ME 599/699 Robot Modeling \& Control Fall 2021

State Uncertainty as Probability Distributions

Hasan A. Poonawala
Department of Mechanical Engineering University of Kentucky
Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Uncertain State

Instead of saying our state x has a specific value, say

$$
x=\left[\begin{array}{c}
1 \\
3.4
\end{array}\right],
$$

we say that the state is a random variable \mathbf{X} with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

Uncertain State

Instead of saying our state x has a specific value, say

$$
x=\left[\begin{array}{c}
1 \\
3.4
\end{array}\right],
$$

we say that the state is a random variable \mathbf{X} with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

If \mathbf{X} is discrete, then the probability that our random variable \mathbf{X} has value x is $p_{\mathbf{X}}(x)=\operatorname{Pr}(X=x)$

Uncertain State

Instead of saying our state x has a specific value, say

$$
x=\left[\begin{array}{c}
1 \\
3.4
\end{array}\right]
$$

we say that the state is a random variable \mathbf{X} with continuous/discrete probability distribution $p_{\mathbf{X}}(x)$.

If \mathbf{X} is discrete, then the probability that our random variable \mathbf{X} has value x is $p_{\mathbf{X}}(x)=\operatorname{Pr}(X=x)$

For example, let \mathbf{X} be a random variable that can have integer values.
Then, we can speak of the probability that $\mathbf{X}=4$, or $\mathbf{X}=19283$, denoted as $p_{\mathbf{X}}(4)$ and $p_{\mathbf{X}}(19283)$ respectively.

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).
The result of tossing the coin C is unknown in advance, and we therefore model it as a random variable with possible values $\{H, T\}$

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).
The result of tossing the coin C is unknown in advance, and we therefore model it as a random variable with possible values $\{H, T\}$

We describe this random variable C using the probability distribution function

$$
p_{C}= \begin{cases}p & \text { if } C=H \\ 1-p & \text { if } C=T\end{cases}
$$

A fair coin has $p=0.5$, otherwise the coin is biased.

Example: Coin Toss

A coin toss has two outcomes: heads (H) or tails (T).
The result of tossing the coin C is unknown in advance, and we therefore model it as a random variable with possible values $\{H, T\}$

We describe this random variable C using the probability distribution function

$$
p_{C}= \begin{cases}p & \text { if } C=H \\ 1-p & \text { if } C=T\end{cases}
$$

A fair coin has $p=0.5$, otherwise the coin is biased.
Similarly, a dice D has six outcomes $\{1,2,3,4,5,6\}$, and we use five numbers to describe the uncertainty in single rolls of a dice.

Uncertain State

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability density function.

Uncertain State

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability density function.

A common situation is when \mathbf{x} is a real number.

Uncertain State

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability density function.

A common situation is when \mathbf{x} is a real number.
We may ask: what is the probability that the random variable \mathbf{X} has a specific value $x \in \mathbb{R}$?
Usually, $p_{\mathbf{X}}(x)=\operatorname{Pr}(X=x)=0$.

Uncertain State

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability density function.

A common situation is when \mathbf{x} is a real number.
We may ask: what is the probability that the random variable \mathbf{X} has a specific value $x \in \mathbb{R}$?
Usually, $p_{\mathbf{X}}(x)=\operatorname{Pr}(X=x)=0$.
Instead of x having a specific value, we ask whether x belongs to a set.

Uncertain State

When \mathbf{x} is continuous, like a real-valued vector, we describe the uncertainty in its value using a probability density function.

A common situation is when \mathbf{x} is a real number.
We may ask: what is the probability that the random variable \mathbf{X} has a specific value $x \in \mathbb{R}$?
Usually, $p_{\mathbf{X}}(x)=\operatorname{Pr}(X=x)=0$.
Instead of x having a specific value, we ask whether x belongs to a set.

Consider the real interval (a, b) Then,

$$
\operatorname{Pr}(X \in(a, b))=\int_{a}^{b} p_{\mathbf{X}}(x) d X
$$

Gaussian Random Variable

A common probability density function is the Gaussian distribution:

$$
p_{\mathbf{X}}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp ^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- μ is the average value of the distribution
- σ is the standard deviation.
- σ^{2} is called the variance.
- Notation: $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

Gaussian Random Variable

A common probability density function is the Gaussian distribution:

$$
p_{\mathbf{X}}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp ^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

- μ is the average value of the distribution
- σ is the standard deviation.
- σ^{2} is called the variance.
- Notation: $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

We can plot this function $p_{\mathbf{X}}(x)$:

Uncertainty regions

Uncertainty regions

Uncertainty regions

Uncertainty regions

Same interval, larger probability when centered at μ

Uncertainty Regions

Consider the interval $I(k)=(\mu-k \sigma, \mu+k \sigma)$: length $2 k \sigma$ centered at μ.

- $\operatorname{Pr}(x \in I(1))=0.682$ (red)
- $\operatorname{Pr}(x \in I(2))=0.954$ (red + green)
- $\operatorname{Pr}(x \in I(3))=0.997$ (red + green + orange $)$

Multivariate Gaussians

	\mathbb{R}-valued Gaussian	\mathbb{R}^{n}-valued Gaussian
$p_{\mathbf{X}}(x)$	$\frac{1}{\sigma \sqrt{2 \pi}} \exp ^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	$\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{\frac{n}{2}}} \exp ^{-\frac{1}{2}\left((x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)}$

Multivariate Gaussians

	\mathbb{R}-valued Gaussian	\mathbb{R}^{n}-valued Gaussian
$p_{\mathbf{X}}(x)$	$\frac{1}{\sigma \sqrt{2 \pi}} \exp ^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	$\frac{1}{(2 \pi \operatorname{det}(\Sigma))^{\frac{\pi}{2}}} \exp ^{-\frac{1}{2}\left((x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)}$
$I(k)$	$\left(\frac{x-\mu}{\sigma}\right)^{2} \leq k^{2}$ $($ interval in $\mathbb{R})$	$(x-\mu)^{T} \Sigma^{-1}(x-\mu) \leq k^{2}$ $\left(\right.$ ellipse in $\left.\mathbb{R}^{n}\right)$

Main takeaway: We represent $p_{\mathbf{X}}(x) \sim \mathcal{N}(\mu, \Sigma)$ as an ellipse in X, instead of $p_{\mathbf{X}}(x)$ vs x.
Center of ellipse \leftrightarrow mean μ
Shape/Size of ellipse \leftrightarrow Covariance Σ

