ME 599/699 Robot Modeling & Control Fall 2021

Optimal Control

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

ME 599/699 Robot Modeling & Control

In continuous time, we have

min J(q(t), u(t))subject to q(t) satisfies dynamics and state constraints u(t) satisfies input constraints

We may also formulate discrete time versions of this problem.

(Generalized) Linear Quadratic Regulator

For optimal control problems where

- time is discrete,
- the dynamics are linear, and
- the cost function is quadratic in state and control,

the optimal control problem may be solved in a straightforward way.

These slides are inspired by Sergey Levine's slides.

(Generalized) Linear Quadratic Regulator

At each time $t \in \{0, 1, 2, \dots, T\}$, we have

$$\mathbf{x}_{t+1} = A_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{a}_t; \quad c_t(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Consider a finite time horizon $t \in \{0, 1, 2, ..., T\}$. Let

$$J=\sum_{t=0}^{I}c_t(x_t,u_t)$$

ME 599/699 Robot Modeling & Control

Focus on T

At time T, we have only one decision to make: pick u_T .

Focus on T

At time T, we have only one decision to make: pick u_T .

The cost of doing so is exactly $c_T(\mathbf{x}_T, \mathbf{u}_T)$

Focus on T

At time T, we have only one decision to make: pick u_T .

The cost of doing so is exactly $c_T(\mathbf{x}_T, \mathbf{u}_T)$

The cost for the first T - 1 time steps are some value that is effectively constant at time T, so that the total cost will be $\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T)$

$$\mathbf{Q}_{T}(\mathbf{x}_{T},\mathbf{u}_{T}) = \operatorname{const} + \frac{1}{2} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{C}_{T} \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix} + \begin{bmatrix} \mathbf{x}_{T} \\ \mathbf{u}_{T} \end{bmatrix}^{T} \mathbf{c}_{T}$$

Optimize at T

To find the best $u_{\mathcal{T}},$ we minimize that expression.

It's gradient w.r.t. $\mathbf{u}_{\mathcal{T}}$ is

$$\nabla_{\mathbf{u}_{T}} \mathbf{Q}_{T}(\mathbf{x}_{T}, u_{T}) = \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} + u_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} + \mathbf{c}_{\mathbf{u}_{T}}^{T}, \text{ where}$$
$$\mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} & \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \end{bmatrix}, \quad \mathbf{c}_{T} = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_{T}} \\ \mathbf{c}_{\mathbf{u}_{T}} \end{bmatrix}.$$

Optimize at *T*

To find the best $\mathbf{u}_{\mathcal{T}}$, we minimize that expression.

It's gradient w.r.t. $\mathbf{u}_{\mathcal{T}}$ is

$$\nabla_{\mathbf{u}_{T}} \mathbf{Q}_{T}(\mathbf{x}_{T}, u_{T}) = \mathbf{x}_{T}^{T} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} + u_{T}^{T} \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} + \mathbf{c}_{\mathbf{u}_{T}}^{T}, \text{ where}$$
$$\mathbf{C}_{T} = \begin{bmatrix} \mathbf{C}_{\mathbf{x}_{T}, \mathbf{x}_{T}} & \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} \\ \mathbf{C}_{\mathbf{x}_{T}, \mathbf{u}_{T}} & \mathbf{C}_{\mathbf{u}_{T}, \mathbf{u}_{T}} \end{bmatrix}, \quad \mathbf{c}_{T} = \begin{bmatrix} \mathbf{c}_{\mathbf{x}_{T}} \\ \mathbf{c}_{\mathbf{u}_{T}} \end{bmatrix}.$$

Setting $abla_{u_{\mathcal{T}}} Q_{\mathcal{T}}(x_{\mathcal{T}}, u_{\mathcal{T}}) = 0$ we obtain

$$\mathbf{u}_{\mathcal{T}} = -\mathbf{C}_{\mathbf{u}_{\mathcal{T}},\mathbf{u}_{\mathcal{T}}}^{-1}\left(\mathbf{C}_{\mathbf{x}_{\mathcal{T}},\mathbf{u}_{\mathcal{T}}}\mathbf{x}_{\mathcal{T}} + \mathbf{c}_{\mathbf{u}_{\mathcal{T}}}\right) = \mathbf{K}_{\mathcal{T}}\mathbf{x}_{\mathcal{T}} + \mathbf{k}_{\mathcal{T}},$$

which is a linear (well, affine) feedback control.

ME 599/699 Robot Modeling & Control

To cut a long story short,

 $\mathbf{Q}_{T}(\mathbf{x}_{T},\mathbf{u}_{T}) = \mathbf{Q}_{T}(\mathbf{x}_{T},\mathbf{K}_{T}\mathbf{x}_{T}+\mathbf{k}_{T}) = V(\mathbf{x}_{T}) = \mathbf{x}_{T}^{T}\mathbf{V}_{T}\mathbf{x}_{T}+\mathbf{x}_{T}^{T}\mathbf{v}_{T},$

for some appropriate matrix $\bm{V}_{\mathcal{T}}$ and $\bm{v}_{\mathcal{T}}$ that depends on the problem's parameters.

To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix $\bm{V}_{\mathcal{T}}$ and $\bm{v}_{\mathcal{T}}$ that depends on the problem's parameters.

Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\begin{aligned} \mathbf{Q}_{\mathcal{T}-1}(\mathbf{x}_{\mathcal{T}-1},\mathbf{u}_{\mathcal{T}-1}) &= \operatorname{const} + c_{\mathcal{T}-1}(\mathbf{x}_{\mathcal{T}-1},\mathbf{u}_{\mathcal{T}-1}) + V(\mathbf{x}_{\mathcal{T}}) \\ &= \operatorname{const} + c_{\mathcal{T}-1}(\mathbf{x}_{\mathcal{T}-1},\mathbf{u}_{\mathcal{T}-1}) \\ &+ V\left(A_{\mathcal{T}-1}\begin{bmatrix}\mathbf{x}_{\mathcal{T}-1}\\\mathbf{u}_{\mathcal{T}-1}\end{bmatrix} + a_{\mathcal{T}-1}\right) \\ &= \operatorname{Quadratic}(\mathbf{x}_{\mathcal{T}-1},\mathbf{u}_{\mathcal{T}-1}) \end{aligned}$$

To cut a long story short,

$$\mathbf{Q}_{T}(\mathbf{x}_{T},\mathbf{u}_{T}) = \mathbf{Q}_{T}(\mathbf{x}_{T},\mathbf{K}_{T}\mathbf{x}_{T}+\mathbf{k}_{T}) = V(\mathbf{x}_{T}) = \mathbf{x}_{T}^{T}\mathbf{V}_{T}\mathbf{x}_{T}+\mathbf{x}_{T}^{T}\mathbf{v}_{T},$$

for some appropriate matrix $\bm{V}_{\mathcal{T}}$ and $\bm{v}_{\mathcal{T}}$ that depends on the problem's parameters.

Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\begin{aligned} \mathbf{Q}_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) &= \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + V(\mathbf{x}_{T}) \\ &= \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \\ &+ V\left(A_{T-1}\begin{bmatrix}\mathbf{x}_{T-1}\\\mathbf{u}_{T-1}\end{bmatrix} + a_{T-1}\right) \\ &= \operatorname{Quadratic}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \end{aligned}$$

• The optimal control at t = T - 1 will be linear, and so on

To cut a long story short,

$$\mathbf{Q}_T(\mathbf{x}_T, \mathbf{u}_T) = \mathbf{Q}_T(\mathbf{x}_T, \mathbf{K}_T \mathbf{x}_T + \mathbf{k}_T) = V(\mathbf{x}_T) = \mathbf{x}_T^T \mathbf{V}_T \mathbf{x}_T + \mathbf{x}_T^T \mathbf{v}_T,$$

for some appropriate matrix $\bm{V}_{\mathcal{T}}$ and $\bm{v}_{\mathcal{T}}$ that depends on the problem's parameters.

Because the dynamics are linear, and costs are quadratic, the same thing repeats at t = T - 1

$$\begin{aligned} \mathbf{Q}_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) &= \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) + V(\mathbf{x}_{T}) \\ &= \operatorname{const} + c_{T-1}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \\ &+ V\left(A_{T-1}\begin{bmatrix}\mathbf{x}_{T-1}\\\mathbf{u}_{T-1}\end{bmatrix} + a_{T-1}\right) \\ &= \operatorname{Quadratic}(\mathbf{x}_{T-1}, \mathbf{u}_{T-1}) \end{aligned}$$

The optimal control at t = T - 1 will be linear, and so on
This nice structure persists till t = 0

ME 599/699 Robot Modeling & Control

This procedure nicely illustrates some of the core ideas

1. Solve for the best control by moving backwards in time

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)
- 3. The function $Q_t(\mathbf{x}_t, \mathbf{u}_t)$ is known as the *Q*-function in reinforcement learning

This procedure nicely illustrates some of the core ideas

- 1. Solve for the best control by moving backwards in time
- 2. By building up an estimate of the cost-to-go (V)
- 3. The function $Q_t(\mathbf{x}_t, \mathbf{u}_t)$ is known as the *Q*-function in reinforcement learning
- 4. V is the value function (we minimize, RL maximizes)

 The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T

- The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T
- Instead, some approaches compute V_T/V(t) directly (Hamilton-Jacobi-Bellman equations)

- The core method was a constructive approach: Solve quadratic optimizations at each step to build V_T
- Instead, some approaches compute V_T/V(t) directly (Hamilton-Jacobi-Bellman equations)
- These methods require knowing dynamics and reward functions

• What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?

- What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- We can't 'solve' for control from known models

- What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- We can't 'solve' for control from known models
- ▶ We must instead learn from a stream of experience data

- What if we don't know cost \mathbf{c}_T , dynamics $x_{T+1} = f(x_T, u_T)$?
- We can't 'solve' for control from known models
- We must instead learn from a stream of experience data
- Main challenge is in trading-off learning and optimizing (exploration-exploitation trade-off)

Two major steps in learning from experience:

• Two major steps in learning from experience:

Policy Evaluation: How do we evaluate a choice for actions (called policy π)?

Two major steps in learning from experience:

Policy Evaluation: How do we evaluate a choice for actions (called policy π)?

Policy Improvement: How do we improve the policy?

• Two major steps in learning from experience:

- Policy Evaluation: How do we evaluate a choice for actions (called policy π)?
- Policy Improvement: How do we improve the policy?
- Two basic philosophies:

Two major steps in learning from experience:

Policy Evaluation: How do we evaluate a choice for actions (called policy π)?

Policy Improvement: How do we improve the policy?

- Two basic philosophies:
 - Model-based: Build models of dynamics and rewards form data, 'solve' to improve/evaluate at the same time.

Two major steps in learning from experience:

Policy Evaluation: How do we evaluate a choice for actions (called policy π)?

Policy Improvement: How do we improve the policy?

- Two basic philosophies:
 - Model-based: Build models of dynamics and rewards form data, 'solve' to improve/evaluate at the same time.
 - Model-free: Maintain policy π and value V using data

Terms you will come across

Terms you will come across

Policy Iteration: Evaluate policy π to get V(π), improve policy using V(π) (many variations for both steps)

▶ Value iteration: Learn value function V directly

Terms you will come across

- ▶ Value iteration: Learn value function V directly
- Monte Carlo (REINFORCE, AlphaGo)

Terms you will come across

- ▶ Value iteration: Learn value function V directly
- Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)

Terms you will come across

- ▶ Value iteration: Learn value function V directly
- Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)
- Policy gradients (PPO, SAC)

Terms you will come across

- Policy Iteration: Evaluate policy π to get V(π), improve policy using V(π) (many variations for both steps)
- ▶ Value iteration: Learn value function V directly
- Monte Carlo (REINFORCE, AlphaGo)
- Temporal differences (Q-Learning / SARSA)
- Policy gradients (PPO, SAC)
- Optimization (TRPO, iLQR)

 Model-free Deep RL helps escape modeling challenges in robot control

- Model-free Deep RL helps escape modeling challenges in robot control
- ▶ V, Q, π are deep neural networks (challenging in continuous spaces)

- Model-free Deep RL helps escape modeling challenges in robot control
- ▶ V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)

- Model-free Deep RL helps escape modeling challenges in robot control
- ▶ V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)
- Learn in sim, fine-tune in reality, or robustify

- Model-free Deep RL helps escape modeling challenges in robot control
- ▶ V, Q, π are deep neural networks (challenging in continuous spaces)
- Zoo of approaches (PPO, SAC, MBPO, DDPG)
- Learn in sim, fine-tune in reality, or robustify
- Most successful approaches use low-level position-based control (impedance or otherwise) on position-based tasks

State-of-the-Art is extremely hard to evaluate:

new papers out every week

- new papers out every week
- videos/sims are always impressive

- new papers out every week
- videos/sims are always impressive
- same trick as robotics: show only the few working cases

- new papers out every week
- videos/sims are always impressive
- same trick as robotics: show only the few working cases
- often rely on well-tuned low-level controllers or unrealistic amounts of training data

State-of-the-Art is extremely hard to evaluate:

- new papers out every week
- videos/sims are always impressive
- same trick as robotics: show only the few working cases
- often rely on well-tuned low-level controllers or unrealistic amounts of training data

 Most papers are opaque about how much human engineering is involved

- new papers out every week
- videos/sims are always impressive
- same trick as robotics: show only the few working cases
- often rely on well-tuned low-level controllers or unrealistic amounts of training data
- Most papers are opaque about how much human engineering is involved
- ▶ My opinion: use to choose controller, not to design control

- new papers out every week
- videos/sims are always impressive
- same trick as robotics: show only the few working cases
- often rely on well-tuned low-level controllers or unrealistic amounts of training data
- Most papers are opaque about how much human engineering is involved
- My opinion: use to choose controller, not to design control
- My lab: learn NN models from data, design correct controllers for such models