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Positions → Velocities

I We assign coordinates – aka rigid body pose – (d ,R) to
frame, relative to reference.
d ∈ R3, R ∈ SO(3)

I If the rigid body pose tells us where a frame is located, its
position, what is the rate-of-change of the position?

I For a position vector in Rn, we know that the rate of change
of position is another vector in Rn, called the velocity

I However, the coordinate (d ,R) is not a vector!
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Velocities in Rn

I Given a time-varying position x(t), we define the velocity v as

v(t) = lim
h→0

x(t + h)− x(t)

h
(1)

I The subtraction and division operations make sense in a
vector space

I However, if x belonged to a group, we can’t define a
derivative this way
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Velocities in SO(3)

I Given a time-varying orientation R(t) defined in a frame {0}.

I In infinitesmal time h, the orientation changes from R(t) to
R(t + h) =⇒ R(t + h) = ∆R(h)R(t).

I The rotation over h is ∆R(h) = R(t + h)R(t)T

I The ‘velocity’ would require us to take the limit as h→ 0 of
the ratio of ∆R(h) and some measure of the size of ∆R(h).
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Velocities in SO(3)

I It turns out that
Ṙ(t) = SR,

where S satisfies S + ST = 0

I S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for any three numbers ω1, ω2, ω3

I Physically, the vector ω =
[
ω1 ω2 ω3

]T
defines the

instantaneous angular velocity in frame {0}
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Velocities in SO(3)

I There’s a one-to-one relationship between a vector R3 and the
set of 3× 3 skew-symmetric matrices

I Therefore, we can represent the rate of change of orientation
using an angular velocity.

I So, when a task is x(t) = (d(t),R(t)) ∈ R3 × SO(3), its
velocity i s

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity
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Velocities in SO(3)

I The angular velocity ω ∈ R3 can be represented in two ways:
I As a vector in 3D indicating the instantaneous axis of rotation

in a frame and speed of rotation.

I As the three derivatives of the three numbers used to
parametrize SO(3).
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Jacobians

I Forward Kinematics provides x = f (q)

I The relationship between ξ and q̇ is linear:

ξ = J(q)q̇

I When the orientation of x is given by a vector of three
numbers α, then sξ = ẋ , and the Jacobian is analytic, and
given by Ja(q) = ∂f

∂q .

I When orientation is not three numbers, J(q) is geometric

I Columns of J(q) of geometric Jacobian are derived
geometrically
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