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Uncertain State

Instead of saying our state x has a specific value, say

x =

[
1

3.4

]
,

we say that the state is a random variable X with
continuous/discrete probability distribution pX(x).

If X is discrete, then the probability that our random variable X
has value x is pX(x) = Pr(X = x)

For example, let X be a random variable that can have integer
values.
Then, we can speak of the probability that X = 4, or X = 19283,
denoted as pX(4) and pX(19283) respectively.
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Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we
therefore model it as a random variable with possible values
{H,T}

We describe this random variable C using the probability
distribution function

pC =

{
p if C = H

1− p if C = T

A fair coin has p = 0.5, otherwise the coin is biased.

Similarly, a dice D has six outcomes {1, 2, 3, 4, 5, 6}, and we use
five numbers to describe the uncertainty in single rolls of a dice.

ME 599/699 Robot Modeling & Control



Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we
therefore model it as a random variable with possible values
{H,T}

We describe this random variable C using the probability
distribution function

pC =

{
p if C = H

1− p if C = T

A fair coin has p = 0.5, otherwise the coin is biased.

Similarly, a dice D has six outcomes {1, 2, 3, 4, 5, 6}, and we use
five numbers to describe the uncertainty in single rolls of a dice.

ME 599/699 Robot Modeling & Control



Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we
therefore model it as a random variable with possible values
{H,T}

We describe this random variable C using the probability
distribution function

pC =

{
p if C = H

1− p if C = T

A fair coin has p = 0.5, otherwise the coin is biased.

Similarly, a dice D has six outcomes {1, 2, 3, 4, 5, 6}, and we use
five numbers to describe the uncertainty in single rolls of a dice.

ME 599/699 Robot Modeling & Control



Uncertain State

When x is continuous, like a real-valued vector, we describe the
uncertainty in its value using a probability density function.

A common situation is when x is a real number.

We may ask: what is the probability that the random variable X
has a specific value x ∈ R?
Usually, pX(x) = Pr(X = x) = 0.

Instead of x having a specific value, we ask whether x belongs to
a set.

Consider the real interval (a, b)
Then,

Pr(X ∈ (a, b)) =

∫ b

a
pX(x)dX
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Gaussian Random Variable
A common probability density function is the Gaussian distribution:

pX(x) =
1

σ
√

2π
exp−

1
2 ( x−µ

σ )
2

.

I µ is the average value of the distribution
I σ is the standard deviation.
I σ2 is called the variance.
I Notation: x ∼ N (µ, σ2)

We can plot this function pX(x):

oA x

pX(x)

1

σ = 1 =⇒ x ∼ N (1, 1)

σ = 1/
√

2 = 0.707 =⇒ x ∼ N (1, 0.5)
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Uncertainty regions

oA x

pX(x)
x ∼ N (1, 0.5) = N (µ, σ2)
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Uncertainty regions

oA x

pX(x)
x ∼ N (1, 0.5) = N (µ, σ2)

a b
Pr(x ∈ (a, b)) =

∫ b
a pX(x)dx = area under curve
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Uncertainty regions

oA x

pX(x)
x ∼ N (1, 0.5) = N (µ, σ2)

ba
b − a = 1.0

ME 599/699 Robot Modeling & Control



Uncertainty regions

oA x

pX(x)
x ∼ N (1, 0.5) = N (µ, σ2)

ba
b − a = 1.0

Same interval, larger probability when centered at µ
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Uncertainty Regions

oA x

pX(x)
x ∼ N (1, 0.5) = N (µ, σ2)

Consider the interval I (k) = (µ− kσ, µ+ kσ):
length 2kσ centered at µ.

I Pr(x ∈ I (1)) = 0.682 (red)
I Pr(x ∈ I (2)) = 0.954 (red + green)
I Pr(x ∈ I (3)) = 0.997 (red + green + orange)
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Multivariate Gaussians

R-valued Gaussian Rn-valued Gaussian

pX(x) 1
σ
√

2π
exp−

1
2 ( x−µ

σ )
2

1

(2π det(Σ))
n
2

exp−
1
2 ((x−µ)T Σ−1(x−µ))

x

I (k)
( x−µ

σ

)2 ≤ k2 (x − µ)TΣ−1(x − µ) ≤ k2

(interval in R ) (ellipse in Rn )

Main takeaway: We represent pX(x) ∼ N (µ,Σ) as an ellipse in X ,
instead of pX(x) vs x .
Center of ellipse ↔ mean µ
Shape/Size of ellipse ↔ Covariance Σ
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