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Introduction

I Derived an EL model for a torque-driven robot

I Torques from voltage-controlled PMDC motor =⇒ individual
motor model

I Combine motor and link models for link angle dynamics

I Extend model by including flexibility
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Proportional Control

I Setting u = KmV /R and d = −τl/r , we obtain

J θ̈m + B θ̇m = u(t)− d(t). (1)

I Laplace Transform: (Js2 + Bs)Θm(s) = U(s)− D(s)

I Proportional Control: u(t) = −kp(θm(t)− θd(t))

I Closed-loop model:

(2)(Js2 +Bs)Θm(s) =−kpΘm(s)+kpΘd(s)−D(s),

or

(3)Θm(s) =
kp

Js2 + Bs + kp
Θd(s)− 1

Js2 + Bs + kp
D(s).
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Proportional Control

Θm(s) =
kp

Js2 + Bs + kp
Θd(s)− 1

Js2 + Bs + kp
D(s). (4)

I System is stable when kp > 0, disturbance is bounded

I When D(s) = 0, then by FVT, θm(t)→ θd (set-point
regulation)

I When D(s) is non-zero constant, error can be made smaller
by increasing kp

I This approach is high-gain feedback
I In practice, it’s a bad idea due to sensor noise and actuator

nonlinearities
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Proportional-Derivative Control

I Add a derivative term:

u(t) = −kp(θm(t)− θd(t))− Kd θ̇m(t).

I The closed-loop model becomes

(Js2 + Bs)Θm(s) = −kpΘm(s) + kpΘd(s) + kdsΘm(s)− D(s),

or

Θm(s) =
kp

Js2 + (B + kd)s + kp
Θd(s)− 1

Js2 + (B + kd)s + kp
D(s).

I As long as kp > 0, kd > 0, and disturbances are bounded, the
closed loop system is stable.

I Similar behavior as P control for set-point regulation, with
some more control on transient behavior

I In practice, full control on transients limited by actuator
saturation
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Proportional-Integral-Derivative Control

I Add an integral term:

u(t) = −kp(θm(t)− θd(t))− Kd θ̇m(t)− kI

∫ t

0
(θm(η)− θd(η))dη,

I Closed loop:

Θm(s) =
kps + kI

Js3 + (B + kd)s2 + kps + kI
Θd(s)

− s

Js3 + (B + kd)s2 + kps + kI
D(s).

I If system is stable, θm(t)→ θd(t), even when non-zero
constant disturbance present

I Stability requires kI <
kp(B+kd )

J
I We can use lower gains to track set-point θd
I However, may need to know J, B to avoid instability
I Also, integrators interact poorly with actuator saturation

(wind-up problem)
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Feedforward Control

I Approaches so far worked for constant references and
disturbances.

I For time varying reference, use a feedforward control input.
I In the feedforward signal UFF (s) = F (s)Θd(s), F (s) must

‘invert’ the plant

I Notes derive F (s) = 1/G (s)
I Produces the open-loop control that would produce output

same as reference in an ideal world

I When G (s) = 1/b(s), then UFF (s) = b(s)Θd(S)

I Eg:

Model: (Js2 + B)Θm(s) = U(s)− D(s)

=⇒ b(s) = (Js2 + B)

=⇒ uFF (t) = J θ̈d(t) + B θ̇d(t)
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