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State Estimation

Challenge

How do we extract x(t) from our measurements?

There are a few options:

1. Bayesian Inference [Eg. Kalman Filter]

2. Implicitly invert the forward map y(t) = h(x(t)) using
dynamics and history [Eg. Luenberger Observer]

3. Explicitly invert the forward map to get x(t) = h−1(y(t))
[Eg. Encoder-Decoder archs. in ML, Computer Vision]



Bayesian Methods

We consider time to be discrete, corresponding to specific motion
and measurement events.

The state x over some set of time instants 0, 1, 2, . . . , t is
represented by x0:t

We don’t know the true values x0:t , which includes current state xt
and past states.

We represent this lack of certain knowledge by treating xt at each
time t as a random variable.
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Uncertain State

Instead of saying our state x has a specific value, say

x =

[
1

3.4

]
,

we say that the state is a random variable X with
continuous/discrete probability distribution pX(x).

If X is discrete, then the probability that our random variable X
has value x is pX(x) = Pr(X = x)

For example, let X be a random variable that can have integer
values.
Then, we can speak of the probability that X = 4, or X = 19283,
denoted as pX(4) and pX(19283) respectively.
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Multivariate Gaussians
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Main takeaway: We represent pX(x) ∼ N (µ,Σ) as an ellipse in X ,
instead of pX(x) vs x .
Center of ellipse ↔ mean µ
Shape/Size of ellipse ↔ Covariance Σ
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Bayesian Methods
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Bayesian Methods

Main idea: A model of what we expect to measure in a state tells
us how to infer where we are, using measurements.

Bayes’ Rule:

p(state|measurement) =
p(measurement|state)p(state)

p(measurement)

p(x |y) =
p(y |x)p(x)

p(y)

In words: If we express our uncertainty about the state x as p(x),
and we have a model p(y |x) of how measurement y depends on
state x , then we can update our model of uncertain state using a
measurement.

The updated uncertainty is p(state ‘given’ measurement), or
p(x |y), or p(state ‘conditioned on’ measurement)
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Motion Model

Secondary idea: When the robot moves, p(xt) and p(xt+1) should
depend on this motion, even if we never measure anything.

Given an input ut at time t, we need a motion model
p(xt+1|xt , ut)

In summary, we have two types of updates to our model of the
uncertain state:

1. Update due to motion
2. Update due to measurement
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Kalman Filter
The Kalman Filter was developed for discrete-time linear
time-invariant dynamical systems driven by noise:

xt+1 = Axt + But + vt ; yt = Cxt + wt ,

where vt and wt represent zero-mean gaussian noise with
covariances V and W respectively.

I Motion model: xt+1 = Axt + But + vt
I Sensor model: yt = Cxt + wt

p(x0) is assumed to be a Gaussian random variable [only one
peak!]: we have a mean µ0 and covariance matrix Σ0

At time t, p(xt |y0:t ,u0:t−1) will also be Gaussian, and our job is to
come up with an appropriate mean µt and variance Σt using inputs
and measurements.

The Kalman filter equations tell us the best way to combine the
uncertain motion and uncertain measurement, given these models
and noise properties.
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Kalman Filter Algorithm

System :

xt+1 = Axt + But + vt (1)

yt = Cxt + wt (2)

x̂t ∼ N (µt ,Σt),wt ∼ N (0,Rw ), vt ∼ N (0,Rv ) (3)

1. Motion update

µpredt = Aµt + But (4)

Σpred
t = AΣtA

T + Rv (5)

2. Measurement update

Kt = Σpred
t CT

(
CΣpred

t CT + Rw

)−1
(6)

µt+1 = µpredt + K (yt − Cµpredt ) (7)

Σt+1 = (I − KC )Σpred
t (8)



Example: 1D Point Mass KF

System m̈q(t) = u has discrete-time state

xt =

[
qt
vt

]
where vt is the velocity of the mass.

The discrete-time dynamics, with discretization time T is

xt+1 =

[
1 T
0 1

]
xt +

[
0
T
m

]
ut + vt (9)

yt = Cxt + wt (10)

If we measure position, C =
[
1 0

]
.

If we measure velocity, C =
[
0 1

]
.

If we measure both, C =

[
1 0
0 1

]
or C =

[
0 1
1 0

]



Example: 1D Point Mass KF

Performance (Run Julia code on Canvas):

I Measuring position using very noisy sensors won’t work

I Measuring position using decent sensors works well enough

I Measuring velocity with noisy sensors is terrible

I Measuring velocity with decent sensors is better, but still has
the issue of (slow or fast) drift in position over time. This
drift is undetected by the filter.

I Conclusion: we need some form of measurement of position
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Particle Filter

The Kalman filter is a Bayes filter that exploits the linear structure
in the dynamics and measurement model.

It also relies on all distributions remaining Gaussian. [cf. Conjugate
priors]

For the case where the posterior distribution is difficult to describe
using a parametric distribution, particle filters are a widely used
alternative.

The distribution is represented by a set of samples independently
drawn from the distribution.
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Particle Filter: Algorithm

1. Move your samples according to the motion model.

2. Weight samples based on how likely they explain the
measurement

3. Use the weights to resample from the existing set of points.

4. Return the resampled points as the new set of samples.



Luenberger Observer

The general idea is:

We’re given models ẋ = f (x , u), y = h(x).

Simulate a copied version on your computer, using a parameter L:

d

dt
x̂ = f (x̂ , u) + L(y − h(x̂))

Our estimation involves ‘correcting’ the model-based dynamics.

The correction term is the error between reality and the prediction.

Obstacle

How do we choose L? How do we initialize our estimate?
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Luenberger Observer: Analysis

L. Obs, :
d

dt
x̂ = f (x̂ , u) + L(y − h(x̂))

Good estimation (according to control theorists) occurs when

x̂(t)→ x(t) as t →∞.

This property is the same as saying that the origin of system

d

dt
e(t) =

d

dt
x(t)− d

dt
ĥ(t)

be asymptotically stable, where e(t) = x(t)− x̂(t).



Luenberger Observer: Analysis

d

dt
e(t) =

d

dt
x(t)− d

dt
ĥ(t)

= f (x , u)− f̂ (x , u)− L(y − h(x̂))

= f (x , u)− f̂ (x , u)− L(h(x)− h(x̂))

It’s hard to analyze the evolution of e(t) for generic f and h.

However, if our system is linear, we get

d

dt
e(t) = f (x , u)− f̂ (x , u)− L(h(x)− h(x̂))

= Ax + Bu − (Ax̂ + Bu) + L(Cx − Cx̂)

= Ax − Ax̂ + LC (x − x̂)

= (A− LC )(x − x̂)

= (A− LC )e(t)

We just need (A− LC ) to be Hurwitz, then e(t)→ 0
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Luenberger Observer: Design

d

dt
e(t) = (A− LC )e(t)

We just need (A− LC ) to be Hurwitz.

We then implement the observer

d

dt
x̂ = Ax̂ + Bu + L(y − Cx̂).

If our system is nonlinear, we may be able to linearize to design L
and use in an observer, provided e(t) is small enough:

d

dt
x̂ = f (x̂ , u) + L(y − h(x̂)).
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Luenberger Observer: Issues

1. Q: What control u do we use?
I For asymptotic stability, u = −Kx̂ works when (A− BK ) is

Hurwitz
I If we are optimizing a quadratic objective, we get the Linear

Quadratic Gaussian problem, with solution u = −K (t)x̂(t).
I Both cases have a separation principle: can design K and L

separately.

2. For nonlinear systems handled by linearization, we need e(t)
to be small enough for the L to work. Determining how small
is small enough is a separate issue.
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Bayesian Methods

What do we know at time t?

1. A prior distribution p(x0)

2. A history of measurements, y0:t

3. A history of inputs, u0:t−1

What we don’t know is the actual sequence of states that the
robot experienced.

Instead, we consider the conditional probability distribution over
trajectories given the measurements we obtained and the control
actions we took:

p(x0:t |y1:t−1,u1:t).
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Recursive Bayesian Estimation

The distribution p(x0:t |y1:t−1,u1:t) can be complicated.

It may be computed recursively when the state xt is a sufficient
statistic at each t.

In this case, the conditional distribution p(xt |x0:t−1, y1:t−1,u1:t) is
equivalent to p(xt |xt−1, ut).

This distribution captures the dynamics at time t, which are
Markovian.

The conditional distribution p(yt |x0:t−1, y1:t−1,u1:t) is equivalent
to p(yt |xt).

This distribution describes the measurement model.

We often solve problems as if our system is Markovian, even
though we don’t really know if that’s true
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Markovian.

The conditional distribution p(yt |x0:t−1, y1:t−1,u1:t) is equivalent
to p(yt |xt).

This distribution describes the measurement model.

We often solve problems as if our system is Markovian, even
though we don’t really know if that’s true



Bayes Filter

Our estimate of the state x at time t is captured by the distribution

bel(xt) = p(xt |y1:t ,u1:t),

where we assume this distribution at time t is computed after ut is
taken and yt measured. This distribution is our belief about the
state xt .

Bayes’ rule allows us to derive

bel(xt) = ηp(yt |xt)
∫

p(xt |xt−1, ut)bel(xt−1)dxt−1



Bayes Filter: Derivation

p(xt |yt , y1:t−1, u1:t) =
p(yt |xt , y1:t−1,u1:t)p(xt |y1:t−1,u1:t)

p(yt |y1:t−1,u1:t)

=
p(yt |xt)p(xt |y1:t−1,u1:t)

p(yt |y1:t−1,u1:t)

= ηp(yt |xt)p(xt |y1:t−1,u1:t)

= ηp(yt |xt)p(xt |y1:t−1,u1:t)

= ηp(yt |xt)
∫

p(xt |ut , xt−1)p(xt−1|y1:t−1,u1:t−1)dx

bel(xt) = ηp(yt |xt)
∫

p(xt |ut , xt−1)bel(xt−1)dx



Bayes Filter: Alternate Derivation

We have a model p(xt |xt−1, ut). If we know xt−1, ut , then we
could set our motion-based update as bel(xt) = p(xt |xt−1, ut)

When we have uncertainty in xt−1, corresponding to bel(xt−1), we
instead calculate

bel(xt) =

∫
p(xt |xt−1, ut)bel(xt−1)dxt−1

bel(xt) is our new belief distribution for xt We can then apply
Bayes’ rule to the observation yt :

p(xt |yt) =
p(yt |xt)p(xt)

p(yt)
= ηp(yt |xt)bel(xt)
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Kalman Filter
The Kalman Filter was developed for discrete-time linear
time-invariant dynamical systems driven by noise:

xt+1 = Axt + vt ; yt = Cxt + wt ,

where vt and wt represent zero-mean gaussian noise with
covariances V and W respectively.

The first equation is our stochastic dynamics model; the second is
our noisy sensor model

The Bayesian update

bel(xt) = ηp(yt |xt)
∫

p(xt |xt−1, ut)bel(xt−1)dxt−1

are easier to handle for this type of system, so that the Kalman
Filter is often taught to control theorists without informing them
about Bayes’ existence.
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Kalman Filter

We represent bel(xt) using a mean µt = E [xt ] and error
covariance Σt = E

[
(xt+1 − µt)(xt+1 − µt)T

]
.

If xpredt+1 = Axt + vt , then

µpredt+1 = E [xt+1] = E [Axt + vt ]

= AE [xt ] + E [vt ]

= Aµt

The predicted error covariance is then

Σpred
t+1 = E

[
(xt+1 − µpredt+1 )(xt+1 − µpredt+1 )T

]
= E

[
(Axt + vt − Aµt)(Axt + vt − Aµt)

T
]

= AΣtA
T + V
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Kalman Filter
Once we get the measurement yt+1, we then correct the predicted
mean as

µt+1 = µpredt+1 +L(yt+1−Cµpredt+1 ) = (I−LC )µpredt+1 +Lyt+1 = Mµpredt+1 +Lyt+1,

where M = I − LC .

Note that yt+1 = Cxt+1 + wt+1. The error covariance at t + 1 is

Σt+1 = E
[
(xt+1 − µt+1)(xt+1 − µt+1)T

]
= E

[(
xt+1 −Mµpredt+1 − Lyt+1

)(
xt+1 −Mµpredt+1 − Lyt+1

)T]
= E

[(
M(xt+1 − µpredt+1 )− Lwt+1

)(
M(xt+1 − µpredt+1 )

− Lwt+1

)T]



Kalman Filter
Once we get the measurement yt+1, we then correct the predicted
mean as

µt+1 = µpredt+1 +L(yt+1−Cµpredt+1 ) = (I−LC )µpredt+1 +Lyt+1 = Mµpredt+1 +Lyt+1,

where M = I − LC .

Note that yt+1 = Cxt+1 + wt+1. The error covariance at t + 1 is

Σt+1 = E
[
(xt+1 − µt+1)(xt+1 − µt+1)T

]
= E

[(
xt+1 −Mµpredt+1 − Lyt+1

)(
xt+1 −Mµpredt+1 − Lyt+1

)T]
= E

[(
M(xt+1 − µpredt+1 )− Lwt+1

)(
M(xt+1 − µpredt+1 )

− Lwt+1

)T]



Final Error Covariance

Σt+1 = E
[
(xt+1 − µt+1)(xt+1 − µt+1)T

]
= E

[(
xt+1 −Mµpredt+1 − Lyt+1

)(
xt+1 −Mµpredt+1 − Lyt+1

)T]
= E

[(
M(xt+1 − µpredt+1 )

)(
M(xt+1 − µpredt+1 )

)T]
+ E

[
Lwt+1(Lwt+1)T

]
= E

[(
M(xt+1 − µpredt+1 )

)(
M(xt+1 − µpredt+1 )

)T]
+ E

[
Lwt+1(Lwt+1)T

]
= ME

[(
(xt+1 − µpredt+1 )

)(
(xt+1 − µpredt+1 )

)T]
MT

+ LE
[
wt+1(wt+1)T

]
LT

= (I − LC )
(
AΣtA

T + V
)

(I − LC )T + LWLT



Kalman Filter Design

The uncertainty in the error depends on the Kalman Gain L.

The optimal choice of L minimizes the expected norm of the error,
which is equivalent to minimizing the trace of Σt+1.

The gradient of the trace of Σt+1 with respect to L becomes

−2(C (AΣtA + V ))T + 2L
(
C (AΣtA + V )CT + W

)
,

so that the optimal Kalman gain is

L = (AΣtA + V )CT
(
C (AΣtA + V )CT + W

)−1

At which point the covariance Σt+1 becomes

Σt+1 = (I − LC )(AΣtA + V )


