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Introduction

I The Forward Kinematics problem combines known closed-form
expressions for individual homogenous transformations

I No closed-form expression for f in x = f (q) needs to be
maintained to obtain x

I Computing the inverse, however, is not as easy

I The inverse kinematics problem is often not even unique,
which has algorithmic implications
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Inverse Kinematics

Since we know how to build f (q), we arrive at two approaches to
inverse kinematics

I Analytic approaches:
Build the closed-form expression f (q) and define a
closed-form inverse f −1(q)

I Numerical approaches:
Numerically search for values of q so that f (q) = x , where the
function f is either closed-form or numerical
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Analytic Inverse Kinematics

I Complicated to derive, but enables fast computations

I Some robots are designed with geometries that simplify the
expressions:
I The wrist is has three links with intersecting axes of rotation

(spherical joint)

I The end-effector frame coincides with wrist center.
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Numerical Inverse Kinematics

I solve optimization:

min
q
‖x − f (q)‖22

I We can add constraints that make the solution unique, or
other benefits

I We may also use other measures for the distance between x
and f (q)
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Analytical Inverse Velocity Kinematics

I Instead of q = f −1(x), some tasks require calculating q̇ given
task space velocity ξ

I If J(q) is square and full-rank, then q̇ = J(q)−1ξ

I If J(q) ∈ Rm×n, m < n, and rank(J(q)) = m, we may
compute

q̇ = J+ξ + (I − J+J)b,

where pseudo-inverse J+ is

J+ = JT (JJT )−1,

and b ∈ Rn is an arbitrary vector that does not affect ξ.

J+ = JT (JJT )−1
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Numerical Inverse Velocity Kinematics

I Instead of ‘closed-form’ pseudo-inverse J+, solve optimization:

min
q
‖ξ − J(q)q̇‖22

I Here too, we can add constraints that make the solution
unique, or other benefits

I Again, we may also use other measures for the distance
between ξ and q̇
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Differential Inverse Kinematics

I IDEA: To solve minq ‖x − f (q)‖22, use q̇ = J+ξ

I If L(q) = ‖x − f (q)‖22, then

d

dt
L(q) = (x − f (q))T (ξ − J(q)q̇) (1)

I If we want L(q)→ 0, choose

ξ − J(q)q̇ = −(x − f (q)) (2)

=⇒ q̇ = J+ (ξ + (x − f (q))) , and (3)

d

dt
L(q) = −‖x − f (q)‖22 (4)

I Also works as a task-space position controller, assuming a
low-level velocity-tracking loop!

ME/AER 676 Robot Modeling & Control



Differential Inverse Kinematics

I IDEA: To solve minq ‖x − f (q)‖22, use q̇ = J+ξ

I If L(q) = ‖x − f (q)‖22, then

d

dt
L(q) = (x − f (q))T (ξ − J(q)q̇) (1)

I If we want L(q)→ 0, choose

ξ − J(q)q̇ = −(x − f (q)) (2)

=⇒ q̇ = J+ (ξ + (x − f (q))) , and (3)

d

dt
L(q) = −‖x − f (q)‖22 (4)

I Also works as a task-space position controller, assuming a
low-level velocity-tracking loop!

ME/AER 676 Robot Modeling & Control



Differential Inverse Kinematics

I IDEA: To solve minq ‖x − f (q)‖22, use q̇ = J+ξ

I If L(q) = ‖x − f (q)‖22, then

d

dt
L(q) = (x − f (q))T (ξ − J(q)q̇) (1)

I If we want L(q)→ 0, choose

ξ − J(q)q̇ = −(x − f (q)) (2)

=⇒ q̇ = J+ (ξ + (x − f (q))) , and (3)

d

dt
L(q) = −‖x − f (q)‖22 (4)

I Also works as a task-space position controller, assuming a
low-level velocity-tracking loop!

ME/AER 676 Robot Modeling & Control



Differential Inverse Kinematics

I IDEA: To solve minq ‖x − f (q)‖22, use q̇ = J+ξ

I If L(q) = ‖x − f (q)‖22, then

d

dt
L(q) = (x − f (q))T (ξ − J(q)q̇) (1)

I If we want L(q)→ 0, choose

ξ − J(q)q̇ = −(x − f (q)) (2)

=⇒ q̇ = J+ (ξ + (x − f (q))) , and (3)

d

dt
L(q) = −‖x − f (q)‖22 (4)

I Also works as a task-space position controller, assuming a
low-level velocity-tracking loop!

ME/AER 676 Robot Modeling & Control



Euler Integration Version

I The Differential Inverse Kinematics Approach is asking us to
solve the ODE

q̇(t) = J+ (ξ(t) + (x(t)− f (q(t))))

for q(t) given x(t). If x(t) ≡ x (fixed), set ξ(t) ≡ 0.

I as t →∞, assuming J remains full rank, we expect
q(t)→ f −1(x(t)), solving IK

I Instead of ODE, we can take small steps

qk+1 = qk + ηJ+(qk) (ξk + (xk − f (qk)))

for some step size η
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Differential Inverse Kinematics

We may interpret the previous algorithm as trying to solve
x = f (q) by the following approach:

I Start with some q0, calculate x0 = f (q0)

I Plan a trajectory x(t), where t ∈ [0, 1], such that from
x(0) = x0 to x(1) = x (straight line?)

I Convert x(t) to velocities ξ(t)

I Integrate q(1) =
∫ 1
0 q̇(s)ds =

∫ 1
0 J(q(s))+ξ(s)ds

I Note that we are building q(s) as we go!

I The integration drifts, so we need a correction term

q̇(t) = J+ξ(t) + J+ (x(t)− f (q(t)))︸ ︷︷ ︸
error correction
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