ME/AER 676 Robot Modeling & Control Spring 2023

Twists and Wrenches

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

ME/AER 676 Robot Modeling & Control

Twist \mathcal{V} vs ξ

We've seen that we can represent the velocity of a frame {n} using

$$\xi = \begin{bmatrix} v_n^0 \\ \omega_n^0 \end{bmatrix},$$

where v_n^0 is velocity of origin of frame in frame $\{0\}$ and ω_n^0 is its angular velocity expressed in frame $\{0\}$

Twist \mathcal{V} vs ξ

We've seen that we can represent the velocity of a frame {n} using

$$\xi = \begin{bmatrix} v_n^0 \\ \omega_n^0 \end{bmatrix},$$

where v_n^0 is velocity of origin of frame in frame $\{0\}$ and ω_n^0 is its angular velocity expressed in frame $\{0\}$

• Why couldn't we express v_n and ω_n in the frame $\{n\}$?

Twist \mathcal{V} vs ξ

We've seen that we can represent the velocity of a frame {n} using

$$\xi = \begin{bmatrix} v_n^0 \\ \omega_n^0 \end{bmatrix},$$

where v_n^0 is velocity of origin of frame in frame $\{0\}$ and ω_n^0 is its angular velocity expressed in frame $\{0\}$

- Why couldn't we express v_n and ω_n in the frame $\{n\}$?
- We can, and that's what body twists are (with a twist)

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

We've derived the relationship

$$\dot{R}(t) = S_t R(t) \tag{1}$$

where $S_t \in \mathfrak{so}(3)$ (skew-symmetric 3 × 3 matrices) and $R(t) = R_n^0$.

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

We've derived the relationship

$$\dot{R}(t) = S_t R(t) \tag{1}$$

where $S_t \in \mathfrak{so}(3)$ (skew-symmetric 3×3 matrices) and $R(t) = R_n^0$.

Due to the 1-to-1 relationship between ℝ³ and so(3), we can say that S_t = S(ω(t)) = [ω(t)] for some time-varying angular velocity ω(t) = ω_n⁰

Skew symmetric operator $S(\cdot)$ or $[\cdot]$

We've derived the relationship

$$\dot{R}(t) = S_t R(t) \tag{1}$$

where $S_t \in \mathfrak{so}(3)$ (skew-symmetric 3×3 matrices) and $R(t) = R_n^0$.

Due to the 1-to-1 relationship between ℝ³ and so(3), we can say that S_t = S(ω(t)) = [ω(t)] for some time-varying angular velocity ω(t) = ω_n⁰

$$[\omega] = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

The equation R
(t) = [ω(t)]R(t) involves terms defined in a fixed reference frame, called the space frame {s} in MR, so really

$$\dot{R}(t) = [\omega_s]R(t) \quad (R = \underbrace{R_b^s}_{\text{RMC}} = \underbrace{R_{sb}}_{\text{MR}})$$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

The equation R
(t) = [ω(t)]R(t) involves terms defined in a fixed reference frame, called the space frame {s} in MR, so really

$$\dot{R}(t) = [\omega_s]R(t) \quad (R = \underbrace{R_b^s}_{\text{RMC}} = \underbrace{R_{sb}}_{\text{MR}})$$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

If ω_s is the angular velocity of the body in {s}, then in {b} the angular velocity looks like

$$\omega_b = R^T \omega_s$$

► The equation R
(t) = [ω(t)]R(t) involves terms defined in a fixed reference frame, called the space frame {s} in MR, so really

$$\dot{R}(t) = [\omega_s]R(t) \quad (R = \underbrace{R_b^s}_{\text{RMC}} = \underbrace{R_{sb}}_{\text{MR}})$$

The rotation R(t) is the orientation of body frame $\{b\}$ relative to $\{s\}$

If ω_s is the angular velocity of the body in {s}, then in {b} the angular velocity looks like

$$\omega_b = R^T \omega_s$$

The equations may therefore be rewritten as

$$\dot{R}(t) = R(t)[\omega_b]$$

ME/AER 676 Robot Modeling & Control

We've seen:

$$\omega \in \mathbb{R}^3 o [\omega] \in \mathfrak{so}(3) o \dot{R}(t) o R \in \mathrm{SO}(3)$$

- These transformations are well-defined because SO(3) is a Lie group: a group with a manifold structure
- Any Lie group has a similar set of manipulations
- ▶ SE(3) (homogenous transformations) are also a Lie group
- ► The 'angular velocity' corresponding to SE(3) is a *twist*
- Twists for SE are not as intuitive as angular velocities for SO(3).

A twist V combines an angular velocity ω with a linear velocity ν, so V ∈ ℝ⁶

- A twist V combines an angular velocity ω with a linear velocity ν, so V ∈ ℝ⁶
- If ω ∈ ℝ³ represent velocities for SO(3), twists V represent velocities for SE(3)

- A twist V combines an angular velocity ω with a linear velocity ν, so V ∈ ℝ⁶
- If ω ∈ ℝ³ represent velocities for SO(3), twists V represent velocities for SE(3)
- Consider a homogenous tranformation T(t) ∈ SE(3) representing a rigid body pose of {b} in {s}:

$$T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix} \quad (T = \underbrace{T_b^s}_{\mathsf{RMC}} = \underbrace{T_{sb}}_{\mathsf{MR}} = \underbrace{H_b^s}_{\mathsf{HP}}) \qquad (2)$$

If the angular velocity in the body frame is ω_b, and the velocity of the origin is v_b, then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

If the angular velocity in the body frame is ω_b, and the velocity of the origin is v_b, then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

• The body twist
$$\mathcal{V}_b$$
 is $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$

If the angular velocity in the body frame is ω_b, and the velocity of the origin is v_b, then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

• The body twist
$$\mathcal{V}_b$$
 is $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$

Then, we may write

$$\dot{T}(t) = T(t) egin{bmatrix} [\omega_b] & v_b \ 0 & 0 \end{bmatrix}$$

If the angular velocity in the body frame is ω_b, and the velocity of the origin is v_b, then

$$\dot{R}(t) = R(t)[\omega_b], \quad \dot{p}(t) = R(t)v_b$$

• The body twist
$$\mathcal{V}_b$$
 is $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$

Then, we may write

$$\dot{T}(t) = T(t) egin{bmatrix} [\omega_b] & v_b \ 0 & 0 \end{bmatrix}$$

The body twist has simple physical meaning: instantaneous angular velocity of {b} as seen in {b}, and instantaneous velocity of origin of {b} as seen in {b}

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ \mathbf{v}_b \end{bmatrix}$ into a spatial twist

$$\mathcal{V}_{s} = \begin{bmatrix} \omega_{s} \\ v_{s} \end{bmatrix}$$

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist $\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}$

• ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist $\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}$

• ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$

However, v_s is **not** the velocity of the origin of {b} as viewed in {s}

• We can convert the body twist $\mathcal{V}_b = \begin{bmatrix} \omega_b \\ v_b \end{bmatrix}$ into a spatial twist $\mathcal{V}_s = \begin{bmatrix} \omega_s \\ v_s \end{bmatrix}$

• ω_s is the angular velocity of $\{b\}$ as viewed in $\{s\}$

- However, v_s is not the velocity of the origin of {b} as viewed in {s}
- v_s a fictitious velocity of the origin of {s} as if the space frame {s} was rotating about axis ω_s that passes through origin of {b} (Fig 3.17 in MR).

$\mathfrak{se}(3)$

Recall: so(3) represents the space of velocities of SO(3), and an element of so(3) corresponds physically to an angular velocity

$\mathfrak{se}(3)$

Recall: so(3) represents the space of velocities of SO(3), and an element of so(3) corresponds physically to an angular velocity

Similarly, a twist $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$ defines an element of $\mathfrak{se}(3)$ through the transformation

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \rightarrow [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in \mathfrak{se}(3)$$

ME/AER 676 Robot Modeling & Control

$\mathfrak{se}(3)$

Recall: so(3) represents the space of velocities of SO(3), and an element of so(3) corresponds physically to an angular velocity

Similarly, a twist $\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix}$ defines an element of $\mathfrak{se}(3)$ through the transformation

$$\mathcal{V} = \begin{bmatrix} \omega \\ v \end{bmatrix} \rightarrow [\mathcal{V}] = \begin{bmatrix} [\omega] & v \\ 0 & 0 \end{bmatrix} \in \mathfrak{se}(3)$$

However, only for the body twist do we see a clear physical interpretation of its component ω and ν in terms of frame velocities

All The Velocities And Jacobians

If we represent frame velocity using body twist V_b or spatial twist V_s , we need a body Jacobian J_b and spatial Jacobian J_s to implement velocity kinematics.

Name	Task velocity	Spatial Twist	Body Twist
angular velocity	ω_0	ω_0	ω_3
linear velocity	v ₀	$v_0 - \omega_0 \times o_{30}$	<i>V</i> 3
of point	<i>0</i> 3	00	<i>0</i> 3
Jacobian	Task	Spatial	Body
Symbol	J(q)	J _s	J_b