
ME 599/699 Robot Modeling & Control
Fall 2021

Optimal Control

Hasan A. Poonawala

Department of Mechanical Engineering
University of Kentucky

Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

ME 599/699 Robot Modeling & Control

https://www.engr.uky.edu/~hap


Optimal Control

In continuous time, we have

min J(q(t), u(t))

subject to q(t) satisfies dynamics and state constraints

u(t) satisfies input constraints

We may also formulate discrete time versions of this problem.
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(Generalized) Linear Quadratic Regulator

For optimal control problems where

I time is discrete,

I the dynamics are linear, and

I the cost function is quadratic in state and control,

the optimal control problem may be solved in a straightforward
way.

These slides are inspired by Sergey Levine’s slides.
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(Generalized) Linear Quadratic Regulator

At each time t ∈ {0, 1, 2, . . . ,T}, we have

xt+1 = At
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Consider a finite time horizon t ∈ {0, 1, 2, . . . ,T}.
Let

J =
T∑
t=0

ct(xt , ut)
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Focus on T

At time T , we have only one decision to make: pick uT .

The cost of doing so is exactly cT (xT ,uT )

The cost for the first T − 1 time steps are some value that is
effectively constant at time T , so that the total cost will be
QT (xT ,uT )

QT (xT ,uT ) = const +
1
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Optimize at T

To find the best uT , we minimize that expression.

It’s gradient w.r.t. uT is

∇uTQT (xT , uT ) = xTT CxT ,uT + uTTCuT ,uT + cTuT , where

CT =

[
CxT ,xT CxT ,uT

CxT ,uT CuT ,uT

]
, cT =

[
cxT
cuT

]
.

Setting ∇uTQT (xT , uT ) = 0 we obtain

uT = −C−1
uT ,uT (CxT ,uT xT + cuT ) = KTxT + kT ,

which is a linear (well, affine) feedback control.
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Cutting to the Chase

I To cut a long story short,

QT (xT ,uT ) = QT (xT ,KTxT+kT ) = V (xT ) = xTTVTxT+xTTvT ,

for some appropriate matrix VT and vT that depends on the
problem’s parameters.

I Because the dynamics are linear, and costs are quadratic, the
same thing repeats at t = T − 1

QT−1(xT−1,uT−1) = const + cT−1(xT−1,uT−1) + V (xT )

= const + cT−1(xT−1,uT−1)

+ V

(
AT−1

[
xT−1

uT−1

]
+ aT−1

)
= Quadratic(xT−1,uT−1)

I The optimal control at t = T − 1 will be linear, and so on

I This nice structure persists till t = 0
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Optimal Control

This procedure nicely illustrates some of the core ideas

1. Solve for the best control by moving backwards in time

2. By building up an estimate of the cost-to-go (V )

3. The function Qt(xt ,ut) is known as the Q-function in
reinforcement learning

4. V is the value function (we minimize, RL maximizes)
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Optimal Control

I The core method was a constructive approach:
Solve quadratic optimizations at each step to build VT

I Instead, some approaches compute VT/V (t) directly
(Hamilton-Jacobi-Bellman equations)

I These methods require knowing dynamics and reward
functions
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Reinforcement Learning

I What if we don’t know cost cT , dynamics xT+1 = f (xT , uT )?

I We can’t ‘solve’ for control from known models

I We must instead learn from a stream of experience data

I Main challenge is in trading-off learning and optimizing
(exploration-exploitation trade-off)
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RL Basics

I Two major steps in learning from experience:

I Policy Evaluation: How do we evaluate a choice for actions
(called policy π)?

I Policy Improvement: How do we improve the policy?

I Two basic philosophies:

I Model-based: Build models of dynamics and rewards form
data, ‘solve’ to improve/evaluate at the same time.

I Model-free: Maintain policy π and value V using data
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RL Algorithms

Terms you will come across

I Policy Iteration: Evaluate policy π to get V (π), improve
policy using V (π)
(many variations for both steps)

I Value iteration: Learn value function V directly

I Monte Carlo (REINFORCE, AlphaGo)

I Temporal differences (Q-Learning / SARSA )

I Policy gradients (PPO, SAC)

I Optimization (TRPO, iLQR)
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Deep RL and Robotics

I Model-free Deep RL helps escape modeling challenges in
robot control

I V , Q, π are deep neural networks (challenging in continuous
spaces)

I Zoo of approaches (PPO, SAC, MBPO, DDPG)

I Learn in sim, fine-tune in reality, or robustify

I Most successful approaches use low-level position-based
control (impedance or otherwise) on position-based tasks
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Caution

I State-of-the-Art is extremely hard to evaluate:

I new papers out every week
I videos/sims are always impressive
I same trick as robotics: show only the few working cases
I often rely on well-tuned low-level controllers or unrealistic

amounts of training data

I Most papers are opaque about how much human engineering
is involved

I My opinion: use to choose controller, not to design control

I My lab: learn NN models from data, design correct controllers
for such models
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