspond to a frame: origin + basis
- All coordinates are n-tuples, we can't say anything about the basis from the coordinates.
- If we know the bases and origins, we can transform coordinates from one frame to another.

If all bases for the plane give us two numbers, what's special about a basis where the two elements are at 90 degrees, and have the same 'length'?

Norms and Distances

Let's reconsider our earlier example:

$$
T_{B}^{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \quad q^{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow q^{B}=\left(T_{B}^{A}\right)^{-1} q^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Norms and Distances

Let's reconsider our earlier example:

$$
T_{B}^{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \quad q^{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow q^{B}=\left(T_{B}^{A}\right)^{-1} q^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

REMEMBER: We're talking about the same two points in Euclidean space.

Norms and Distances

Let's reconsider our earlier example:

$$
T_{B}^{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \quad q^{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow q^{B}=\left(T_{B}^{A}\right)^{-1} q^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

REMEMBER: We're talking about the same two points in Euclidean space.
$\left\|q^{A}\right\|_{A}=\sqrt{2} .\left\|q^{B}\right\|_{B}=1$.

Norms and Distances

Let's reconsider our earlier example:

$$
T_{B}^{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \quad q^{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow q^{B}=\left(T_{B}^{A}\right)^{-1} q^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

REMEMBER: We're talking about the same two points in Euclidean space.
$\left\|q^{A}\right\|_{A}=\sqrt{2} .\left\|q^{B}\right\|_{B}=1$. What gives?

Norms and Distances

Let's reconsider our earlier example:

$$
T_{B}^{A}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] ; \quad q^{A}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Longrightarrow q^{B}=\left(T_{B}^{A}\right)^{-1} q^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

REMEMBER: We're talking about the same two points in Euclidean space.
$\left\|q^{A}\right\|_{A}=\sqrt{2} .\left\|q^{B}\right\|_{B}=1$. What gives?
Note that $\left\|q^{B}\right\|_{B}=\left\|\left(T_{B}^{A}\right)^{-1} q^{A}\right\|_{A}$.

Q: What kinds of matrices preserve the norms of the vectors they act upon?

Special Orthogonal Group in Three Dimensions

if $T_{B}^{A} \in S O(3)$, then we'd have norm-preservation.

Definition (SO(3))

The Special Orthogonal Group $S O(3)$ is the set of matrices
$R \in \mathbb{R}^{3 \times 3}$ such that

$$
R^{T} R=I d, \text { and } \operatorname{det} R=1
$$

$S O(3)$ is known as the orientation group and the rotation group.

Example

Problem: Find p^{B} if $p^{A}=(1,1)$. Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =e_{A}^{1} \\
e_{B}^{2} & =e_{A}^{1}+e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Apply the formula:

The columns of T_{B}^{A} tell us how to draw the basis of B in A

$>$ to defn

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Example

Problem: Find p^{B} if $p^{A}=(1,1)$. Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =e_{A}^{1} \\
e_{B}^{2} & =e_{A}^{1}+e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Not norm-preserving.

Apply the formula:

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Example

Problem: Find p^{B} if $p^{A}=(1,1)$. Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =\frac{1}{\sqrt{2}} e_{A}^{1}-\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{2} & =e_{A}^{1}+e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 1 \\
-\frac{1}{\sqrt{2}} & 1
\end{array}\right]
\end{aligned}
$$

Apply the formula:

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

The columns of T_{B}^{A} tell us how to draw the basis of B in A

- to defn

Example

Problem: Find p^{B} if $p^{A}=(1,1)$.
Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =\frac{1}{\sqrt{2}} e_{A}^{1}-\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{2} & =e_{A}^{1}+e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 1 \\
-\frac{1}{\sqrt{2}} & 1
\end{array}\right]
\end{aligned}
$$

Not norm-preserving.

Apply the formula:

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \quad\left(T_{A}^{B}\right)^{T} T_{A}^{B}=\left[\begin{array}{cc}
0.75 & -0.25 \\
-0.25 & 0.75
\end{array}\right] \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Example

Problem: Find p^{B} if $p^{A}=(1,1)$.
Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =\frac{1}{\sqrt{2}} e_{A}^{1}-\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{2} & =\frac{1}{\sqrt{2}} e_{A}^{1}+\frac{1}{\sqrt{2}} e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Apply the formula:

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]
\end{aligned}
$$

Example

Problem: Find p^{B} if $p^{A}=(1,1)$.
Solution: From the diagram,

$$
\begin{aligned}
e_{B}^{1} & =\frac{1}{\sqrt{2}} e_{A}^{1}-\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{2} & =\frac{1}{\sqrt{2}} e_{A}^{1}+\frac{1}{\sqrt{2}} e_{A}^{2} \\
\Longrightarrow T_{B}^{A} & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

norm-preserving!

$$
\left(T_{A}^{B}\right)^{T} T_{A}^{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
p^{B} & =\left(T_{B}^{A}\right)^{-1} p^{A} \\
& =T_{A}^{B} p^{A}=\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]
\end{aligned}
$$

Orthonormal Vectors

We have seen that

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

Therefore,

$$
\left(T_{B}^{A}\right)^{T} T_{B}^{A}=\left[\begin{array}{c}
\left(\left(e_{B}^{1}\right)^{A}\right)^{T} \\
\left(\left(e_{B}^{2}\right)^{A}\right)^{T} \\
\vdots \\
\left(\left(e_{B}^{1}\right)^{A}\right)^{T}
\end{array}\right]\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right]
$$

Orthonormal Vectors

$$
\begin{aligned}
\left(T_{B}^{A}\right)^{T} T_{B}^{A} & =\left[\begin{array}{cccc}
\left(\left(e_{B}^{1}\right)^{A}\right)^{T}\left(e_{B}^{1}\right)^{A} & \left(\left(e_{B}^{1}\right)^{A}\right)^{T}\left(e_{B}^{2}\right)^{A} & \cdots & \left(\left(e_{B}^{1}\right)^{A}\right)^{T}\left(e_{B}^{n}\right)^{A} \\
\left(\left(e_{B}^{2}\right)^{A}\right)^{T}\left(e_{B}^{1}\right)^{A} & \left(\left(e_{B}^{2}\right)^{A}\right)^{T}\left(e_{B}^{2}\right)^{A} & \cdots & \left(\left(e_{B}^{A}\right)^{A}\right)^{T}\left(e_{B}^{n}\right)^{A} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\left(e_{B}^{n}\right)^{A}\right)^{T}\left(e_{B}^{1}\right)^{A} & \left(\left(e_{B}^{n}\right)^{A}\right)^{T}\left(e_{B}^{2}\right)^{A} & \cdots & \left(\left(e_{B}^{n}\right)^{A}\right)^{T}\left(e_{B}^{n}\right)^{A}
\end{array}\right] . \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right] .
\end{aligned}
$$

Effectively, the coordinates of basis vectors of B in frame A are unit length and perpendicular to each other.

Checkpoint

- Frames are origin+basis

Checkpoint

- Frames are origin+basis
- Frames define vector coordinates for points in Euclidean space, relative to the frame

Checkpoint

- Frames are origin+basis
- Frames define vector coordinates for points in Euclidean space, relative to the frame
- Can transform vector coordinates of a point in different frames using an affine map

Checkpoint

- Frames are origin+basis
- Frames define vector coordinates for points in Euclidean space, relative to the frame
- Can transform vector coordinates of a point in different frames using an affine map
- To preserve distance, the linear part of the affine map must be in $\mathrm{SO}(3)$

Checkpoint

- Frames are origin+basis
- Frames define vector coordinates for points in Euclidean space, relative to the frame
- Can transform vector coordinates of a point in different frames using an affine map
- To preserve distance, the linear part of the affine map must be in $\mathrm{SO}(3)$
- $T_{B}^{A} \in \mathrm{SO}(3)$ when basis vectors are all unit length, mutually perpendicular.

Checkpoint

- Frames are origin+basis
- Frames define vector coordinates for points in Euclidean space, relative to the frame
- Can transform vector coordinates of a point in different frames using an affine map
- To preserve distance, the linear part of the affine map must be in $\mathrm{SO}(3)$
- $T_{B}^{A} \in \mathrm{SO}(3)$ when basis vectors are all unit length, mutually perpendicular.
- The coordinate transformation is then $p^{B}=\left(R_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right)$

Coordinate Transformation Vs Rigid Motion

Consider a robot with a center, a camera in 'front', and two wheels to the side.

Coordinate Transformation Vs Rigid Motion

Whenever we move the robot, the distances between these points don't change.

Coordinate Transformation Vs Rigid Motion

As the robot moves, we can take a snapshot of these points, and they each define a coordinate frame for Euclidean space.

Coordinate Transformation Vs Rigid Motion

Q1: How would the robot compare observations of either purple point over time? A1: Coordinate transformations

Coordinate Transformation Vs Rigid Motion

Q1: How would the robot compare observations of either purple point over time? A1: Coordinate transformations Q2: How do we keep track of all the points on the robots? A2: Coordinate transformations, but reinterpreted.

Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot's frame in any other frame: Use a distance-preserving coordinate transformation.

Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot's frame in any other frame: Use a distance-preserving coordinate transformation.

This transformation itself becomes a representative for all points on the robot.

Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot's frame in any other frame: Use a distance-preserving coordinate transformation.

This transformation itself becomes a representative for all points on the robot.

We have seen that

$$
\begin{equation*}
p^{B}=\left(T_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right) \tag{3}
\end{equation*}
$$

Let $d=o_{B}^{A}$ and $R=T_{B}^{A}$.

Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot's frame in any other frame: Use a distance-preserving coordinate transformation.

This transformation itself becomes a representative for all points on the robot.

We have seen that

$$
\begin{equation*}
p^{B}=\left(T_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right) \tag{3}
\end{equation*}
$$

Let $d=o_{B}^{A}$ and $R=T_{B}^{A}$. From (3), we can derive

$$
\begin{align*}
& p^{B}=R^{-1}\left(p^{A}-d\right) \tag{4}\\
& p^{A}=R p^{B}+d . \tag{5}
\end{align*}
$$

Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot's frame in any other frame: Use a distance-preserving coordinate transformation.

This transformation itself becomes a representative for all points on the robot.

We have seen that

$$
\begin{equation*}
p^{B}=\left(T_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right) \tag{3}
\end{equation*}
$$

Let $d=o_{B}^{A}$ and $R=T_{B}^{A}$. From (3), we can derive

$$
\begin{align*}
& p^{B}=R^{-1}\left(p^{A}-d\right) \tag{4}\\
& p^{A}=R p^{B}+d . \tag{5}
\end{align*}
$$

Rigid Body Pose

We refer to the pair (d, R) as the pose - relative to frame A - of the rigid body to which frame B is attached.

Rigid Body Pose

We refer to the pair (d, R) as the pose - relative to frame A - of the rigid body to which frame B is attached.

Let's reinterpret the two affine transformations associated with (d, R). Consider vector v in frame A :

$$
\begin{align*}
& u_{1}=R^{-1}(v-d) \tag{6}\\
& u_{2}=R v+d . \tag{7}
\end{align*}
$$

(Change of Basis)
(Rigid motion)

Rigid Body Pose

Let's reinterpret the two affine transformations associated with (d, R). Consider vector v in frame A :

$$
\begin{align*}
& u_{1}=R^{-1}(v-d) \tag{6}\\
& u_{2}=R v+d . \tag{7}
\end{align*}
$$

(Change of Basis)
(Rigid motion)

Rigid Body Pose

- If we view u_{1} as coordinates in frame B, we've changed coordinates of v from world to body frame.
- If we view u_{2} as coordinates in frame A, we've moved the point $o_{A} \oplus v$ relative to frame A.

Rigid Body Pose

The pair $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$ tells us how to move points in frame A to achieve the same coordinates in frame B.

Rigid Body Pose

The pair $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$ tells us how to move points in frame A to achieve the same coordinates in frame B.
d is a vector, the coordinates of origin of frame B, and R is a matrix containing the coordinates of axes of B, both relative to A

Rigid Body Pose

The pair $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$ tells us how to move points in frame A to achieve the same coordinates in frame B.
d is a vector, the coordinates of origin of frame B, and R is a matrix containing the coordinates of axes of B, both relative to A

Move in frame $A=$ reorient by R and then move by $d: R v+d$

Example

Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space $=p^{A} \in \mathbb{R}^{3}$ Coordinates of cartesian frames in 3D Euclidean space $=$ $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$

Points: Euclidean Space :: Cartesian Frames: Special Euclidean Group

Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space $=p^{A} \in \mathbb{R}^{3}$ Coordinates of cartesian frames in 3D Euclidean space $=$ $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$

Points: Euclidean Space :: Cartesian Frames: Special Euclidean Group
Affine Space : Euclidean Space :: G-Torsor: Special Euclidean Group

Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space $=p^{A} \in \mathbb{R}^{3}$ Coordinates of cartesian frames in 3D Euclidean space $=$ $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$

Points: Euclidean Space :: Cartesian Frames: Special Euclidean Group
Affine Space : Euclidean Space :: G-Torsor: Special Euclidean Group

G-Torsor: A group G with an action that maps a group element to another group element

Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space $=p^{A} \in \mathbb{R}^{3}$ Coordinates of cartesian frames in 3D Euclidean space $=$ $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$

Points: Euclidean Space :: Cartesian Frames: Special Euclidean Group
Affine Space : Euclidean Space :: G-Torsor: Special Euclidean Group
G-Torsor: A group G with an action that maps a group element to another group element

Again, no coordinate frame is unique.
For a G-Torsor, we don't define origin+basis (not a vector space).

Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space $=p^{A} \in \mathbb{R}^{3}$ Coordinates of cartesian frames in 3D Euclidean space $=$ $(d, R) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$

Points: Euclidean Space :: Cartesian Frames: Special Euclidean Group
Affine Space : Euclidean Space :: G-Torsor: Special Euclidean Group
G-Torsor: A group G with an action that maps a group element to another group element

Again, no coordinate frame is unique.
For a G-Torsor, we don't define origin+basis (not a vector space).
Instead, we define an identity element (it's a group): the reference coordinate frame.

Homogenous Transformations

We can convert the affine map between two Euclidean spaces of dimension 3 into a linear map between two subsets of \mathbb{R}^{4}.

Define a homogenization $h: \mathbb{R}^{3} \mapsto \mathbb{R}^{4}$ as $h\left(p^{A}\right)=\left[\begin{array}{c}p^{A} \\ 1\end{array}\right]$.
If $p^{A}=R p^{B}+d$, then

$$
h\left(p^{A}\right)=\left[\begin{array}{ll}
R & d \tag{6}\\
0 & 1
\end{array}\right] h\left(p^{B}\right)
$$

The matrix $\left[\begin{array}{cc}R & d \\ 0 & 1\end{array}\right]$ represents a homogenous transformation, and forms a group.

Checkpoint

- The coordinate transformation is $p^{B}=\left(R_{B}^{A}\right)^{-1}\left(p^{A}-o_{B}^{A}\right)$
- Norm-preserving coordinate transformation $=$ rigid motion of points within the same coordinate frame.
- Set of rigid body poses/rigid motions forms a group: SE(3)
- After choosing a reference frame, we assign coordinates - aka rigid body pose - (d, R) to frame (Torsor structure)

