ME/AER 676 Robot Modeling \& Control Spring 2023

Forward Kinematics \& Jacobians

Hasan A. Poonawala
Department of Mechanical Engineering
University of Kentucky
Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Introduction

- We consider robots modeled as links joined in series.
- The degrees of freedom at the joints form the joint variables q.
- Task variables X capture quantities describing what the robot must do.
- Traditional robot control focuses on the conversion of joint variables to task variables (forward kinematics) and back (inverse kinematics)

$$
X=f(q) ; \quad q=f^{-1}(X)
$$

Forward Kinematics as Homogenous Transformations

- This problem involves composing a number of relative link (homogenous) transformations
- It may be solved numerically, with the specific details depending on how these link transformations are parametrized
- The transformation (d, R) may be represented by
- origin and Euler angles (URDF)
- D-H Parameters
- Twist (Screw Theory)
- etc....

Serial Kinematic Chains

- We look at serial kinematic chains where all joints are simple.
- We number links as 0 for base to n in sequence.
- The assumption of single-parameter joints means we can use basic transformations to handle coordinate transformations.
- These basic transformation are denoted $A_{i}\left(q_{i}\right)$, where $q_{i} \in \mathbb{R}$ is the joint variable.
- q_{i} is either an angle θ_{i} (revolute joints) or a distance d_{i} (prismatic joints).

Example: Planar3R

Example: Planar3R

Example: Planar3R

Forward Kinematics of Serial Chains

Given link i and $i-1$,

$$
A_{i}=\left[\begin{array}{cc}
R_{i}^{i-1} & o_{i}^{i-1} \tag{1}\\
0 & 1
\end{array}\right]
$$

Transformations between links i and j is T_{j}^{i}, where we are expressing frame j in frame i.

$$
T_{j}^{i}= \begin{cases}A_{i+1} A_{i+2} \cdots A_{j-1} A_{j} & i<j \tag{2}\\ I & i=j \\ \left(T_{j}^{i}\right)^{-1} & i>j\end{cases}
$$

Forward Kinematics of Serial Chains

- For an n-link serial chain manipulator, the task variables are a combination of
- Origin of frame n (end-effector or tool frame)
- Orientation of frame n

$$
T_{n}^{0}(q)=\left[\begin{array}{cc}
R_{n}^{0}(q) & d_{n}^{0}(q) \\
0 & 1
\end{array}\right]
$$

- X is derived from $R_{n}^{0}(q)$ and/or $d_{n}^{0}(q)$
i.e. $X=f(q)$

Modern Robotics

- The book "Modern Robotics" uses exponential coordinates (twists) to represent homogenous transformations.
- It does not follow the D-H convention (next slide).
- The main difference to D-H is that in MR frame i fixed to link i is at joint i, not joint $i+1$.
- Videos on FK in this course follow MR's convention of locating frame i at joint i.
- Universal Robot Description Formats (URDFs) also follow this approach

Denavit-Hartenberg Convention

In this convention

- All motion happens along the z axis
- Four numbers are enough to define relative link transformations (instead of 6 or 12).

The D-H convention is based on two restrictions:
(DH1) The x_{1} axis intersects the z_{0} axis.
(DH2) The x_{1} axis is orthogonal to the z_{0} axis.
This restriction makes the transformation matrix between link i and $i-1$ given in (1) reduce to

$$
\begin{equation*}
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}} \tag{3}
\end{equation*}
$$

This convention is more common in earlier robotics texts, and is used in many systems.

Positions \rightarrow Velocities

- We assign coordinates - aka rigid body pose - (d, R) to frame, relative to reference.
$d \in \mathbb{R}^{3}, R \in \operatorname{SO}(3)$

Positions \rightarrow Velocities

- We assign coordinates - aka rigid body pose - (d, R) to frame, relative to reference.
$d \in \mathbb{R}^{3}, R \in \operatorname{SO}(3)$
- If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?

Positions \rightarrow Velocities

- We assign coordinates - aka rigid body pose $-(d, R)$ to frame, relative to reference.
$d \in \mathbb{R}^{3}, R \in \operatorname{SO}(3)$
- If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?
- For a position vector in \mathbb{R}^{n}, we know that the rate of change of position is another vector in \mathbb{R}^{n}, called the velocity

Positions \rightarrow Velocities

- We assign coordinates - aka rigid body pose $-(d, R)$ to frame, relative to reference.
$d \in \mathbb{R}^{3}, R \in \mathrm{SO}(3)$
- If the rigid body pose tells us where a frame is located, its position, what is the rate-of-change of the position?
- For a position vector in \mathbb{R}^{n}, we know that the rate of change of position is another vector in \mathbb{R}^{n}, called the velocity
- However, the orientation coordinate (d, R) is not a vector! What is $\frac{\mathrm{d}}{\mathrm{dt}} R(t)$?

Velocities in $\mathrm{SO}(3)$

- The angular velocity $\omega \in \mathbb{R}^{3}$ can be represented using two different sets of 3 numbers:
- Analytic: As the three derivatives of the three numbers used to parametrize $\mathrm{SO}(3)$ (not a physical vector). Example parametrization: roll-pitch-yaw

Velocities in $\mathrm{SO}(3)$

- The angular velocity $\omega \in \mathbb{R}^{3}$ can be represented using two different sets of 3 numbers:
- Analytic: As the three derivatives of the three numbers used to parametrize $\mathrm{SO}(3)$ (not a physical vector). Example parametrization: roll-pitch-yaw
- Geometric: As a vector in 3D describing the instantaneous axis of rotation in a frame and speed of rotation.

Velocities in SO(3): Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).

Velocities in SO(3): Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).
- Consider an end-effector whose orientation R_{n}^{0} in the base frame is parametrized by RPY Euler angles $\alpha=(\phi, \theta, \psi)$.

Velocities in $\mathrm{SO}(3)$: Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).
- Consider an end-effector whose orientation R_{n}^{0} in the base frame is parametrized by RPY Euler angles $\alpha=(\phi, \theta, \psi)$.
- There are two ways to derive R_{n}^{0};

$$
\begin{array}{rlrl}
\text { by definition: } & & R_{n}^{0}(\phi, \theta, \psi) & =\operatorname{Rot}_{z, \psi} \operatorname{Rot}_{y, \theta} \operatorname{Rot}_{x, \phi} \\
\text { FK : } & R_{n}^{0}(q) & =A_{1}\left(q_{1}\right) A_{1}\left(q_{2}\right) \cdots A_{n}\left(q_{n}\right) \tag{5}
\end{array}
$$

Velocities in $\mathrm{SO}(3)$: Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).
- Consider an end-effector whose orientation R_{n}^{0} in the base frame is parametrized by RPY Euler angles $\alpha=(\phi, \theta, \psi)$.
- There are two ways to derive R_{n}^{0};

$$
\begin{array}{rlrl}
\text { by definition: } & & R_{n}^{0}(\phi, \theta, \psi) & =\operatorname{Rot}_{z, \psi} \operatorname{Rot}_{y, \theta} \operatorname{Rot}_{x, \phi} \\
\text { FK : } & R_{n}^{0}(q) & =A_{1}\left(q_{1}\right) A_{1}\left(q_{2}\right) \cdots A_{n}\left(q_{n}\right) \tag{5}
\end{array}
$$

- With a little work, we can derive $X(t)=\alpha(t)=f(q(t))$

Velocities in $\mathrm{SO}(3)$: Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).
- Consider an end-effector whose orientation R_{n}^{0} in the base frame is parametrized by RPY Euler angles $\alpha=(\phi, \theta, \psi)$.
- There are two ways to derive R_{n}^{0};

$$
\begin{array}{rlrl}
\text { by definition: } & & R_{n}^{0}(\phi, \theta, \psi) & =\operatorname{Rot}_{z, \psi} \operatorname{Rot}_{y, \theta} \operatorname{Rot}_{x, \phi} \\
\text { FK : } & R_{n}^{0}(q) & =A_{1}\left(q_{1}\right) A_{1}\left(q_{2}\right) \cdots A_{n}\left(q_{n}\right) \tag{5}
\end{array}
$$

- With a little work, we can derive $X(t)=\alpha(t)=f(q(t))$
- Therefore

$$
\dot{X}(t)=\dot{\alpha}(t) \in \mathbb{R}^{3}
$$

Velocities in $\mathrm{SO}(3)$: Analytic

- Example parametrization: roll-pitch-yaw $\phi-\theta-\psi$ (RPY).
- Consider an end-effector whose orientation R_{n}^{0} in the base frame is parametrized by RPY Euler angles $\alpha=(\phi, \theta, \psi)$.
- There are two ways to derive R_{n}^{0};

$$
\begin{array}{rlrl}
\text { by definition: } & & R_{n}^{0}(\phi, \theta, \psi) & =\operatorname{Rot}_{z, \psi} \operatorname{Rot}_{y, \theta} \operatorname{Rot}_{x, \phi} \\
\text { FK : } & R_{n}^{0}(q) & =A_{1}\left(q_{1}\right) A_{1}\left(q_{2}\right) \cdots A_{n}\left(q_{n}\right) \tag{5}
\end{array}
$$

- With a little work, we can derive $X(t)=\alpha(t)=f(q(t))$
- Therefore

$$
\dot{X}(t)=\dot{\alpha}(t) \in \mathbb{R}^{3}
$$

- Note that we can also derive $\frac{\mathrm{d}}{\mathrm{dt}} R_{n}^{0}(\phi, \theta, \psi)$ as a matrix function of α and $\dot{\alpha}$.

Velocities in $\mathrm{SO}(3)$: Geometric

- It turns out that

$$
\dot{R}(t)=S R,
$$

where S satisfies $S+S^{T}=0$

Velocities in $\mathrm{SO}(3)$: Geometric

- It turns out that

$$
\dot{R}(t)=S R
$$

where S satisfies $S+S^{T}=0$

- S is a skew-symmetric matrix, and has the form

$$
S=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

for any three numbers $\omega_{1}, \omega_{2}, \omega_{3}$

Velocities in $\mathrm{SO}(3)$: Geometric

- It turns out that

$$
\dot{R}(t)=S R
$$

where S satisfies $S+S^{T}=0$

- S is a skew-symmetric matrix, and has the form

$$
S=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

for any three numbers $\omega_{1}, \omega_{2}, \omega_{3}$

- Physically, the vector $\omega=\left[\begin{array}{lll}\omega_{1} & \omega_{2} & \omega_{3}\end{array}\right]^{T}$ defines the instantaneous angular velocity in base/space frame $\{0\}$

Velocities in $\mathrm{SO}(3)$: Geometric

$>$ It turns out that

$$
\dot{R}(t)=S R
$$

where S satisfies $S+S^{T}=0$

- S is a skew-symmetric matrix, and has the form

$$
S=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]
$$

for any three numbers $\omega_{1}, \omega_{2}, \omega_{3}$

- Physically, the vector $\omega=\left[\begin{array}{lll}\omega_{1} & \omega_{2} & \omega_{3}\end{array}\right]^{T}$ defines the instantaneous angular velocity in base/space frame $\{0\}$
- So, when a task is $x(t)=(d(t), R(t)) \in \mathbb{R}^{3} \times \mathrm{SO}(3)$, its velocity is

$$
\xi \in \mathbb{R}^{6}=\underbrace{\mathbb{R}^{3}}_{\text {linear velocity }} \times \underbrace{\mathbb{R}^{3}}_{\text {angular velocity }}
$$

Jacobians and Forward Velocity Kinematics

X is derived from $R_{n}^{0}(q)$ and/or $d_{n}^{0}(q)$, where
$T_{n}^{0}(q)=\left[\begin{array}{cc}R_{n}^{0}(q) & d_{n}^{0}(q) \\ 0 & 1\end{array}\right]$

Jacobians and Forward Velocity Kinematics

X is derived from $R_{n}^{0}(q)$ and/or $d_{n}^{0}(q)$, where
$T_{n}^{0}(q)=\left[\begin{array}{cc}R_{n}^{0}(q) & d_{n}^{0}(q) \\ 0 & 1\end{array}\right]$
Forward Kinematics: $X=f(q)$
Forward Velocity Kinematics: $\dot{X}=$?

Jacobians and Forward Velocity Kinematics

X is derived from $R_{n}^{0}(q)$ and/or $d_{n}^{0}(q)$, where
$T_{n}^{0}(q)=\left[\begin{array}{cc}R_{n}^{0}(q) & d_{n}^{0}(q) \\ 0 & 1\end{array}\right]$

$$
\begin{align*}
\text { Forward Kinematics: } X=f(q) \tag{6}\\
\text { Forward Velocity Kinematics: } \dot{X}=J(q) \dot{q} \tag{7}
\end{align*}
$$

- $J(q)$: Jacobian matrix
- Size of $J(q)$ depends on joint and task space dimensions
- Derivation of $J(q)$ depends on type of coordinates for whether we use analytic or geometric representation of angular velocity
- Analytic Jacobians
- Geometric Jacobians

Jacobians

- Forward Kinematics provides X, whose change over time is the vector ξ

Jacobians

- Forward Kinematics provides X, whose change over time is the vector ξ
- The relationship between ξ and \dot{q} is linear:

$$
\xi=J(q) \dot{q} .
$$

Jacobians

- Forward Kinematics provides X, whose change over time is the vector ξ
- The relationship between ξ and \dot{q} is linear:

$$
\xi=J(q) \dot{q} .
$$

- When the orientation of X is given by a vector of three numbers $\alpha=f(q)$, then $\xi=\dot{X}(t)$, and the Jacobian is the analytic Jacobian given by

$$
J_{a}(q)=\frac{\partial f}{\partial q}
$$

Jacobians

- Forward Kinematics provides X, whose change over time is the vector ξ
- The relationship between ξ and \dot{q} is linear:

$$
\xi=J(q) \dot{q} .
$$

- When the orientation of X is given by a vector of three numbers $\alpha=f(q)$, then $\xi=\dot{X}(t)$, and the Jacobian is the analytic Jacobian given by

$$
J_{a}(q)=\frac{\partial f}{\partial q}
$$

- When we represent change of orientation using angular velocity, $J(q)$ is the geometric Jacobian, derived using spatial geometry.

Example: Planar3R Geometric Jacobian

Example: Planar3R Geometric Jacobian

$$
\left.\begin{array}{l}
T_{1}^{0}=\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{1}} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{1}^{0} & o_{1}^{0} \\
0 & 1
\end{array}\right] \\
T_{2}^{0}=\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{1}} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{2}} & {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{2}^{0} & o_{2}^{0} \\
0 & 1
\end{array}\right] \\
T_{3}^{0}=\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{1}} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{2}} & {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{3}} & {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{3}^{0} & o_{3}^{0} \\
0 & 1
\end{array}\right] \\
T_{4}^{0}=\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{1}} & {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{2}} & {\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\operatorname{Rot}_{z, q_{3}} & {\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right]} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 \\
1 / 3 & {[} \\
0 \\
0
\end{array}\right] \\
0
\end{array} 1\right]\left[\begin{array}{c}
1
\end{array}\right] .
$$

Building The Geometric Jacobian

If $\xi \in \mathbb{R}^{6}$ and $q \in \mathbb{R}^{n}$, the Jacobian $J(q)$ is of size $6 \times n$, where three rows form the velocity Jacobian J_{v} and three rows form the angular velocity Jacobian J_{ω}.

Assuming all joint axes are the z-direction of the link frame, the $i^{\text {th }}$ column $J_{v_{i}}$ of J_{v} is

$$
J_{v_{i}}= \begin{cases}z_{i}^{0} & , \quad \text { if joint } i \text { is prismatic } \tag{8}\\ z_{i}^{0} \times\left(o_{n}^{0}-o_{i}^{0}\right) & , \quad \text { if joint } i \text { is revolute }\end{cases}
$$

We compute the $i^{\text {th }}$ column $J_{\omega_{i}}$ of J_{ω} as

$$
J_{\omega_{i}}= \begin{cases}0_{3 \times 1} & , \text { if joint } i \text { is prismatic } \tag{9}\\ z_{i}^{0} & , \text { if joint } i \text { is revolute }\end{cases}
$$

Uses of the Jacobian

- Forward Velocity Kinematics: Compute end-effector velocity ξ given joint angle derivatives \dot{q}
- Inverse Velocity Kinematics: Compute \dot{q} given ξ
- Relates end-effector forces F to joint torques τ at equilibrium: $\tau=J(q)^{T} F$
- Defines the manipulability μ and the manipulability ellipsoid (next slide)

Manipulability

1. The manipulability μ is then given by

$$
\begin{equation*}
\mu=\Pi_{i=1}^{m} \sigma_{i} \tag{10}
\end{equation*}
$$

where σ_{i} are the singular values of $J \in \mathbb{R}^{m \times n} ; J=U \Sigma V$.

Manipulability

1. The manipulability μ is then given by

$$
\begin{equation*}
\mu=\Pi_{i=1}^{m} \sigma_{i} \tag{10}
\end{equation*}
$$

where σ_{i} are the singular values of $J \in \mathbb{R}^{m \times n} ; J=U \Sigma V$.
2. Let $\operatorname{rank}(J)=m$, and $w=U^{T} \xi$. Then

$$
\begin{aligned}
\dot{q} & =J^{+} \xi \Longrightarrow\|\dot{q}\|^{2}=\xi^{T}\left(J J^{T}\right)^{-1} \xi, \text { where } \\
\xi^{T}\left(J J^{T}\right)^{-1} \xi & =\left(U^{T} \xi\right)^{T} \Sigma_{m}^{-2}\left(U^{T} \xi\right)=w^{T} \Sigma_{m}^{-2} w=\sum_{i=1}^{m} \frac{w_{i}^{2}}{\sigma_{m_{i}}^{2}}
\end{aligned}
$$

and Σ_{m} is a square diagonal matrix formed from the m largest singular values of J

Manipulability

1. The manipulability μ is then given by

$$
\begin{equation*}
\mu=\Pi_{i=1}^{m} \sigma_{i} \tag{10}
\end{equation*}
$$

where σ_{i} are the singular values of $J \in \mathbb{R}^{m \times n} ; J=U \Sigma V$.
2. Let $\operatorname{rank}(J)=m$, and $w=U^{T} \xi$. Then

$$
\begin{gathered}
\dot{q}=J^{+} \xi \Longrightarrow\|\dot{q}\|^{2}=\xi^{T}\left(J J^{T}\right)^{-1} \xi, \text { where } \\
\xi^{T}\left(J J^{T}\right)^{-1} \xi=\left(U^{T} \xi\right)^{T} \Sigma_{m}^{-2}\left(U^{T} \xi\right)=w^{T} \Sigma_{m}^{-2} w=\sum_{i=1}^{m} \frac{w_{i}^{2}}{\sigma_{m_{i}}^{2}}
\end{gathered}
$$

and Σ_{m} is a square diagonal matrix formed from the m largest singular values of J
3. If $\|\dot{q}\|^{2}=1=\xi^{T}\left(J J^{T}\right)^{-1} \xi$ then corresponding ξ form an ellipsoid in space of task velocities ξ.

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- When J is close to losing full-rank, μ is close to zero, and vice versa.

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- When J is close to losing full-rank, μ is close to zero, and vice versa.
- When J is full-rank, the ellipsoid has non-zero volume

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- When J is close to losing full-rank, μ is close to zero, and vice versa.
- When J is full-rank, the ellipsoid has non-zero volume
- This ellipsoid has two physical interpretations:

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- When J is close to losing full-rank, μ is close to zero, and vice versa.
- When J is full-rank, the ellipsoid has non-zero volume
- This ellipsoid has two physical interpretations:
- When there's no contact, this ellipsoid describes achievable task velocities given unit-size joint velocities.

Manipulability Ellipsoid

- The manipulability μ is related to the volume of the ellipsoid formed by unit norm q mapped under $J \in \mathbb{R}^{m \times n}$.
- When J is close to losing full-rank, μ is close to zero, and vice versa.
- When J is full-rank, the ellipsoid has non-zero volume
- This ellipsoid has two physical interpretations:
- When there's no contact, this ellipsoid describes achievable task velocities given unit-size joint velocities.
- During static contact, this ellipsoid describes achievable task forces given unit-size joint torques.

