
ME/AER 676 Robot Modeling & Control
Spring 2023

Forward Kinematics & Jacobians

Hasan A. Poonawala

Department of Mechanical Engineering
University of Kentucky

Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

ME/AER 676 Robot Modeling & Control

https://www.engr.uky.edu/~hap

Introduction

I We consider robots modeled as links joined in series.

I The degrees of freedom at the joints form the joint variables q.

I Task variables X capture quantities describing what the robot
must do.

I Traditional robot control focuses on the conversion of joint
variables to task variables (forward kinematics) and back
(inverse kinematics)

X = f (q); q = f −1(X)

ME/AER 676 Robot Modeling & Control

Forward Kinematics as Homogenous
Transformations

I This problem involves composing a number of relative link
(homogenous) transformations

I It may be solved numerically, with the specific details
depending on how these link transformations are parametrized

I The transformation (d ,R) may be represented by
I origin and Euler angles (URDF)
I D-H Parameters
I Twist (Screw Theory)
I etc. . . .

ME/AER 676 Robot Modeling & Control

Serial Kinematic Chains

I We look at serial kinematic chains where all joints are simple.

I We number links as 0 for base to n in sequence.

I The assumption of single-parameter joints means we can use
basic transformations to handle coordinate transformations.

I These basic transformation are denoted Ai (qi), where qi ∈ R
is the joint variable.

I qi is either an angle θi (revolute joints) or a distance di
(prismatic joints).

ME/AER 676 Robot Modeling & Control

Example: Planar3R

x3

y3

x4

y4

x5

y5

x6

y6

o2
6 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

Rotz,q3

1
0
0

0 1

I3

1
0
0

0 1

0
0
0
1

ME/AER 676 Robot Modeling & Control

Example: Planar3R

x3

y3
x4

y4

x5y5

x6y6

o2
6 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

Rotz,q3

1
0
0

0 1

I3

1
0
0

0 1

0
0
0
1

ME/AER 676 Robot Modeling & Control

Example: Planar3R

x3

y3
x4

y4

x5y5

x6y6

o2
6 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

Rotz,q3

1
0
0

0 1

I3

1
0
0

0 1

0
0
0
1

ME/AER 676 Robot Modeling & Control

Forward Kinematics of Serial Chains

Given link i and i − 1,

Ai =

[
R i−1
i o i−1

i

0 1

]
(1)

Transformations between links i and j is T i
j , where we are

expressing frame j in frame i .

T i
j =

Ai+1Ai+2 · · ·Aj−1Aj i < j

I i = j(
T i
j

)−1
i > j

(2)

ME/AER 676 Robot Modeling & Control

Forward Kinematics of Serial Chains

I For an n-link serial chain manipulator, the task variables are a
combination of
I Origin of frame n (end-effector or tool frame)
I Orientation of frame n

I

T 0
n (q) =

[
R0
n(q) d0

n (q)
0 1

]
I X is derived from R0

n(q) and/or d0
n (q)

i.e. X = f (q)

ME/AER 676 Robot Modeling & Control

Modern Robotics

I The book “Modern Robotics” uses exponential coordinates
(twists) to represent homogenous transformations.

I It does not follow the D-H convention (next slide).

I The main difference to D-H is that in MR frame i fixed to link
i is at joint i , not joint i + 1.

I Videos on FK in this course follow MR’s convention of
locating frame i at joint i .

I Universal Robot Description Formats (URDFs) also follow this
approach

ME/AER 676 Robot Modeling & Control

Denavit-Hartenberg Convention

In this convention

I All motion happens along the z axis

I Four numbers are enough to define relative link
transformations (instead of 6 or 12).

The D-H convention is based on two restrictions:

(DH1) The x1 axis intersects the z0 axis.

(DH2) The x1 axis is orthogonal to the z0 axis.

This restriction makes the transformation matrix between link i
and i − 1 given in (1) reduce to

(3)Ai = Rotz,θiTransz,diTransx ,aiRotx ,αi

This convention is more common in earlier robotics texts, and is
used in many systems.

ME/AER 676 Robot Modeling & Control

Positions → Velocities

I We assign coordinates – aka rigid body pose – (d ,R) to
frame, relative to reference.
d ∈ R3, R ∈ SO(3)

I If the rigid body pose tells us where a frame is located, its
position, what is the rate-of-change of the position?

I For a position vector in Rn, we know that the rate of change
of position is another vector in Rn, called the velocity

I However, the orientation coordinate (d ,R) is not a vector!
What is d

dtR(t)?

ME/AER 676 Robot Modeling & Control

Positions → Velocities

I We assign coordinates – aka rigid body pose – (d ,R) to
frame, relative to reference.
d ∈ R3, R ∈ SO(3)

I If the rigid body pose tells us where a frame is located, its
position, what is the rate-of-change of the position?

I For a position vector in Rn, we know that the rate of change
of position is another vector in Rn, called the velocity

I However, the orientation coordinate (d ,R) is not a vector!
What is d

dtR(t)?

ME/AER 676 Robot Modeling & Control

Positions → Velocities

I We assign coordinates – aka rigid body pose – (d ,R) to
frame, relative to reference.
d ∈ R3, R ∈ SO(3)

I If the rigid body pose tells us where a frame is located, its
position, what is the rate-of-change of the position?

I For a position vector in Rn, we know that the rate of change
of position is another vector in Rn, called the velocity

I However, the orientation coordinate (d ,R) is not a vector!
What is d

dtR(t)?

ME/AER 676 Robot Modeling & Control

Positions → Velocities

I We assign coordinates – aka rigid body pose – (d ,R) to
frame, relative to reference.
d ∈ R3, R ∈ SO(3)

I If the rigid body pose tells us where a frame is located, its
position, what is the rate-of-change of the position?

I For a position vector in Rn, we know that the rate of change
of position is another vector in Rn, called the velocity

I However, the orientation coordinate (d ,R) is not a vector!
What is d

dtR(t)?

ME/AER 676 Robot Modeling & Control

Velocities in SO(3)

I The angular velocity ω ∈ R3 can be represented using two
different sets of 3 numbers:
I Analytic: As the three derivatives of the three numbers used to

parametrize SO(3) (not a physical vector). Example
parametrization: roll-pitch-yaw

I Geometric: As a vector in 3D describing the instantaneous axis
of rotation in a frame and speed of rotation.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3)

I The angular velocity ω ∈ R3 can be represented using two
different sets of 3 numbers:
I Analytic: As the three derivatives of the three numbers used to

parametrize SO(3) (not a physical vector). Example
parametrization: roll-pitch-yaw

I Geometric: As a vector in 3D describing the instantaneous axis
of rotation in a frame and speed of rotation.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Analytic

I Example parametrization: roll-pitch-yaw φ− θ − ψ (RPY).

I Consider an end-effector whose orientation R0
n in the base

frame is parametrized by RPY Euler angles α = (φ, θ, ψ).

I There are two ways to derive R0
n ;

by definition: R0
n(φ, θ, ψ) = Rotz,ψ Roty ,θRotx ,φ (4)

FK : R0
n(q) = A1(q1)A1(q2) · · ·An(qn) (5)

I With a little work, we can derive X (t) = α(t) = f (q(t))

I Therefore
Ẋ (t) = α̇(t) ∈ R3

I Note that we can also derive d
dtR

0
n(φ, θ, ψ) as a matrix

function of α and α̇.

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Geometric

I It turns out that
Ṙ(t) = SR,

where S satisfies S + ST = 0

I S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for any three numbers ω1, ω2, ω3

I Physically, the vector ω =
[
ω1 ω2 ω3

]T
defines the

instantaneous angular velocity in base/space frame {0}
I So, when a task is x(t) = (d(t),R(t)) ∈ R3 × SO(3), its

velocity is

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Geometric

I It turns out that
Ṙ(t) = SR,

where S satisfies S + ST = 0

I S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for any three numbers ω1, ω2, ω3

I Physically, the vector ω =
[
ω1 ω2 ω3

]T
defines the

instantaneous angular velocity in base/space frame {0}
I So, when a task is x(t) = (d(t),R(t)) ∈ R3 × SO(3), its

velocity is

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Geometric

I It turns out that
Ṙ(t) = SR,

where S satisfies S + ST = 0

I S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for any three numbers ω1, ω2, ω3

I Physically, the vector ω =
[
ω1 ω2 ω3

]T
defines the

instantaneous angular velocity in base/space frame {0}

I So, when a task is x(t) = (d(t),R(t)) ∈ R3 × SO(3), its
velocity is

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity

ME/AER 676 Robot Modeling & Control

Velocities in SO(3): Geometric

I It turns out that
Ṙ(t) = SR,

where S satisfies S + ST = 0

I S is a skew-symmetric matrix, and has the form

S =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
for any three numbers ω1, ω2, ω3

I Physically, the vector ω =
[
ω1 ω2 ω3

]T
defines the

instantaneous angular velocity in base/space frame {0}
I So, when a task is x(t) = (d(t),R(t)) ∈ R3 × SO(3), its

velocity is

ξ ∈ R6 = R3︸︷︷︸
linear velocity

× R3︸︷︷︸
angular velocity

ME/AER 676 Robot Modeling & Control

Jacobians and Forward Velocity Kinematics

X is derived from R0
n(q) and/or d0

n (q), where

T 0
n (q) =

[
R0
n(q) d0

n (q)
0 1

]

Forward Kinematics: X = f (q) (6)

Forward Velocity Kinematics: Ẋ = (7)

I J(q): Jacobian matrix

I Size of J(q) depends on joint and task space dimensions
I Derivation of J(q) depends on type of coordinates for whether

we use analytic or geometric representation of angular velocity
I Analytic Jacobians
I Geometric Jacobians

ME/AER 676 Robot Modeling & Control

Jacobians and Forward Velocity Kinematics

X is derived from R0
n(q) and/or d0

n (q), where

T 0
n (q) =

[
R0
n(q) d0

n (q)
0 1

]
Forward Kinematics: X = f (q) (6)

Forward Velocity Kinematics: Ẋ =? (7)

I J(q): Jacobian matrix

I Size of J(q) depends on joint and task space dimensions
I Derivation of J(q) depends on type of coordinates for whether

we use analytic or geometric representation of angular velocity
I Analytic Jacobians
I Geometric Jacobians

ME/AER 676 Robot Modeling & Control

Jacobians and Forward Velocity Kinematics

X is derived from R0
n(q) and/or d0

n (q), where

T 0
n (q) =

[
R0
n(q) d0

n (q)
0 1

]
Forward Kinematics: X = f (q) (6)

Forward Velocity Kinematics: Ẋ = J(q)q̇ (7)

I J(q): Jacobian matrix

I Size of J(q) depends on joint and task space dimensions
I Derivation of J(q) depends on type of coordinates for whether

we use analytic or geometric representation of angular velocity
I Analytic Jacobians
I Geometric Jacobians

ME/AER 676 Robot Modeling & Control

Jacobians

I Forward Kinematics provides X , whose change over time is
the vector ξ

I The relationship between ξ and q̇ is linear:

ξ = J(q)q̇.

I When the orientation of X is given by a vector of three
numbers α = f (q), then ξ = Ẋ (t), and the Jacobian is the
analytic Jacobian given by

Ja(q) =
∂f

∂q
.

I When we represent change of orientation using angular
velocity, J(q) is the geometric Jacobian, derived using spatial
geometry.

ME/AER 676 Robot Modeling & Control

Jacobians

I Forward Kinematics provides X , whose change over time is
the vector ξ

I The relationship between ξ and q̇ is linear:

ξ = J(q)q̇.

I When the orientation of X is given by a vector of three
numbers α = f (q), then ξ = Ẋ (t), and the Jacobian is the
analytic Jacobian given by

Ja(q) =
∂f

∂q
.

I When we represent change of orientation using angular
velocity, J(q) is the geometric Jacobian, derived using spatial
geometry.

ME/AER 676 Robot Modeling & Control

Jacobians

I Forward Kinematics provides X , whose change over time is
the vector ξ

I The relationship between ξ and q̇ is linear:

ξ = J(q)q̇.

I When the orientation of X is given by a vector of three
numbers α = f (q), then ξ = Ẋ (t), and the Jacobian is the
analytic Jacobian given by

Ja(q) =
∂f

∂q
.

I When we represent change of orientation using angular
velocity, J(q) is the geometric Jacobian, derived using spatial
geometry.

ME/AER 676 Robot Modeling & Control

Jacobians

I Forward Kinematics provides X , whose change over time is
the vector ξ

I The relationship between ξ and q̇ is linear:

ξ = J(q)q̇.

I When the orientation of X is given by a vector of three
numbers α = f (q), then ξ = Ẋ (t), and the Jacobian is the
analytic Jacobian given by

Ja(q) =
∂f

∂q
.

I When we represent change of orientation using angular
velocity, J(q) is the geometric Jacobian, derived using spatial
geometry.

ME/AER 676 Robot Modeling & Control

Example: Planar3R Geometric Jacobian

x0

y0

x1

y1
x2

y2

x3

y3

x4

y4

ME/AER 676 Robot Modeling & Control

Example: Planar3R Geometric Jacobian

T 0
1 =

Rotz,q1
0

0
0

0 1

 =

[
R0
1 o0

1

0 1

]

T 0
2 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

 =

[
R0
2 o0

2

0 1

]

T 0
3 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

Rotz,q3

1
0
0

0 1

 =

[
R0
3 o0

3

0 1

]

T 0
4 =

Rotz,q1
0

0
0

0 1

Rotz,q2

1
0
0

0 1

Rotz,q3

1
0
0

0 1

I3

1
0
0

0 1

ME/AER 676 Robot Modeling & Control

Building The Geometric Jacobian

If ξ ∈ R6 and q ∈ Rn, the Jacobian J(q) is of size 6× n, where
three rows form the velocity Jacobian Jv and three rows form the
angular velocity Jacobian Jω.

Assuming all joint axes are the z-direction of the link frame, the
i th column Jvi of Jv is

(8)Jvi =

{
z0i , if joint i is prismatic

z0i ×
(
o0n − o0i

)
, if joint i is revolute

We compute the i th column Jωi of Jω as

(9)Jωi =

{
03×1 , if joint i is prismatic

z0i , if joint i is revolute

ME/AER 676 Robot Modeling & Control

Uses of the Jacobian

I Forward Velocity Kinematics: Compute end-effector velocity ξ
given joint angle derivatives q̇

I Inverse Velocity Kinematics: Compute q̇ given ξ

I Relates end-effector forces F to joint torques τ at equilibrium:
τ = J(q)TF

I Defines the manipulability µ and the manipulability ellipsoid
(next slide)

ME/AER 676 Robot Modeling & Control

Manipulability

1. The manipulability µ is then given by

(10)µ = Πm
i=1σi

where σi are the singular values of J ∈ Rm×n; J = UΣV .

2. Let rank(J) = m, and w = UT ξ. Then

q̇ = J+ξ =⇒ ‖q̇‖2 = ξT (JJT)−1ξ, where

ξT (JJT)−1ξ = (UT ξ)TΣ−2
m (UT ξ) = wTΣ−2

m w =
m∑
i=1

w2
i

σ2mi

and Σm is a square diagonal matrix formed from the m largest
singular values of J

3. If ‖q̇‖2 = 1 = ξT (JJT)−1ξ then corresponding ξ form an
ellipsoid in space of task velocities ξ.

ME/AER 676 Robot Modeling & Control

Manipulability

1. The manipulability µ is then given by

(10)µ = Πm
i=1σi

where σi are the singular values of J ∈ Rm×n; J = UΣV .

2. Let rank(J) = m, and w = UT ξ. Then

q̇ = J+ξ =⇒ ‖q̇‖2 = ξT (JJT)−1ξ, where

ξT (JJT)−1ξ = (UT ξ)TΣ−2
m (UT ξ) = wTΣ−2

m w =
m∑
i=1

w2
i

σ2mi

and Σm is a square diagonal matrix formed from the m largest
singular values of J

3. If ‖q̇‖2 = 1 = ξT (JJT)−1ξ then corresponding ξ form an
ellipsoid in space of task velocities ξ.

ME/AER 676 Robot Modeling & Control

Manipulability

1. The manipulability µ is then given by

(10)µ = Πm
i=1σi

where σi are the singular values of J ∈ Rm×n; J = UΣV .

2. Let rank(J) = m, and w = UT ξ. Then

q̇ = J+ξ =⇒ ‖q̇‖2 = ξT (JJT)−1ξ, where

ξT (JJT)−1ξ = (UT ξ)TΣ−2
m (UT ξ) = wTΣ−2

m w =
m∑
i=1

w2
i

σ2mi

and Σm is a square diagonal matrix formed from the m largest
singular values of J

3. If ‖q̇‖2 = 1 = ξT (JJT)−1ξ then corresponding ξ form an
ellipsoid in space of task velocities ξ.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume
I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume
I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume

I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume
I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume
I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

Manipulability Ellipsoid

I The manipulability µ is related to the volume of the ellipsoid
formed by unit norm q mapped under J ∈ Rm×n.

I When J is close to losing full-rank, µ is close to zero, and vice
versa.

I When J is full-rank, the ellipsoid has non-zero volume
I This ellipsoid has two physical interpretations:

I When there’s no contact, this ellipsoid describes achievable
task velocities given unit-size joint velocities.

I During static contact, this ellipsoid describes achievable task
forces given unit-size joint torques.

ME/AER 676 Robot Modeling & Control

