ME/AER 676 Robot Modeling \& Control Spring 2023

Twists and Wrenches

Hasan A. Poonawala
Department of Mechanical Engineering
University of Kentucky
Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Twist \mathcal{V} vs ξ

- We've seen that we can represent the velocity of a frame $\{n\}$ using

$$
\xi=\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right]
$$

where v_{n}^{0} is velocity of origin of frame in frame $\{0\}$ and ω_{n}^{0} is its angular velocity expressed in frame $\{0\}$

Twist \mathcal{V} vs ξ

- We've seen that we can represent the velocity of a frame $\{n\}$ using

$$
\xi=\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right]
$$

where v_{n}^{0} is velocity of origin of frame in frame $\{0\}$ and ω_{n}^{0} is its angular velocity expressed in frame $\{0\}$

- Why couldn't we express v_{n} and ω_{n} in the frame $\{n\}$?

Twist \mathcal{V} vs ξ

- We've seen that we can represent the velocity of a frame $\{n\}$ using

$$
\xi=\left[\begin{array}{c}
v_{n}^{0} \\
\omega_{n}^{0}
\end{array}\right]
$$

where v_{n}^{0} is velocity of origin of frame in frame $\{0\}$ and ω_{n}^{0} is its angular velocity expressed in frame $\{0\}$

- Why couldn't we express v_{n} and ω_{n} in the frame $\{n\}$?
- We can, and that's what body twists are (with a twist)

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

- We've derived the relationship

$$
\begin{equation*}
\dot{R}(t)=S_{t} R(t) \tag{1}
\end{equation*}
$$

where $S_{t} \in \mathfrak{s o}(3)$ (skew-symmetric 3×3 matrices) and $R(t)=R_{n}^{0}$.

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

- We've derived the relationship

$$
\begin{equation*}
\dot{R}(t)=S_{t} R(t) \tag{1}
\end{equation*}
$$

where $S_{t} \in \mathfrak{s o}(3)$ (skew-symmetric 3×3 matrices) and $R(t)=R_{n}^{0}$.

- Due to the 1-to-1 relationship between \mathbb{R}^{3} and $\mathfrak{s o}(3)$, we can say that $S_{t}=S(\omega(t))=[\omega(t)]$ for some time-varying angular velocity $\omega(t)=\omega_{n}^{0}$

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

- We've derived the relationship

$$
\begin{equation*}
\dot{R}(t)=S_{t} R(t) \tag{1}
\end{equation*}
$$

where $S_{t} \in \mathfrak{s o}(3)$ (skew-symmetric 3×3 matrices) and $R(t)=R_{n}^{0}$.

- Due to the 1-to-1 relationship between \mathbb{R}^{3} and $\mathfrak{s o}(3)$, we can say that $S_{t}=S(\omega(t))=[\omega(t)]$ for some time-varying angular velocity $\omega(t)=\omega_{n}^{0}$

$$
[\omega]=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

Angular Velocity Frames

- The equation $\dot{R}(t)=[\omega(t)] R(t)$ involves terms defined in a fixed reference frame, called the space frame $\{s\}$ in $M R$, so really

$$
\dot{R}(t)=\left[\omega_{s}\right] R(t) \quad(R=\underbrace{R_{b}^{s}}_{\mathrm{RMC}}=\underbrace{R_{s b}}_{\mathrm{MR}})
$$

The rotation $R(t)$ is the orientation of body frame $\{b\}$ relative to $\{s\}$

Angular Velocity Frames

- The equation $\dot{R}(t)=[\omega(t)] R(t)$ involves terms defined in a fixed reference frame, called the space frame $\{s\}$ in MR, so really

$$
\dot{R}(t)=\left[\omega_{s}\right] R(t) \quad(R=\underbrace{R_{b}^{s}}_{\mathrm{RMC}}=\underbrace{R_{s b}}_{\mathrm{MR}})
$$

The rotation $R(t)$ is the orientation of body frame $\{b\}$ relative to $\{s\}$

- If ω_{s} is the angular velocity of the body in $\{s\}$, then in $\{b\}$ the angular velocity looks like

$$
\omega_{b}=R^{T} \omega_{s}
$$

Angular Velocity Frames

- The equation $\dot{R}(t)=[\omega(t)] R(t)$ involves terms defined in a fixed reference frame, called the space frame $\{s\}$ in MR, so really

$$
\dot{R}(t)=\left[\omega_{s}\right] R(t) \quad(R=\underbrace{R_{b}^{s}}_{\mathrm{RMC}}=\underbrace{R_{s b}}_{\mathrm{MR}})
$$

The rotation $R(t)$ is the orientation of body frame $\{b\}$ relative to $\{s\}$

- If ω_{s} is the angular velocity of the body in $\{s\}$, then in $\{b\}$ the angular velocity looks like

$$
\omega_{b}=R^{T} \omega_{s}
$$

- The equations may therefore be rewritten as

$$
\dot{R}(t)=R(t)\left[\omega_{b}\right]
$$

Angular Velocity Frames

Twist

- We've seen:

$$
\omega \in \mathbb{R}^{3} \rightarrow[\omega] \in \mathfrak{s o}(3) \rightarrow \dot{R}(t) \rightarrow R \in \mathrm{SO}(3)
$$

- These transformations are well-defined because $\mathrm{SO}(3)$ is a Lie group: a group with a manifold structure
- Any Lie group has a similar set of manipulations
- SE(3) (homogenous transformations) are also a Lie group
- The 'angular velocity' corresponding to $\mathrm{SE}(3)$ is a twist
- Twists for $S E$ are not as intuitive as angular velocities for SO(3).

Twist

- A twist \mathcal{V} combines an angular velocity ω with a linear velocity v, so $\mathcal{V} \in \mathbb{R}^{6}$

Twist

- A twist \mathcal{V} combines an angular velocity ω with a linear velocity v, so $\mathcal{V} \in \mathbb{R}^{6}$
- If $\omega \in \mathbb{R}^{3}$ represent velocities for $\mathrm{SO}(3)$, twists \mathcal{V} represent velocities for SE(3)

Twist

- A twist \mathcal{V} combines an angular velocity ω with a linear velocity v, so $\mathcal{V} \in \mathbb{R}^{6}$
- If $\omega \in \mathbb{R}^{3}$ represent velocities for $\mathrm{SO}(3)$, twists \mathcal{V} represent velocities for SE(3)
- Consider a homogenous tranformation $T(t) \in \operatorname{SE}(3)$ representing a rigid body pose of $\{b\}$ in $\{s\}$:

$$
T(t)=\left[\begin{array}{cc}
R(t) & p(t) \tag{2}\\
0 & 1
\end{array}\right] \quad(T=\underbrace{T_{b}^{s}}_{\mathrm{RMC}}=\underbrace{T_{s b}}_{\mathrm{MR}}=\underbrace{H_{b}^{s}}_{\mathrm{HP}})
$$

Body Twist

- If the angular velocity in the body frame is ω_{b}, and the velocity of the origin is v_{b}, then

$$
\dot{R}(t)=R(t)\left[\omega_{b}\right], \quad \dot{p}(t)=R(t) v_{b}
$$

Body Twist

- If the angular velocity in the body frame is ω_{b}, and the velocity of the origin is v_{b}, then

$$
\dot{R}(t)=R(t)\left[\omega_{b}\right], \quad \dot{p}(t)=R(t) v_{b}
$$

- The body twist \mathcal{V}_{b} is $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$

Body Twist

- If the angular velocity in the body frame is ω_{b}, and the velocity of the origin is v_{b}, then

$$
\dot{R}(t)=R(t)\left[\omega_{b}\right], \quad \dot{p}(t)=R(t) v_{b}
$$

- The body twist \mathcal{V}_{b} is $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$
- Then, we may write

$$
\dot{T}(t)=T(t)\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]
$$

Body Twist

- If the angular velocity in the body frame is ω_{b}, and the velocity of the origin is v_{b}, then

$$
\dot{R}(t)=R(t)\left[\omega_{b}\right], \quad \dot{p}(t)=R(t) v_{b}
$$

- The body twist \mathcal{V}_{b} is $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$
- Then, we may write

$$
\dot{T}(t)=T(t)\left[\begin{array}{cc}
{\left[\omega_{b}\right]} & v_{b} \\
0 & 0
\end{array}\right]
$$

- The body twist has simple physical meaning: instantaneous angular velocity of $\{b\}$ as seen in $\{b\}$, and instantaneous velocity of origin of $\{b\}$ as seen in $\{b\}$

Spatial Twist

- We can convert the body twist $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$ into a spatial twist

$$
\mathcal{V}_{s}=\left[\begin{array}{c}
\omega_{s} \\
v_{s}
\end{array}\right]
$$

Spatial Twist

- We can convert the body twist $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$ into a spatial twist $\mathcal{V}_{s}=\left[\begin{array}{l}\omega_{s} \\ v_{s}\end{array}\right]$
- ω_{s} is the angular velocity of $\{b\}$ as viewed in $\{s\}$

Spatial Twist

- We can convert the body twist $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$ into a spatial twist $\mathcal{V}_{s}=\left[\begin{array}{l}\omega_{s} \\ v_{s}\end{array}\right]$
- ω_{s} is the angular velocity of $\{b\}$ as viewed in $\{s\}$
- However, v_{s} is not the velocity of the origin of $\{b\}$ as viewed in $\{s\}$

Spatial Twist

- We can convert the body twist $\mathcal{V}_{b}=\left[\begin{array}{c}\omega_{b} \\ v_{b}\end{array}\right]$ into a spatial twist $\mathcal{V}_{s}=\left[\begin{array}{l}\omega_{s} \\ v_{s}\end{array}\right]$
- ω_{s} is the angular velocity of $\{b\}$ as viewed in $\{s\}$
- However, v_{s} is not the velocity of the origin of $\{b\}$ as viewed in $\{s\}$
- v_{s} a fictitious velocity of the origin of $\{s\}$ as if the space frame $\{s\}$ was rotating about axis ω_{s} that passes through origin of $\{b\}$ (Fig 3.17 in MR).

$\mathfrak{s e}(3)$

- Recall: $\mathfrak{s o (3)}$ represents the space of velocities of $\mathrm{SO}(3)$, and an element of $\mathfrak{s o}(3)$ corresponds physically to an angular velocity

$\mathfrak{s e}(3)$

- Recall: $\mathfrak{s o (3)}$ represents the space of velocities of $\mathrm{SO}(3)$, and an element of $\mathfrak{s o}(3)$ corresponds physically to an angular velocity
- Similarly, a twist $\mathcal{V}=\left[\begin{array}{c}\omega \\ v\end{array}\right]$ defines an element of $\mathfrak{s e}(3)$ through the transformation

$$
\mathcal{V}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \rightarrow[\mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \mathfrak{s e}(3)
$$

$\mathfrak{s e}(3)$

- Recall: $\mathfrak{s o}(3)$ represents the space of velocities of $\mathrm{SO}(3)$, and an element of $\mathfrak{s o}(3)$ corresponds physically to an angular velocity
- Similarly, a twist $\mathcal{V}=\left[\begin{array}{l}\omega \\ v\end{array}\right]$ defines an element of $\mathfrak{s e}(3)$ through the transformation

$$
\mathcal{V}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \rightarrow[\mathcal{V}]=\left[\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right] \in \mathfrak{s e}(3)
$$

- However, only for the body twist do we see a clear physical interpretation of its component ω and v in terms of frame velocities

All The Velocities And Jacobians

If we represent frame velocity using body twist \mathcal{V}_{b} or spatial twist \mathcal{V}_{s}, we need a body Jacobian J_{b} and spatial Jacobian J_{s} to implement velocity kinematics.

Name	Task velocity	Spatial Twist	Body Twist
angular velocity	ω_{0}	ω_{0}	ω_{3}
linear velocity ...	v_{0}	$v_{0}-\omega_{0} \times o_{30}$	v_{3}
\ldots of point	o_{3}	o_{0}	o_{3}
Jacobian	Task	Spatial	Body
Symbol	$J(q)$	J_{s}	J_{b}

