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Same Vector Space, Different Bases

a

b c

de

a

A basis and an origin together form a coordinate frame or
reference frame.
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Change Of Basis

The coordinate (1, 0) will produce different points under different
bases.

When we use a different basis, the coordinates assigned to a point
must change, in order to correctly regenerate that point using the
new basis.

Let A, B, C , . . . be different coordinate frames.

A point p then has coordinates pA, pB , pC . . . corresponding to
each basis.
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Change Of Vector Space Basis

Given pA, what is pB , or pC?

Answer:

pB =
(
TA
B

)−1
pA,

where
TA
B =

[(
e1B
)A (

e2B
)A · · · (enB)A

]
,

and
(
e iB
)A

is the coordinates in frame A of the i th basis vector of
frame B.
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Example

Problem: Find pB if pA = (1, 1).
Solution: From the diagram,

e1B = e1A

e2B = e1A + e2A

=⇒ TA
B =

[
1 1
0 1

]
Apply the formula:

pB =
(
TA
B

)−1
pA

= TB
A pA =

[
0
1

]

p

e1A

e2A

= e1B

e2B

The
columns of TA

B tell us how to
draw the basis of B in A
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Change Of Vector Space Basis

Full derivation:
The vector e iB has coordinates

(
e iB
)A

= (T1i ,T2i , . . . ,Tni ) in
frame A.

Let the coordinates of p in frame A be pA = (αA
1 , α

A
2 , . . . , α

A
n ), so

that the point p can be expressed as

p ⇐⇒
n∑
j

αA
j e

j
A

Note that p is an abstract point equivalent to the coordinate-given
combination of the basis {e1A, e2A, . . . , enA}.

Similarly, if pB = (βB1 , β
B
2 , . . . , β

B
n ), then

p ⇐⇒
n∑
i

βBi e
i
B
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Change Of Vector Space Basis

So, we can write

e iB =
n∑
i

Tjie
i
A; p ⇐⇒

n∑
i

βBi e
i
B ; p ⇐⇒

n∑
j

αA
j e

j
A (1)

Combining the first and second equation in (1), we get

p ⇐⇒
n∑
i

βBi e
i
B =

n∑
i

βBi

 n∑
j

Tjie
j
A


⇐⇒

n∑
j

(
n∑
i

(
βBi Tji

))
e jA (2)

Comparing (2) to the third equation in (1), we get

αA
j =

n∑
i

(
βBi Tji

)
.
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Change Of Vector Space Basis

The expression

αA
j =

n∑
i

(
βBi Tji

)
represents a linear transformation of the coordinates of a point.

p ⇐⇒
[
e1A e2A · · · enA

]

αA
1

αA
2
...
αA
n

 =
[
e1B e2B · · · enB

]

βB1
βB2

...
βBn


The coordinates of e iB in frame A give:

e1B =
[
e1A · · · enA

] T11
...

Tn1

 , e2B =
[
e1A · · · enA

] T12
...

Tn2

 , . . .
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Change Of Vector Space Basis

We can collect these expressions for point e iB as

[
e1B e2B · · · enB

]
=
[
e1A e2A · · · enA

]

T11 T12 · · · T1n

T21 T22 · · · T2n
...

...
. . .

...
Tn1 Tn2 · · · Tnn

 ,

So that

[
e1B e2B · · · enB

]

βB
1

βB
2

...
βB
n

 =
[
e1A e2A · · · enA

]

T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tn1 Tn2 · · · Tnn



βB
1

βB
2

...
βB
n
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Change Of Vector Space Basis

Since

p =
[
e1A e2A · · · enA

]

αA
1

αA
2
...
αA
n

 ,
we find that transforming coordinates is a linear operation
represented by matrix operations:

αA
1

αA
2
...
αA
n

 =


T11 T12 · · · T1n

T21 T22 · · · T2n
...

...
. . .

...
Tn1 Tn2 · · · Tnn



βB1
βB2

...
βBn


More compactly: pB =

(
TA
B

)−1
pA, where to example

TA
B =

[(
e1B
)A (

e2B
)A · · · (enB)A

]
.
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Change Of Origin

Suppose points p, q have coordi-
nates pA, qA in a frame A. Con-
sider frame B whose origin is at
p, with the same basis elements
for its vector space as the frame
A. What is qB?

p

q

e1A

e2A
e1B

e2B

The coordinates of q in frame B is the same as coordinates of the
vector v = q − p in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B
will be the same as that in frame A. So, qB = qA − pA.

In general, qB = qA − (coordinates of origin of B in A)

ME/AER 676 Robot Modeling & Control



Change Of Origin

Suppose points p, q have coordi-
nates pA, qA in a frame A. Con-
sider frame B whose origin is at
p, with the same basis elements
for its vector space as the frame
A. What is qB?

p

q

e1A

e2A
e1B

e2B

The coordinates of q in frame B is the same as coordinates of the
vector v = q − p in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B
will be the same as that in frame A. So, qB = qA − pA.

In general, qB = qA − (coordinates of origin of B in A)

ME/AER 676 Robot Modeling & Control



Change Of Origin

Suppose points p, q have coordi-
nates pA, qA in a frame A. Con-
sider frame B whose origin is at
p, with the same basis elements
for its vector space as the frame
A. What is qB?

p

q

e1A

e2A
e1B

e2B

The coordinates of q in frame B is the same as coordinates of the
vector v = q − p in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B
will be the same as that in frame A.

So, qB = qA − pA.

In general, qB = qA − (coordinates of origin of B in A)

ME/AER 676 Robot Modeling & Control



Change Of Origin

Suppose points p, q have coordi-
nates pA, qA in a frame A. Con-
sider frame B whose origin is at
p, with the same basis elements
for its vector space as the frame
A. What is qB?

p

q

e1A

e2A
e1B

e2B

The coordinates of q in frame B is the same as coordinates of the
vector v = q − p in the basis common to both frame A and B.

Precisely because vectors are free, the coordinates of v in frame B
will be the same as that in frame A. So, qB = qA − pA.

In general, qB = qA − (coordinates of origin of B in A)

ME/AER 676 Robot Modeling & Control



Change Of Frames

Combining previous discussions, we get that to map coordinates
from one frame to another we :

1. express the coordinates of the basis vectors of one frame in
the other (through, say, matrix TA

B ),

2. express the coordinates of the origin of one frame in another
(through, say coordinate vector oAB),

3. use the map

pB =
(
TA
B

)−1
(pA − oAB)
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Checkpoint

I We relate points by picking an origin and using a vector space

I Coordinates of vectors, given a basis, become coordinates of
points

I These coordinates correspond to a frame: origin + basis

I All coordinates are n-tuples, we can’t say anything about the
basis from the coordinates.

I If we know the bases and origins, we can transform
coordinates from one frame to another.

If all bases for the plane give us two numbers, what’s special about
a basis where the two elements are at 90 degrees , and have the
same ‘length’?
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Norms and Distances

Let’s reconsider our earlier example:

TA
B =

[
1 1
0 1

]
; qA =

[
1
1

]
=⇒ qB =

(
TA
B

)−1
qA =

[
0
1

]
.

REMEMBER: We’re talking about the same two points in
Euclidean space.

‖qA‖A =
√

2. ‖qB‖B = 1. What gives?

Note that ‖qB‖B = ‖
(
TA
B

)−1
qA‖A.

Q: What kinds of matrices preserve the norms of the vectors they
act upon?
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Special Orthogonal Group in Three
Dimensions

if TA
B ∈ SO(3), then we’d have norm-preservation.

Definition (SO(3))

The Special Orthogonal Group SO(3) is the set of matrices
R ∈ R3×3 such that

RTR = Id , and detR = 1

.

SO(3) is known as the orientation group and the rotation group.
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Example

Problem: Find pB if pA = (1, 1).
Solution: From the diagram,

e1B = e1A

e2B = e1A + e2A

=⇒ TA
B =

[
1 1
0 1

]
Apply the formula:

pB =
(
TA
B

)−1
pA

= TB
A pA =

[
0
1

]

p

e1A

e2A

= e1B

e2B

The columns of TA
B tell us how

to draw the basis of B in A
to defn
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Example

Problem: Find pB if pA = (1, 1).
Solution: From the diagram,

e1B =
1√
2
e1A −

1√
2
e2A

e2B = e1A + e2A

=⇒ TA
B =
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2

1
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2

1

]
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pB =
(
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B

)−1
pA

= TB
A pA =

[
0
1

]

p

e1A

e2A

e1B

e2B

Not norm-preserving.(
TB
A

)T
TB
A =

[
0.75 −0.25
−0.25 0.75

]
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Orthonormal Vectors

We have seen that

TA
B =

[(
e1B
)A (

e2B
)A · · · (enB)A

]
.

Therefore,

(
TA
B

)T
TA
B =



((
e1B
)A)T((

e2B
)A)T
...((

e1B
)A)T


[(
e1B
)A (

e2B
)A · · · (enB)A

]
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Orthonormal Vectors

(
TA
B

)T
TA
B =



((
e1B
)A)T (

e1B
)A ((

e1B
)A)T (

e2B
)A · · ·

((
e1B
)A)T

(enB)A((
e2B
)A)T (

e1B
)A ((

e2B
)A)T (

e2B
)A · · ·

((
e2B
)A)T

(enB)A

...
...

. . .
...(

(enB)A
)T (

e1B
)A (

(enB)A
)T (

e2B
)A · · ·

(
(enB)A

)T
(enB)A


.

=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Effectively, the coordinates of basis vectors of B in frame A are unit
length and perpendicular to each other.
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Checkpoint

I Frames are origin+basis

I Frames define vector coordinates for points in Euclidean
space, relative to the frame

I Can transform vector coordinates of a point in different
frames using an affine map

I To preserve distance, the linear part of the affine map must be
in SO(3)

I TA
B ∈ SO(3) when basis vectors are all unit length, mutually

perpendicular.

I The coordinate transformation is then
pB =

(
RA
B

)−1 (
pA − oAB

)
mobile robot
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Coordinate Transformation Vs Rigid Motion

Consider a robot with a center, a camera in ‘front’, and two wheels
to the side.
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Coordinate Transformation Vs Rigid Motion

Whenever we move the robot, the distances between these points
don’t change.
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Coordinate Transformation Vs Rigid Motion

As the robot moves, we can take a snapshot of these points, and
they each define a coordinate frame for Euclidean space.
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Coordinate Transformation Vs Rigid Motion

Q1: How would the robot compare observations of either purple
point over time? A1: Coordinate transformations
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Coordinate Transformation Vs Rigid Motion

Q1: How would the robot compare observations of either purple
point over time? A1: Coordinate transformations
Q2: How do we keep track of all the points on the robots?
A2: Coordinate transformations, but reinterpreted. rigid motion
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Coordinate Transformation Vs Rigid Motion

We know how to express all points in the robot’s frame in any
other frame: Use a distance-preserving coordinate transformation.

This transformation itself becomes a representative for all points
on the robot.

We have seen that

pB =
(
TA
B

)−1 (
pA − oAB

)
(3)

Let d = oAB and R = TA
B . From (3), we can derive

pB = R−1
(
pA − d

)
(4)

pA = R pB + d . (5)
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Rigid Body Pose

We refer to the pair (d ,R) as the pose – relative to frame A – of
the rigid body to which frame B is attached.

Let’s reinterpret the two affine transformations associated with
(d ,R). Consider vector v in frame A:

u1 = R−1 (v − d) (Change of Basis) (6)

u2 = R v + d . (Rigid motion) (7)
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Rigid Body Pose

Let’s reinterpret the two affine transformations associated with
(d ,R). Consider vector v in frame A:

u1 = R−1 (v − d) (Change of Basis) (6)

u2 = R v + d . (Rigid motion) (7)

oA e1A

e2A

v

oB

e1B

e2B
v

u2
u1

d
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Rigid Body Pose

oA e1A

e2A

v

oB

e1B

e2B
v

u2
u1

d

I If we view u1 as coordinates in frame B, we’ve changed
coordinates of v from world to body frame.

I If we view u2 as coordinates in frame A, we’ve moved the
point oA ⊕ v relative to frame A.
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Rigid Body Pose

oA e1A

e2A

v

oB

e1B

e2B
v

u2
u1

d

The pair (d ,R) ∈ R3 × SO(3) tells us how to move points in frame
A to achieve the same coordinates in frame B.
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Rigid Body Pose

oA e1A

e2A

v

oB

e1B

e2B
v

u2
u1

d

The pair (d ,R) ∈ R3 × SO(3) tells us how to move points in frame
A to achieve the same coordinates in frame B.

d is a vector, the coordinates of origin of frame B, and R is a
matrix containing the coordinates of axes of B, both relative to A
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Rigid Body Pose

oA e1A

e2A

v

oB

e1B

e2B
v

u2
u1

d

The pair (d ,R) ∈ R3 × SO(3) tells us how to move points in frame
A to achieve the same coordinates in frame B.

d is a vector, the coordinates of origin of frame B, and R is a
matrix containing the coordinates of axes of B, both relative to A

Move in frame A = reorient by R and then move by d : Rv + d
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Example

e1A

e2A

oB

e1B

e2B
oB

e1B

e2B
coordinate
transform(
RA
B

)−1
oB

e1B

e2B

fixed points in

moving frame

e1B

e2B

oA
e1A

e2A

rigid
motion RA

B
oA

e1A

e2A

moving points in

fixed frame
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Special Euclidean Group SE(3)

Coordinates of points in 3D Euclidean space = pA ∈ R3

Coordinates of cartesian frames in 3D Euclidean space =
(d ,R) ∈ R3 × SO(3)

Points: Euclidean Space :: Cartesian Frames : Special Euclidean Group

Affine Space : Euclidean Space :: G -Torsor : Special Euclidean
Group

G -Torsor: A group G with an action that maps a group element to
another group element

Again, no coordinate frame is unique.
For a G -Torsor, we don’t define origin+basis (not a vector space).

Instead, we define an identity element (it’s a group): the reference
coordinate frame.
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Homogenous Transformations

We can convert the affine map between two Euclidean spaces of
dimension 3 into a linear map between two subsets of R4.

Define a homogenization h:R3 7→ R4 as h
(
pA
)

=

[
pA

1

]
.

If pA = RpB + d , then

(6)h
(
pA
)

=

[
R d
0 1

]
h
(
pB
)
.

The matrix

[
R d
0 1

]
represents a homogenous transformation, and

forms a group.
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Checkpoint

I The coordinate transformation is pB =
(
RA
B

)−1 (
pA − oAB

)
I Norm-preserving coordinate transformation = rigid motion of

points within the same coordinate frame.

I Set of rigid body poses/rigid motions forms a group: SE(3)

I After choosing a reference frame, we assign coordinates – aka
rigid body pose – (d ,R) to frame (Torsor structure)
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