ME 599/699 Robot Modeling & Control Fall 2021

State Uncertainty as Probability Distributions

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

Instead of saying our state x has a specific value, say

$$x = \begin{bmatrix} 1 \\ 3.4 \end{bmatrix},$$

we say that the state is a random variable **X** with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

Instead of saying our state x has a specific value, say

$$x = \begin{bmatrix} 1 \\ 3.4 \end{bmatrix},$$

we say that the state is a random variable **X** with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

If **X** is discrete, then the probability that our random variable **X** has value x is $p_{\mathbf{X}}(x) = \Pr(X = x)$

Instead of saying our state x has a specific value, say

$$x = \begin{bmatrix} 1 \\ 3.4 \end{bmatrix},$$

we say that the state is a random variable **X** with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

If **X** is discrete, then the probability that our random variable **X** has value x is $p_{\mathbf{X}}(x) = \Pr(X = x)$

For example, let ${\boldsymbol{\mathsf{X}}}$ be a random variable that can have integer values.

Then, we can speak of the probability that $\mathbf{X} = 4$, or $\mathbf{X} = 19283$, denoted as $p_{\mathbf{X}}(4)$ and $p_{\mathbf{X}}(19283)$ respectively.

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we therefore **model** it as a random variable with possible values $\{H, T\}$

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we therefore **model** it as a random variable with possible values $\{H, T\}$

We describe this random variable C using the probability distribution function

$$p_C = \begin{cases} p & \text{if } C = H \\ 1 - p & \text{if } C = T \end{cases}$$

A fair coin has p = 0.5, otherwise the coin is biased.

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).

The result of tossing the coin C is unknown in advance, and we therefore **model** it as a random variable with possible values $\{H, T\}$

We describe this random variable C using the probability distribution function

$$p_C = \begin{cases} p & \text{if } C = H \\ 1 - p & \text{if } C = T \end{cases}$$

A fair coin has p = 0.5, otherwise the coin is biased.

Similarly, a dice D has six outcomes $\{1, 2, 3, 4, 5, 6\}$, and we use five numbers to describe the uncertainty in single rolls of a dice.

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability **density** function.

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability **density** function.

A common situation is when \mathbf{x} is a real number.

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability **density** function.

A common situation is when \mathbf{x} is a real number.

We may ask: what is the probability that the random variable **X** has a specific value $x \in \mathbb{R}$? Usually, $p_{\mathbf{X}}(x) = \Pr(X = x) = 0$.

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability **density** function.

A common situation is when \mathbf{x} is a real number.

We may ask: what is the probability that the random variable **X** has a specific value $x \in \mathbb{R}$? Usually, $p_{\mathbf{X}}(x) = \Pr(X = x) = 0$.

Instead of x having a specific value, we ask whether x belongs to a set.

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability **density** function.

A common situation is when \mathbf{x} is a real number.

We may ask: what is the probability that the random variable **X** has a specific value $x \in \mathbb{R}$? Usually, $p_{\mathbf{X}}(x) = \Pr(X = x) = 0$.

Instead of x having a specific value, we ask whether x belongs to a set.

Consider the real interval (a, b)Then,

$$\Pr(X \in (a, b)) = \int_a^b p_{\mathbf{X}}(x) dX$$

Gaussian Random Variable

A common probability density function is the Gaussian distribution:

$$\rho_{\mathbf{X}}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- μ is the average value of the distribution
- $\bullet \sigma_{\rm i}$ is the standard deviation.
- σ^2 is called the variance.
- Notation: $x \sim \mathcal{N}(\mu, \sigma^2)$

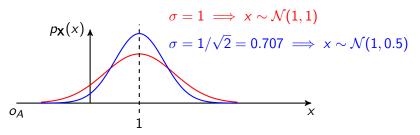
Gaussian Random Variable

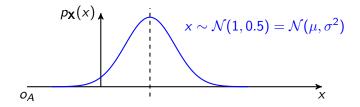
A common probability density function is the Gaussian distribution:

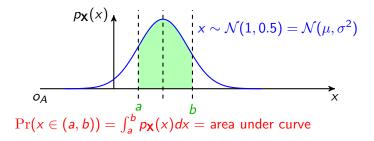
$$p_{\mathbf{X}}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

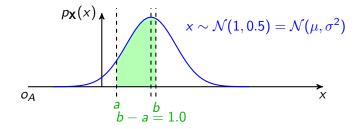
μ is the average value of the distribution
 σ is the standard deviation.
 σ² is called the variance.
 Notation: x ~ N(μ, σ²)

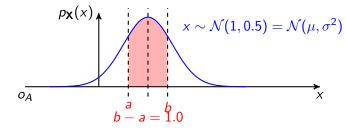
We can plot this function $p_{\mathbf{X}}(x)$:



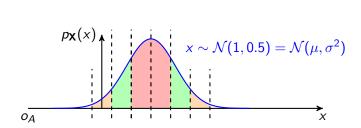








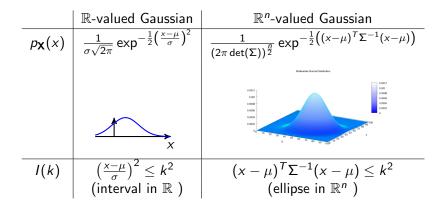
Same interval, larger probability when centered at μ



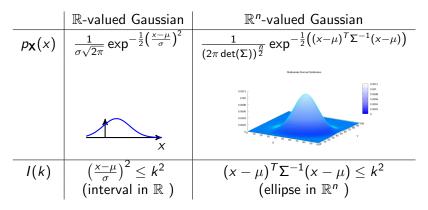
Consider the interval $I(k) = (\mu - k\sigma, \mu + k\sigma)$: length $2k\sigma$ centered at μ .

$$\Pr(x \in I(1)) = 0.682 \text{ (red)}$$
 $\Pr(x \in I(2)) = 0.954 \text{ (red + green)}$
 $\Pr(x \in I(3)) = 0.997 \text{ (red + green + orange)}$

Multivariate Gaussians



Multivariate Gaussians



Main takeaway: We represent $p_{\mathbf{X}}(x) \sim \mathcal{N}(\mu, \Sigma)$ as an ellipse in X, instead of $p_{\mathbf{X}}(x)$ vs x. Center of ellipse \leftrightarrow mean μ Shape/Size of ellipse \leftrightarrow Covariance Σ