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Trajectory Tracking

The power of PD-feedback breaks down when the trajectory has
significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since
the analyzed model excludes J(q)T ftip.

Now, we use the model to implement the Computed Torque
Control, or Inverse Dynamics Control, or basic Feedback
Linearization.

Real Model: M(q)q̈ + C (q, q̇)q̇ + G (q) = u(t)
What you think is model: M̂(q), Ĉ (q, q̇), Ĝ (q)
Choose control to get rid of nonlinearity:

u(t) = M̂(q)äq(t) + Ĉ (q, q̇)q̇ + Ĝ (q).

ME 599/699 Robot Modeling & Control



Trajectory Tracking

The power of PD-feedback breaks down when the trajectory has
significant accelerations, and so is not really static or quasi-static.

PD-control also does not account for obstacles or contacts, since
the analyzed model excludes J(q)T ftip.

Now, we use the model to implement the Computed Torque
Control, or Inverse Dynamics Control, or basic Feedback
Linearization.

Real Model: M(q)q̈ + C (q, q̇)q̇ + G (q) = u(t)
What you think is model: M̂(q), Ĉ (q, q̇), Ĝ (q)
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Choose control to get rid of nonlinearity:
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Choose control to get rid of nonlinearity:
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Inverse Dynamics Control

Real Model: M(q)q̈ + C (q, q̇)q̇ + G (q) = u(t)
What you think is model: M̂(q), Ĉ (q, q̇), Ĝ (q)
Choose control to get rid of nonlinearity:

u(t) = M̂(q)aq(t) + Ĉ (q, q̇)q̇ + Ĝ (q).

Closed-loop:

M(q)q̈ + C (q, q̇)q̇ + G (q) = M̂(q)aq(t) + Ĉ (q, q̇)q̇ + Ĝ (q) (1)

IF M̂(q) = M(q), Ĉ (q, q̇) = Ĉ (q, q̇), Ĝ (q) = G (q), then

M(q)q̈ = M(q)aq(t)

Since M(q) > 0 for all q,

q̈ = aq(t)

Computed torque control gives us a linear system!
Just need to design aq(t) so that q(t)→ qd(t)
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Inverse Dynamics Control

q̈ = aq(t) (2)

Given qd(t), one choice for aq(t) is

aq(t) = q̈d(t) + KP (qd(t)− q(t)) + KD (q̇d(t)− q̇(t))

Note that q̈d(t) is like a feed forward term, and the remainder is
the feedback term for this second-order system.

Defining the error as e(t) = q(t)− qd(t), we can rewrite the
equation (2) as

ë(t) + KD ė(t) + KPe(t) = 0.

Choosing KD > 0 and KP > 0 will ensure e(t)→ 0 !
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Inverse Dynamics Control

Note that the control we wrote down is

u(t) = M̂(q)aq(t) + Ĉ (q, q̇)q̇ + Ĝ (q)

= M̂(q) (q̈d(t) + KP (qd(t)− q(t)) + KD (q̇d(t)− q̇(t)))

+ Ĉ (q, q̇)q̇ + Ĝ (q)

We don’t need to construct the matrices M̂(q) and Ĉ (q, q̇), and
vector Ĝ (q) explicitly in order to implement this control law.

We can use the recursive Newton-Euler Algorithm to calculate u(t)
given aq(t) and the relevant frames, link geometry, and inertia
parameters.

Physics simulators for robots use this method.
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= M̂(q) (q̈d(t) + KP (qd(t)− q(t)) + KD (q̇d(t)− q̇(t)))
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Task Space Inverse Dynamics

Let X be the end-effector pose with orientation given by a minimal
representation of SO(3). Then,

ẋ = Ja(q)q̇ =⇒ Ẍ = Ja(q)q̈ + J̇a(q)q̇ (3)

If we choose

aq = Ja(q)−1
(
aX − J̇a(q)q̇

)
(4)

then the joint space inverse dynamics control implies a task space
dynamics of

Ẍ = aX (5)

and we can now track task space trajectories Xd(t).
BUT Ja(q) must be non-singular.
In some cases, Jacobian pseudoinverses may be used.
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