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Introduction

» The Forward Kinematics problem combines known closed-form
expressions for individual homogenous transformations

» No closed-form expression for f in x = f(q) needs to be
maintained to obtain x

» Computing the inverse, however, is not as easy

» The inverse kinematics problem is often not even unique,
which has algorithmic implications
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Inverse Kinematics

Since we know how to build f(q), we arrive at two approaches to
inverse kinematics

» Analytic approaches:

Build the closed-form expression f(q) and define a
closed-form inverse f~1(q)

» Numerical approaches:

Numerically search for values of g so that f(q) = x, where the
function f is either closed-form or numerical
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Analytic Inverse Kinematics

> Complicated to derive, but enables fast computations

» Some robots are designed with geometries that simplify the
expressions:

» The wrist is has three links with intersecting axes of rotation
(spherical joint)

» The end-effector frame coincides with wrist center.
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Numerical Inverse Kinematics

» solve optimization:

min[1x — £(q)I3

P> We can add constraints that make the solution unique, or
other benefits

» We may also use other measures for the distance between x
and f(q)
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Analytical Inverse Velocity Kinematics

> Instead of g = f1(x), some tasks require calculating ¢ given
task space velocity &

» If J(q) is square and full-rank, then ¢ = J(q)~¢

> If J(g) € R™", m < n, and rank(J(q)) = m, we may
compute
g=JT¢+ (I —JtD)b,

where pseudo-inverse JT is
Jr=JT(h L,
and b € R" is an arbitrary vector that does not affect &.

Jt=JT(ht
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Numerical Inverse Velocity Kinematics

» Instead of ‘closed-form’ pseudo-inverse J*, solve optimization:
. .12
min l€ = J(a)ql2

> Here too, we can add constraints that make the solution
unique, or other benefits

» Again, we may also use other measures for the distance
between £ and ¢
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Differential Inverse Kinematics

» IDEA: To solve ming [|x — f(q)||3, use g = J¢
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Differential Inverse Kinematics

» IDEA: To solve ming [|x — f(q)||3, use g = J¢
> If L(q) = [lx — f(q)[3, then

d

IL(q) = (x—1f(q))" (¢ = J(q)9)
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Differential Inverse Kinematics

» IDEA: To solve ming [|x — f(q)||3, use g = J¢
> If L(q) = [lx — f(q)[3, then

d

IL(q) = (x—1f(q))" (¢ = J(q)9)

» If we want L(gq) — 0, choose

§—J(q)g = —(x—f(q))
— g=J"(£+(x—f(q))), and
d

—iL(a) = —llx = f(a)ll3
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Differential Inverse Kinematics

» IDEA: To solve ming [|x — f(q)||3, use g = J¢
> If L(q) = [lx — f(q)[3, then

d

sta@) =~ f(q))" (€ = J(q)d) (1)

» If we want L(gq) — 0, choose

§—J(q)g=—(x—1(q)) (2)
— = ST (E+ (x— F(q)). and )
< 1(q) = —Ix— ()13 (4)

P Also works as a task-space position controller, assuming a
low-level velocity-tracking loop!
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Euler Integration Version

» The Differential Inverse Kinematics Approach is asking us to
solve the ODE

q(t) = J7 (&(t) + (x(t) — f(q(1))))
for q(t) given x(t). If x(t) = x (fixed), set {(t) = 0.

> as t — oo, assuming J remains full rank, we expect
q(t) — f~1(x(t)), solving IK
» Instead of ODE, we can take small steps

A1 = Gk + 197 (qK) (Ex + (e — F(an)))

for some step size 7
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f(q) by the following approach:

» Start with some qo, calculate xp = f(qo)
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f(q) by the following approach:

» Start with some qo, calculate xp = f(qo)

» Plan a trajectory x(t), where t € [0, 1], such that from
x(0) = xo to x(1) = x (straight line?)
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We may interpret the previous algorithm as trying to solve
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» Start with some qo, calculate xp = f(qo)
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f(q) by the following approach:

» Start with some qo, calculate xp = f(qo)

» Plan a trajectory x(t), where t € [0, 1], such that from
x(0) = xo to x(1) = x (straight line?)

» Convert x(t) to velocities £(t)

> Integrate q(1) = fo s)ds = fo (q(s))T&(s)ds
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f(q) by the following approach:

» Start with some qo, calculate xp = f(qo)

» Plan a trajectory x(t), where t € [0, 1], such that from
x(0) = xo to x(1) = x (straight line?)

» Convert x(t) to velocities £(t)

> Integrate q(1) = fo s)ds = fo (q(s))T&(s)ds
> Note that we are bmldmg q(s) as we go!
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f(q) by the following approach:

» Start with some qo, calculate xp = f(qo)
» Plan a trajectory x(t), where t € [0, 1], such that from
x(0) = xo to x(1) = x (straight line?)
» Convert x(t) to velocities £(t)
> Integrate q(1) = fo s)ds = fo (q(s))T&(s)ds
> Note that we are bmldmg q(s) as we go!
» The integration drifts, so we need a correction term

g(t) = JTE(t) + I (x(t) — f(q(1)))

error correction
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