ME/AER 676 Robot Modeling \& Control Spring 2023

Rotations

Hasan A. Poonawala
Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}
- If the basis of space B is $\mathcal{B}=\left\{e_{B}^{1}, e_{B}^{2}, \ldots, e_{B}^{n}\right\}$, then

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}
- If the basis of space B is $\mathcal{B}=\left\{e_{B}^{1}, e_{B}^{2}, \ldots, e_{B}^{n}\right\}$, then

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

- If $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=l$, then in frame A

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}
- If the basis of space B is $\mathcal{B}=\left\{e_{B}^{1}, e_{B}^{2}, \ldots, e_{B}^{n}\right\}$, then

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

- If $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=l$, then in frame A
- Basis \mathcal{B} is mutually orthogonal

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}
- If the basis of space B is $\mathcal{B}=\left\{e_{B}^{1}, e_{B}^{2}, \ldots, e_{B}^{n}\right\}$, then

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

- If $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=l$, then in frame A
- Basis \mathcal{B} is mutually orthogonal
- Basis vector in \mathcal{B} are unit norm

Rotations as Special Coordinate Transformations

- A linear transformation from one vector space B to another vector space A may be represented by a matrix T_{B}^{A}
- If the basis of space B is $\mathcal{B}=\left\{e_{B}^{1}, e_{B}^{2}, \ldots, e_{B}^{n}\right\}$, then

$$
T_{B}^{A}=\left[\begin{array}{llll}
\left(e_{B}^{1}\right)^{A} & \left(e_{B}^{2}\right)^{A} & \cdots & \left(e_{B}^{n}\right)^{A}
\end{array}\right] .
$$

- If $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=l$, then in frame A
- Basis \mathcal{B} is mutually orthogonal
- Basis vector in \mathcal{B} are unit norm
- If det $T_{B}^{A}=1$, then the ordering of the basis of B satisfies some order defined by basis of B

Rotations as Special Coordinate Transformations

- Since the transformation T_{B}^{A} is linear, 0 of frame B maps to 0 of frame A.

Rotations as Special Coordinate Transformations

- Since the transformation T_{B}^{A} is linear, 0 of frame B maps to 0 of frame A.
- Therefore, T_{B}^{A} represents a transformation between two cartesian coordinate frames with the same origin

Rotations as Special Coordinate Transformations

- Since the transformation T_{B}^{A} is linear, 0 of frame B maps to 0 of frame A.
- Therefore, T_{B}^{A} represents a transformation between two cartesian coordinate frames with the same origin
- Since $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=I$, the magnitude of vectors doesn't change, only the direction

Rotations as Special Coordinate Transformations

- Since the transformation T_{B}^{A} is linear, 0 of frame B maps to 0 of frame A.
- Therefore, T_{B}^{A} represents a transformation between two cartesian coordinate frames with the same origin
- Since $\left(T_{B}^{A}\right)^{T} T_{B}^{A}=I$, the magnitude of vectors doesn't change, only the direction
- Therefore, these transformations are rotations, and they form the special orthogonal group SO(3) (in 3D).

SO(3)

Definition (Special Orthogonal group in 3D)

The Special Orthogonal Group $\mathrm{SO}(3)$ is the set of matrices
$R \in \mathbb{R}^{3 \times 3}$ such that

$$
R^{T} R=I d, \text { and } \operatorname{det} R=1
$$

$S O(3)$ is known as the orientation group and the rotation group.

Exercise: Show that $\mathrm{SO}(3)$ forms a group under matrix multiplication.

Constructing Rotations/Orientations

- An orientation relative to frame A corresponds to an orthonormal set of vectors

Constructing Rotations/Orientations

- An orientation relative to frame A corresponds to an orthonormal set of vectors
- If these vectors have coordinates v_{1}^{A}, v_{2}^{A}, and v_{3}^{A}, then $R=\left[\begin{array}{lll}v_{1}^{A} & v_{2}^{A} & v_{3}^{A}\end{array}\right]$.

Constructing Rotations/Orientations

- An orientation relative to frame A corresponds to an orthonormal set of vectors
- If these vectors have coordinates v_{1}^{A}, v_{2}^{A}, and v_{3}^{A}, then $R=\left[\begin{array}{lll}v_{1}^{A} & v_{2}^{A} & v_{3}^{A}\end{array}\right]$.

$$
\begin{aligned}
e_{B}^{1} & =\frac{1}{\sqrt{2}} e_{A}^{1}-\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{2} & =\frac{1}{\sqrt{2}} e_{A}^{1}+\frac{1}{\sqrt{2}} e_{A}^{2} \\
e_{B}^{3} & =1 \cdot e_{A}^{3} \\
\Longrightarrow R=T_{B}^{A} & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Constructing Coordinate Frames

- Given any three non-collinear 3D vectors, we may define a rotation matrix by Gram-Schmidt orthonormalization.
- Therefore, four non-coplanar points a, b, c, d on a rigid body are enough to define a cartesian frame fixed to the body
- One point becomes the origin
- The remaining three points define a vector relative to the origin point
- orthonormalize vectors to get vectors defining cartesian frame and its orientation
- origin + rotation matrix $=$ coordinate of body (frame)

SO(3)

- Rigid bodies correspond to cartesian frames

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor
- Rotations help us get from one orientation to another (similar to translation vectors for Euclidean points).

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor
- Rotations help us get from one orientation to another (similar to translation vectors for Euclidean points).
- A rotation relative to a reference defines a new frame; the rotation matrix becomes the 'orientation' coordinate of that frame.

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor
- Rotations help us get from one orientation to another (similar to translation vectors for Euclidean points).
- A rotation relative to a reference defines a new frame; the rotation matrix becomes the 'orientation' coordinate of that frame.
- We've called this matrix $T_{B}^{A}, R_{B}^{A}, R, T$

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor
- Rotations help us get from one orientation to another (similar to translation vectors for Euclidean points).
- A rotation relative to a reference defines a new frame; the rotation matrix becomes the 'orientation' coordinate of that frame.
- We've called this matrix $T_{B}^{A}, R_{B}^{A}, R, T$
- The G-Torsor nature is why $\mathrm{SO}(3)$ is called both the rotation group and the orientation group.

SO(3)

- Rigid bodies correspond to cartesian frames
- Cartesian frames have a position and orientation
- Orientations are also a G-Torsor
- Rotations help us get from one orientation to another (similar to translation vectors for Euclidean points).
- A rotation relative to a reference defines a new frame; the rotation matrix becomes the 'orientation' coordinate of that frame.
- We've called this matrix $T_{B}^{A}, R_{B}^{A}, R, T$
- The G-Torsor nature is why $\mathrm{SO}(3)$ is called both the rotation group and the orientation group.
- Assigning coordinates to an orientation is the same as defining the rotation that generates that frame relative to a reference.

Basic Rotations

Consider three frames rotated about each one of the world frame axes by an angle θ.

Basic Rotations

Consider three frames rotated about each one of the world frame axes by an angle θ. Each rotation is given by

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad x_{A} \stackrel{x_{B}}{u_{B} \uparrow \uparrow_{A} z_{A}}
$$

Basic Rotations

Consider three frames rotated about each one of the world frame axes by an angle θ. Each rotation is given by

$$
\begin{array}{ll}
R_{x, \theta}= & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right]}
\end{array}
$$

Basic Rotations

Consider three frames rotated about each one of the world frame axes by an angle θ. Each rotation is given by

$$
\begin{aligned}
& R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \\
& \xrightarrow[x_{A}]{\substack{z_{B} \\
x_{B}}{ }_{y_{A}}^{z_{A}} y_{A}} \\
& R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& R_{z, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

General Rotations

- We can construct a general rotation using a sequence of basic rotations. (Compare to Euclidean space)
- So, orientation coordinates can be derived by sequences of basic rotations (combined through multiplications).
- For Euclidean vector spaces, the order of a sequence of (vector space) operations didn't matter: $v+w=w+v$.
- For rotations, they do. In general, $R_{1} R_{2} \neq R_{2} R_{1}$.
- One interpretation of the two orders of multiplication is extrinsic vs. intrinsic rotations (next slide)

Extrinsic vs Intrinsic Rotations

Extrinsic vs Intrinsic Rotations

Rotate about z

Extrinsic vs Intrinsic Rotations

Extrinsic vs Intrinsic Rotations

- A first rigid motion corresponding to rotation R_{1} relative to a frame A produces frame B
- A second rigid motion rotation R_{2} can be applied relative to either A or B.
- When applied relative to B, the second rotation is an intrinsic rotation. $R=R_{1} R_{2}$.
- When applied relative to A, the second rotation is an extrinsic rotation. $R=R_{2} R_{1}$.

Euler Angles

- Euler angles use three basic rotations to define any orientation
- Many possible conventions based on
- Choice of axes of three basic rotations
- Sequence of extrinsic vs intrinsic rotations
- See notes and texts for more details

Axis-Angle Formula

Alternatively, we may represent a rotation as a single angle of rotation θ and an axis $\mathbf{k}=\left[\begin{array}{lll}k_{1} & k_{2} & k_{3}\end{array}\right]^{T}$, leading to a formula for R :

$$
\begin{equation*}
R=I+(\sin \theta) K+(1-\cos \theta) K^{2} \tag{1}
\end{equation*}
$$

where

$$
K=\left[\begin{array}{ccc}
0 & -k_{3} & k_{2} \\
k_{3} & 0 & -k_{1} \\
-k_{2} & k_{1} & 0
\end{array}\right],
$$

and \mathbf{k} has unit norm.
The notes provide another formula where we represent the vector \mathbf{k} using two angles α and β that define basic rotations to produce R.

Change-of-Basis For Orientations

Suppose we define an orientation B relative to a orientation A through a rotation R_{B}^{A}.

Change-of-Basis For Orientations

Suppose we define an orientation B relative to a orientation A through a rotation R_{B}^{A}.

Now, someone decides to change the identity element to be orientation C, with coordinate R_{C}^{A} (in frame A).

Change-of-Basis For Orientations

Suppose we define an orientation B relative to a orientation A through a rotation R_{B}^{A}.

Now, someone decides to change the identity element to be orientation C, with coordinate R_{C}^{A} (in frame A).

Which rotation R_{B}^{C} below correctly defines the new orientation of B relative to orientation C ?

1. $R_{B}^{C}=R_{B}^{A} R_{A}^{C}$
2. $R_{B}^{C}=R_{B}^{A} R_{C}^{A}$
3. $R_{B}^{C}=R_{A}^{C} R_{B}^{A}$
4. $R_{B}^{C}=R_{C}^{A} R_{B}^{A}$

Change-of-Basis For Orientations

Suppose we define an orientation B relative to a orientation A through a rotation R_{B}^{A}.

Now, someone decides to change the identity element to be orientation C, with coordinate R_{C}^{A} (in frame A).

Which rotation R_{B}^{C} below correctly defines the new orientation of B relative to orientation C ?

1. $R_{B}^{C}=R_{B}^{A} R_{A}^{C}$
2. $R_{B}^{C}=R_{B}^{A} R_{C}^{A}$
3. $R_{B}^{C}=R_{A}^{C} R_{B}^{A}$
4. $R_{B}^{C}=R_{C}^{A} R_{B}^{A}$

How would you pick the right transformation? Why did we not consider R_{A}^{B} ?

Change-of-Basis For Orientations

- For example, imagine you, a driver, and a passenger in a car. Your orientation frames are aligned: Forward: x, upwards: z.
- When the car stops, the passenger opens the door spins to their right ($R_{C}^{A}=R_{z,-90^{\circ}}$)
- You lean back in your driver's seat $\left(R_{B}^{A}=R_{y,-20^{\circ}}\right)$
- What is your orientation according to the passenger?

1. $R_{B}^{C}=R_{B}^{A} R_{A}^{C}$
2. $R_{B}^{C}=R_{B}^{A} R_{C}^{A}$
3. $R_{B}^{C}=R_{A}^{C} R_{B}^{A}$
4. $R_{B}^{C}=R_{C}^{A} R_{B}^{A}$

Change-of-Basis For Orientations

Rotation matrix R_{B}^{A} gives the coordinates of the basis vectors of frames B in A.

Change-of-Basis For Orientations

Rotation matrix R_{B}^{A} gives the coordinates of the basis vectors of frames B in A.

We want to change the frame of these coordinates to frame C.

Change-of-Basis For Orientations

Rotation matrix R_{B}^{A} gives the coordinates of the basis vectors of frames B in A.

We want to change the frame of these coordinates to frame C.
To change the coordinates of vectors from A to C, we must pre-multiply by $\left(R_{C}^{A}\right)^{-1}=R_{A}^{C}$. So,

$$
R_{B}^{C}=R_{A}^{C} R_{B}^{A}
$$

Change-of-Basis For Orientations

Alternatively, The rigid motion in A corresponding to moving to frame B is R_{B}^{A}; the rigid motion in frame C corresponding to moving to frame A is R_{A}^{C}.

The combined rigid motion in C is achieved by first moving by R_{B}^{A} in C, then moving the result by R_{A}^{C}.
Therefore,

$$
R_{B}^{C}=R_{A}^{C} R_{B}^{A}
$$

Change-of-Basis For Orientations

Alternatively, The rigid motion in A corresponding to moving to frame B is R_{B}^{A}; the rigid motion in frame C corresponding to moving to frame A is R_{A}^{C}.

The combined rigid motion in C is achieved by first moving by R_{B}^{A} in C, then moving the result by R_{A}^{C}.
Therefore,

$$
R_{B}^{C}=R_{A}^{C} R_{B}^{A}
$$

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)
- a change of basis (coordinates are in a new frame)

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)
- a change of basis (coordinates are in a new frame)
- Only two frames are involved

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)
- a change of basis (coordinates are in a new frame)
- Only two frames are involved
- We now look at transforming transformations between frames.

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)
- a change of basis (coordinates are in a new frame)
- Only two frames are involved
- We now look at transforming transformations between frames.

Transforming Transforms

- We have looked at transforming points (or orientations) between frames, either as
- a rigid motion (coordinates stay in the same frame)
- a change of basis (coordinates are in a new frame)
- Only two frames are involved
- We now look at transforming transformations between frames.

Instead of orientation R_{B}^{A} in frame A, what if we define rotation R^{A} in frame A.
How do we represent this rotation in frame C ?

Change-of-Basis For Rotations

- The rotation R^{A} is relative to frame A.
- Any generic orientation P has coordinates R_{P}^{A} in frame A
- Rotating this orientation results in a new orientation $R^{A} R_{P}^{A}$ in frame A :

$$
R_{P}^{A} \mapsto R^{A} R_{P}^{A}
$$

- But, note that $R_{P}^{A}=R_{C}^{A} R_{P}^{C}$
- Therefore :

$$
\begin{gathered}
R_{C}^{A} R_{P}^{C} \mapsto R^{A} R_{C}^{A} R_{P}^{C}, \text { or } \\
R_{P}^{C} \mapsto\left(R_{C}^{A}\right)^{-1} R^{A} R_{C}^{A} R_{P}^{C}, \text { or }
\end{gathered}
$$

- Therefore, a rotation R^{A} in frame A becomes a rotation

$$
R^{C}=\left(R_{C}^{A}\right)^{-1} R^{A} R_{C}^{A}
$$

in frame C.

Summary

- Rotations of bodies (equivalently, cartesian frames) correspond to a specific linear transformation
- The matrix representing any rotation belongs to $\mathrm{SO}(3)$, a group under matrix multiplication
- A rotation defines an orientation (part of the coordinates of a frame), given a reference orientation.
- We may use basic rotations defined about axes to construct any orientation
- Changing reference frames requires changing orientations, and also rotations, appropriately

