# ME 599/699 Robot Modeling \& Control Fall 2021 

## Motion Planning II

Hasan A. Poonawala<br>Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

## Potential Function Methods



Motion Planning Problem

## Potential Function Methods



Simplified Problem

## Potential Function Methods



## Potential Function Methods



Choose potential function $U(q)=\left\|q-q_{g}\right\|^{2}$

## Potential Function Methods



Level sets of $U(q)$ are circles, gradients are perpendicular to level sets

## Potential Function Methods



Gradient steps generate a sequence of points

## Potential Function Methods



Clearly this solution is invalid. Need to add a term to handle obstacles

## Potential Function Methods



Our potential is the sum of the potential $U_{\text {attr }}(q)$ due to the goal and $U_{\text {rep }}(q)$ due to the obstacle

## Potential Function Methods



The negative gradient $-\nabla U_{\text {attr }}(q)$ pulls us to goal, $-\nabla U_{\text {rep }}(q)$ pushes us away from obstacle, their sum is the blue arrow.

## Potential Function Methods



Repeating this process after every step along the blue arrows generates a sequence.

## Potential Function Methods



Scaling $U_{\text {attr }}(q)$, which scales its gradient, pulls path closer to the obstacle.

## Potential Function Methods



Next step: convert sequence of nodes/configurations into a trajectory.

## Full Trajectory

- PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.


## Full Trajectory

- PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.
- To get a full trajectory, we need to use a local planner to convert an edge in the graph to a trajectory.


## Full Trajectory

- PRM, RRT, Potential-functions etc generate a sequence of configurations/nodes; a path in a graph.
- To get a full trajectory, we need to use a local planner to convert an edge in the graph to a trajectory.
- Essentially, we will fit parametrized functions of time to pairs of points.


## Polynomial Blends

Let two nodes in the sequence by $q_{1}$ and $q_{2}$, where we want the trajectory to pass through them at $t_{1}$ and $t_{2}\left(>t_{1}\right)$ respectively

## Polynomial Blends

Let two nodes in the sequence by $q_{1}$ and $q_{2}$, where we want the trajectory to pass through them at $t_{1}$ and $t_{2}\left(>t_{1}\right)$ respectively

Linear interpolation in time provides a simply trajectory

$$
q(t)=q_{1}+\frac{t-t_{1}}{t_{2}-t_{1}}\left(q_{2}-q_{1}\right)=a_{1} t+a_{0}
$$

where

$$
a_{0}=\frac{q_{1} t_{2}-q_{2} t_{1}}{t_{2}-t_{1}}, \quad a_{1}=\frac{q_{2}-q_{1}}{t_{2}-t_{1}} .
$$

This interpolation satisfies $q\left(t_{1}\right)=q_{1}, q\left(t_{2}\right)=q_{2}$

## Polynomial Blends

Let two nodes in the sequence by $q_{1}$ and $q_{2}$, where we want the trajectory to pass through them at $t_{1}$ and $t_{2}\left(>t_{1}\right)$ respectively

Linear interpolation in time provides a simply trajectory

$$
q(t)=q_{1}+\frac{t-t_{1}}{t_{2}-t_{1}}\left(q_{2}-q_{1}\right)=a_{1} t+a_{0}
$$

where

$$
a_{0}=\frac{q_{1} t_{2}-q_{2} t_{1}}{t_{2}-t_{1}}, \quad a_{1}=\frac{q_{2}-q_{1}}{t_{2}-t_{1}} .
$$

This interpolation satisfies $q\left(t_{1}\right)=q_{1}, q\left(t_{2}\right)=q_{2}$
For $t \in\left[t_{1}, t_{2}\right]$,

$$
\dot{q}(t)=a_{1}=\frac{q_{2}-q_{1}}{t_{2}-t_{1}} .
$$

The velocity is constant during this time interval.

## Polynomial Blends

Take three configurations $q_{1}, q_{2}$, and $q_{3}$. Let times be $t_{1}, t_{2}, t_{3}$.

## Polynomial Blends

Take three configurations $q_{1}, q_{2}$, and $q_{3}$. Let times be $t_{1}, t_{2}, t_{3}$. Use linear interpolation for $q_{1}$ and $q_{2}$ to get a function $q^{a}(t)$, and also for $q_{2}$ and $q_{3}$ to get $q^{b}(t)$.

We know that we will achieve $q^{a}\left(t_{1}\right)=q_{1}, q^{a}\left(t_{2}\right)=q_{2}=q^{b}\left(t_{2}\right)$, and $q^{b}\left(t_{3}\right)=q_{3}$

## Polynomial Blends

Take three configurations $q_{1}, q_{2}$, and $q_{3}$. Let times be $t_{1}, t_{2}, t_{3}$.
Use linear interpolation for $q_{1}$ and $q_{2}$ to get a function $q^{a}(t)$, and also for $q_{2}$ and $q_{3}$ to get $q^{b}(t)$.

We know that we will achieve $q^{a}\left(t_{1}\right)=q_{1}, q^{a}\left(t_{2}\right)=q_{2}=q^{b}\left(t_{2}\right)$, and $q^{b}\left(t_{3}\right)=q_{3}$

However, for $t \in\left[t_{1}, t_{2}\right]$,

$$
\dot{q}^{a}(t)=\frac{q_{2}-q_{1}}{t_{2}-t_{1}}
$$

and for $t \in\left[t_{2}, t_{3}\right]$,

$$
\dot{q}^{b}(t)=\frac{q_{3}-q_{2}}{t_{3}-t_{2}} .
$$

## Polynomial Blends

Take three configurations $q_{1}, q_{2}$, and $q_{3}$. Let times be $t_{1}, t_{2}, t_{3}$.
Use linear interpolation for $q_{1}$ and $q_{2}$ to get a function $q^{a}(t)$, and also for $q_{2}$ and $q_{3}$ to get $q^{b}(t)$.

We know that we will achieve $q^{a}\left(t_{1}\right)=q_{1}, q^{a}\left(t_{2}\right)=q_{2}=q^{b}\left(t_{2}\right)$, and $q^{b}\left(t_{3}\right)=q_{3}$

However, for $t \in\left[t_{1}, t_{2}\right]$,

$$
\dot{q}^{a}(t)=\frac{q_{2}-q_{1}}{t_{2}-t_{1}},
$$

and for $t \in\left[t_{2}, t_{3}\right]$,

$$
\dot{q}^{b}(t)=\frac{q_{3}-q_{2}}{t_{3}-t_{2}} .
$$

Generally, $\dot{q}^{a}\left(t_{2}\right) \neq \dot{q}^{b}\left(t_{2}\right)$. [Why is this bad?]

## Polynomial Blends

To make the velocity continuous at $t_{2}$, maybe we should use quadratic functions for $q^{a}(t)$ and $q^{b}(t)$, and make sure that $\dot{q}^{a}\left(t_{2}\right)=\dot{q}^{b}\left(t_{2}\right)$.

## Polynomial Blends

To make the velocity continuous at $t_{2}$, maybe we should use quadratic functions for $q^{a}(t)$ and $q^{b}(t)$, and make sure that $\dot{q}^{a}\left(t_{2}\right)=\dot{q}^{b}\left(t_{2}\right)$.

We can use higher order polynomials to make acceleration, jerk, snap, and so on continuous at each node.

## Polynomial Blends

To make the velocity continuous at $t_{2}$, maybe we should use quadratic functions for $q^{a}(t)$ and $q^{b}(t)$, and make sure that $\dot{q}^{a}\left(t_{2}\right)=\dot{q}^{b}\left(t_{2}\right)$.

We can use higher order polynomials to make acceleration, jerk, snap, and so on continuous at each node.

We use all these polynomials to define $q(t)$ over the time interval [ $t_{0}, t_{N}$ ] where there are $N+1$ nodes.

## Other Approaches

- Parabolic blends: assume we have to be stopped at node (sensor task/way-station task).
Divide time interval into three intervals: middle has a given velocity $v_{d}$, first and third represent smooth transition from 0 to $v_{d}$ and $v_{d}$ back to 0 .

- Minimum-time parabolic blends: make the transition times $t_{a}-t_{1}$ and $t_{2}-t_{b}$ as short as possible, and $v_{d}$ as high as possible.
- B-Splines, Bezier Curves etc.


## Summary

- Use graph search to find a path - CS approach


## Summary

- Use graph search to find a path - CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)


## Summary

- Use graph search to find a path - CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)
- Challenge: converting graph to continuous trajectory (Polynomials, parabolic, splines, etc)


## Summary

- Use graph search to find a path - CS approach
- Challenge: converting continuous state space to graph (PRM, RRT, etc)
- Challenge: converting graph to continuous trajectory (Polynomials, parabolic, splines, etc)
- Challenge: implementing continuous trajectory (feedback control \& state estimation)

