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Simultaneous Localization and Mapping

A robot is typically unable to measure its position.

Instead, it can measure its position in relation to objects in the
world.

Can’t use KF directly to estimate location when we don’t have a
map of objects in the the world.

Without a map, we don’t know what to expect as measurement in
a state (no sensor model).
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The SLAM Problem 

§  SLAM is a chicken-or-egg problem: 
→  a map is needed for localization and  
→  a pose estimate is needed for mapping 
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Feature-Based SLAM 

§  Absolute 
robot poses 

§  Absolute 
landmark 
positions 

§  But only 
relative 
measurements 
of landmarks 
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Feature-Based SLAM  
 Given: 
§  The robot’s controls 

§  Relative observations 
 

 Wanted: 
§  Map of features 

§  Path of the robot 
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Simultaneous Localization and Mapping

SLAM tries to simultaneously make sense of where we think we are
(localization) and what we think we should be seeing (mapping).

Basic idea: Make the map a part of the state.

We can build measurement and motion models for this expanded
state.
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Example: 2D SLAM Non-rotating robot

The robot at (xr , yr ) measures the location of landmarks
li = (lix , liy ) in its frame of reference, which is aligned with the
world axis.

State is x =



xr
yr
l1x
l1y
l2x
l2y
...

lnlx
lnly


where there are nl landmarks.
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Example: 2D SLAM Non-rotating robot

The landmarks are assumed stationary, with robot moving
according to [

xr
yr

]
t+1

=

[
xr
yr

]
t

+ ut + vt

Therefore, A is (2 + 2nl)× (2 + 2nl), the only non-zero elements
being

A1,1 = 1, A2,2 = 1

.

B is (2 + 2nl)× 2, the only non-zero elements being

B1,1 = 1, B2,2 = 1

.
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Example: 2D SLAM Non-rotating robot

If the robot sees all landmarks in its frame, its measurement is

y =


l1x − xr
l1y − yr
l2x − xr
l2y − yr

...


Therefore, C is 2nl × (2 + 2nl):

C =



−1 0 1 0 0 0 . . . 0 0
0 −1 0 1 0 0 . . . 0 0
−1 0 0 0 1 0 . . . 0 0
0 −1 0 0 0 1 . . . 0 0
...

...
...

−1 0 0 0 0 0 . . . 1 0
0 −1 0 0 0 0 . . . 0 1


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Example: 2D SLAM Non-rotating robot

Performance when robot always sees all landmarks (Run Julia

code on Canvas):

I The estimated mean position of each landmark is quite close
to the actual landmark position, relative to other landmarks

I The uncertainty in the landmark position is identical to the
uncertainty in initial position, in the long run
I The robot can treat the landmark as lying within the 3σ ellipse

of the landmark mean. To avoid collision with high probability,
the 3σ ellipse corresponding to its position should lie outside
the landmark’s ellipse.

I The difference between the robot’s true and estimated
location depends on sensor accuracy
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Extended Kalman Filter

For linear systems with gaussian additive noise, the Kalman filter
provides the least uncertain estimate.
When the system is nonlinear:

xt+1 = f (xt , ut) + vt (1)

yt = h(xt) + wt , (2)

use linearization:

At =
∂f

∂x

∣∣∣∣
x=µt

, Bt =
∂f

∂u

∣∣∣∣
u=ut

, Ct =
∂h

∂x

∣∣∣∣
x=µpredt

.

A blind application of Kalman filter updates using At , Bt , and Ct

is not guaranteed to work but often does well in practice.
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Example: 2D SLAM Rotating robot

The inputs are the speed s of the robot along its current heading
direction, and the angular velocity ω.

ut =

[
st
ωt

]
The motion model is now nonlinear:xryr

θr


t+1

=

xryr
θr


t

+

st cos θr
st sin θr
ωt

+ vt = f (xt , ut)

We linearize to get part of the A and B matricesxryr
θr


t+1

=

1 0 − sin θr st
0 1 − cos θr st
0 0 1

xryr
θr


t

+

cos θr 0
sin θr 0

0 1

 ut + vt
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Example: 2D SLAM Rotating robot

The position of a landmark li in the robot’s frame becomes

yi =

[
cos θr − sin θr
sin θr cos θr

] [
lix − xr
liy − yr

]
.

The full measurement y corresponds to stacking the yi s.

The measurement model is nonlinear: y = h(x) 6= Cx for any
matrix C .

As mentioned earlier, we linearize

C =
∂h

∂x

∣∣∣∣
x=µpredt
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Limited Sensing

We’ve assumed that we can see all landmarks at once.

In practice, we can see nearby landmarks.

This limitation creates a data association problem when landmarks
look similar to each other. For example, the entry to an office
cubicle.
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EKF SLAM: Building the Map 

Filter Cycle, Overview: 
 

1.  State prediction (odometry) 
2.  Measurement prediction 
3.  Observation 
4.  Data Association 
5.  Update 
6.  Integration of new landmarks 
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EKF SLAM: Building the Map 

§  State Prediction 

21 

Odometry: 

(skipping time index k) 

Robot-landmark cross-
covariance prediction: 



EKF SLAM: Building the Map 

§  Measurement Prediction 
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Global-to-local 
frame transform h 



EKF SLAM: Building the Map 

§  Observation 
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(x,y)-point landmarks 



Associates predicted 
measurements 
with observation 

EKF SLAM: Building the Map 

§  Data Association 
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? 



EKF SLAM: Building the Map 

§  Filter Update 
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The usual Kalman 
filter expressions  



EKF SLAM: Building the Map 

§  Integrating New Landmarks 
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State augmented by 

Cross-covariances: 



SLAM: Loop Closure 

§  Recognizing an already mapped area, 
typically after a long exploration path (the 
robot "closes a loop”) 

§  Structurally identical to data association, 
but 
§  high levels of ambiguity 
§  possibly useless validation gates 
§  environment symmetries 

§  Uncertainties collapse after a loop closure 
(whether the closure was correct or not) 
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SLAM: Loop Closure 

§  Before loop closure 
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SLAM: Loop Closure 

§  After loop closure 
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SLAM: Loop Closure 

§  By revisiting already mapped areas, 
uncertainties in robot and landmark 
estimates can be reduced 

§  This can be exploited when exploring an 
environment for the sake of better (e.g. 
more accurate) maps 

§  Exploration: the problem of where to 
acquire new information 

→  See separate chapter on exploration 
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KF-SLAM Properties  
(Linear Case) 
§  The determinant of any sub-matrix of the map 

covariance matrix decreases monotonically as 
successive observations are made 

40 [Dissanayake et al., 2001] 

§  When a new land-
mark is initialized, 
its uncertainty is 
maximal 

§  Landmark uncer-
tainty decreases 
monotonically 
with each new 
observation 



KF-SLAM Properties  
(Linear Case) 
§  In the limit, the landmark estimates 

become fully correlated 

41 [Dissanayake et al., 2001] 



KF-SLAM Properties  
(Linear Case) 
§  In the limit, the covariance associated with 

any single landmark location estimate is 
determined only by the initial covariance 
in the vehicle location estimate. 

42 [Dissanayake et al., 2001] 



EKF SLAM Example:  
Victoria Park Dataset 
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Victoria Park: Data Acquisition 

44 [courtesy by E. Nebot] 



Victoria Park: Estimated 
Trajectory 

45 [courtesy by E. Nebot] 



Victoria Park: Landmarks 

46 [courtesy by E. Nebot] 



EKF SLAM Example: Tennis 
Court 

47 [courtesy by J. Leonard] 



EKF SLAM Example: Tennis 
Court 
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odometry estimated trajectory 

[courtesy by John Leonard] 



EKF SLAM Example: Line 
Features 
§  KTH Bakery Data Set 

49 [Wulf et al., ICRA 04] 



EKF-SLAM: Complexity 

§  Cost per step: quadratic in n, the 
number of landmarks: O(n2) 

§  Total cost to build a map with n 
landmarks: O(n3) 

§  Memory consumption: O(n2) 
§  Problem: becomes computationally 

intractable for large maps! 
§  There exists variants to circumvent 

these problems 
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SLAM Techniques 

§  EKF SLAM 
§  FastSLAM 
§  Graph-based SLAM 
§  Topological SLAM 

(mainly place recognition) 
§  Scan Matching / Visual Odometry 

(only locally consistent maps) 
§  Approximations for SLAM: Local submaps, 

Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc. 

§  … 
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EKF-SLAM: Summary 

§  The first SLAM solution 
§  Convergence proof for linear Gaussian 

case 
§  Can diverge if nonlinearities are large 

(and the reality is nonlinear...) 
§  Can deal only with a single mode 
§  Successful in medium-scale scenes 
§  Approximations exists to reduce the 

computational complexity 
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