ME 599/699 Robot Modeling \& Control Fall 2021

Gravity-Compensated PD Control

Hasan A. Poonawala
Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Recap

- Plan trajectory $q_{d}(t)$ for robot configuration q

Recap

- Plan trajectory $q_{d}(t)$ for robot configuration q
- Goal: Trajectory Tracking Choose torques τ (or motor voltages u) so that

$$
q(t) \rightarrow q_{d}(t)
$$

Recap

- Plan trajectory $q_{d}(t)$ for robot configuration q
- Goal: Trajectory Tracking Choose torques τ (or motor voltages u) so that

$$
q(t) \rightarrow q_{d}(t)
$$

- When

$$
q_{d}(t) \equiv q_{d}
$$

a constant, we get set-point regulation or goal-reaching task

Approaches to Trajectory Tracking

- Independent Joint Control.

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually
- Use PID controllers and frequency-domain analysis

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually
- Use PID controllers and frequency-domain analysis
- Works for set-point regulation / slow trajectories

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually
- Use PID controllers and frequency-domain analysis
- Works for set-point regulation / slow trajectories
- Model-based Control

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually
- Use PID controllers and frequency-domain analysis
- Works for set-point regulation / slow trajectories
- Model-based Control
- Use model

$$
M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)+G(q(t))=u(t)
$$

Approaches to Trajectory Tracking

- Independent Joint Control.
- Some robots allow us to get away with controlling each joint individually
- Use PID controllers and frequency-domain analysis
- Works for set-point regulation / slow trajectories
- Model-based Control
- Use model

$$
M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)+G(q(t))=u(t)
$$

- Lyapunov-based analysis and design

Gravity-free PD Control

When: Want to regulate the robot config to a set-point q_{d}

Gravity-free PD Control

When: Want to regulate the robot config to a set-point q_{d}
Assuming no gravity (or that we canceled it out using u):

$$
M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)=u(t)
$$

Gravity-free PD Control

When: Want to regulate the robot config to a set-point q_{d}
Assuming no gravity (or that we canceled it out using u):

$$
M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)=u(t)
$$

Use PD control:

$$
u(t)=K_{P}\left(q_{d}-q(t)\right)-K_{D}(\dot{q}(t))
$$

Gravity-free PD Control

When: Want to regulate the robot config to a set-point q_{d}
Assuming no gravity (or that we canceled it out using u):

$$
M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)=u(t)
$$

Use PD control:

$$
u(t)=K_{P}\left(q_{d}-q(t)\right)-K_{D}(\dot{q}(t))
$$

Closed-loop:

$$
\begin{aligned}
& M(q(t)) \ddot{q}(t)+C(q(t), \dot{q}(t)) \dot{q}(t)=K_{P}\left(q_{d}-q(t)\right)-K_{D} \dot{q}(t) \\
\Longrightarrow & \ddot{q}(t)=M^{-1}(q(t))\left(-C(q(t), \dot{q}(t)) \dot{q}(t)+K_{P}\left(q_{d}-q(t)\right)-K_{D} \dot{q}(t)\right) \\
& \text { dropping } t, \ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}\right)
\end{aligned}
$$

Analysis

$$
\ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D}(\dot{q})\right)
$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \Longrightarrow q_{e q}=q_{d}$.

Analysis

$$
\ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D}(\dot{q})\right)
$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \Longrightarrow q_{e q}=q_{d}$.
We want $q \rightarrow q_{d}$, or asymptotic stability of equilibrium q_{d}

Analysis

$$
\ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D}(\dot{q})\right)
$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \Longrightarrow q_{e q}=q_{d}$.
We want $q \rightarrow q_{d}$, or asymptotic stability of equilibrium q_{d}
Can't use methods for linear systems, simulation of all cases is infeasible.

Analysis

$$
\ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D}(\dot{q})\right)
$$

Equilibrium occurs when $\dot{q}=\ddot{q}=0 \Longrightarrow q_{e q}=q_{d}$.
We want $q \rightarrow q_{d}$, or asymptotic stability of equilibrium q_{d}
Can't use methods for linear systems, simulation of all cases is infeasible.

Solution: Lyapunov methods

Lyapunov Function

For this mechanical system, we choose
$V(x)=$ actual Kinetic Energy + Virtual Potential Energy due to error

Lyapunov Function

For this mechanical system, we choose
$V(x)=$ actual Kinetic Energy + Virtual Potential Energy due to error

$$
V(x)=V(q, \dot{q})=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2}\left(q-q_{d}\right)^{T} K_{P}\left(q-q_{d}\right)
$$

Potential is spring-like with spring constant K_{P}.

Lyapunov Function

For this mechanical system, we choose
$V(x)=$ actual Kinetic Energy + Virtual Potential Energy due to error

$$
V(x)=V(q, \dot{q})=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2}\left(q-q_{d}\right)^{T} K_{P}\left(q-q_{d}\right)
$$

Potential is spring-like with spring constant K_{P}.
Is this a proper candidate Lyapunov function?

- Need $K_{P}>0, M(q)>0$ (positive definite)
$M(q)>0$ is true for any valid Euler-Lagrangian mechanical system!

Directional Derivative of Lyapunov Function

$$
V(x)=V(q, \dot{q})=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+\frac{1}{2}\left(q-q_{d}\right)^{T} K_{P}\left(q-q_{d}\right)
$$

How does $V(x)$ change along solutions $\bar{x}(t)$?

$$
\begin{gathered}
\dot{V}(t)=\frac{\partial V}{\partial x} \dot{x} \\
=\dot{q}^{T} M(q) \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q}+\left(q-q_{d}\right)^{T} K_{P} \dot{q}
\end{gathered}
$$

Next: substitute for \ddot{q}

$$
\begin{align*}
& \ddot{q}=M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}\right) \\
\dot{V}(t)= & \dot{q}^{T} M(q) \ddot{q}+\frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q}+\left(q-q_{d}\right)^{T} K_{P} \dot{q} \tag{1}\\
= & \dot{q}^{T} M(q)\left(M^{-1}(q)\left(-C(q, \dot{q}) \dot{q}+K_{P}\left(q_{d}-q\right)-K_{D} \dot{q}\right)\right)(2) \tag{2}\\
& +\frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q}+\left(q-q_{d}\right)^{T} K_{P} \dot{q}
\end{align*}
$$

The mass-matrix terms cancel, so does the term involving K_{P}. Exercise: confirm that you get from the equation above to:

$$
\dot{V}(t)=\frac{1}{2} \dot{q}^{T}(\dot{M}(q)-2 C(q, \dot{q})) \dot{q}-\dot{q}^{T} K_{D} \dot{q}
$$

Skew Symmetry Property

$$
\dot{V}(t)=-\dot{q}^{T} K_{D} \dot{q},
$$

because for any EL-system, $\dot{M}(q)-2 C(q, \dot{q})$ is a skew-symmetric matrix!
(See Section 5.2.1 in 07_Manipulator_Kinematics_Dynamics.pdf)
So, if $\dot{q} \neq 0$, then $\dot{V}<0$.
To apply Lyapunov's conclusions, we actually want $q \rightarrow q_{d}$ is that when $q \neq q_{d}, \dot{q} \neq 0$, THEN $\dot{V}<0$.

Skew Symmetry Property

$$
\dot{V}(t)=-\dot{q}^{T} K_{D} \dot{q},
$$

because for any EL-system, $\dot{M}(q)-2 C(q, \dot{q})$ is a skew-symmetric matrix!
(See Section 5.2.1 in 07_Manipulator_Kinematics_Dynamics.pdf)
So, if $\dot{q} \neq 0$, then $\dot{V}<0$.
To apply Lyapunov's conclusions, we actually want $q \rightarrow q_{d}$ is that when $q \neq q_{d}, \dot{q} \neq 0$, THEN $\dot{V}<0$.

A solution comes through La Salle's invariance principle (Hello again, ME 672).

Intuition: When its impossible for $\dot{V}(t)=0$ forever at any state where $V(q) \neq 0$, then $q \rightarrow q_{d}$.

Summary

- For set-point regulation,
- Assuming gravity isn't affecting dynamics, no external forces,
- PD control is enough to get $q \rightarrow q_{d}$. no coupled model issues !!!

Summary

- For set-point regulation,
- Assuming gravity isn't affecting dynamics, no external forces,
- PD control is enough to get $q \rightarrow q_{d}$. no coupled model issues !!!

Furthermore:

- if $G(q) \neq 0$, then $q_{\text {eq }}$ satisfies

$$
G\left(q_{e q}\right)=K_{P}\left(q_{d}-q_{e q}\right)
$$

and this equilibrium $\left(\neq q_{d}\right)$ is locally asymptotically stable.

- To reduce error, increase K_{P} !

Summary

- For set-point regulation,
- Assuming gravity isn't affecting dynamics, no external forces,
- PD control is enough to get $q \rightarrow q_{d}$. no coupled model issues !!!

Furthermore:

- if $G(q) \neq 0$, then $q_{\text {eq }}$ satisfies

$$
G\left(q_{e q}\right)=K_{P}\left(q_{d}-q_{e q}\right)
$$

and this equilibrium $\left(\neq q_{d}\right)$ is locally asymptotically stable.

- To reduce error, increase K_{P} !

Question: Will an integrator work to handle gravity, like in the case of independent joint control?

