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Simultaneous Localization and Mapping

A robot is typically unable to measure its position.

Instead, it can measure its position in relation to objects in the
world.

|
Can't use KF directly to estimate location when we don’t have a
map of objects in the the world.

Without a map, we don’t know what to expect as measurement in
a state (no sensor model).

ME 599/699 Robot Modeling & Control



The SLAM Problem

= SLAM is a chicken-or-egg problem:
— a map is needed for localization and
— a pose estimate is needed for mapping




Feature-Based SLAM

= Absolute
robot poses

= Absolute
landmark
positions

Features and Landmarks

Vehicle-Feature Relative
Observation

= But only
relative
measurements
of landmarks

Mobile Vehicle

'h

Global Reference Frame
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Feature-Based SLAM

Given:
= The robot’ s controls

Ul:k :{u13u27"'7uk} .
= Relative observations

Zl:k = {Zl, 22y 7zk}
Wanted:
= Map of features

m={my,my,...,mp}

= Path of the robot
Xy ={z1,22,..., 21}



Simultaneous Localization and Mapping

SLAM tries to simultaneously make sense of where we think we are
(localization) and what we think we should be seeing (mapping).

Basic idea: Make the map a part of the state.

We can build measurement and motion models for this expanded
state.
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Example: 2D SLAM Non-rotating robot

The robot at (x;, y,) measures the location of landmarks
li = (lix, liy) in its frame of reference, which is aligned with the
world axis.

State is x = | /2x | where there are n; landmarks.

/n,x

_/n/y_
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Example: 2D SLAM Non-rotating robot
The landmarks are assumed stationary, with robot moving

according to
], e
Yrltia Yrl

Therefore, A'is (2 +2n;) x (2 + 2ny), the only non-zero elements
being
Arp=1 Axpp=1

B is (2 + 2n;) x 2, the only non-zero elements being

Bii=1 Bp=1
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Example: 2D SLAM Non-rotating robot

If the robot sees all landmarks in its frame, its measurement is

hx — Xy

lly —Yr

y = I2X _XI‘

/2y —Yr

Therefore, C is 2n; x (2 + 2ny):

(-1 0 1 0 0 0 0 0]
0 -1 0100 00
-1 0 0010 00
c=10 -1 0001 0 0
-1 0 00O00O 10
|0 -1 0 0 0 0 0 1]
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Example: 2D SLAM Non-rotating robot

Performance when robot always sees all landmarks (Run Julia
code on Canvas):

» The estimated mean position of each landmark is quite close
to the actual landmark position, relative to other landmarks
» The uncertainty in the landmark position is identical to the
uncertainty in initial position, in the long run
» The robot can treat the landmark as lying within the 3¢ ellipse
of the landmark mean. To avoid collision with high probability,
the 30 ellipse corresponding to its position should lie outside
the landmark’s ellipse.
» The difference between the robot's true and estimated
location depends on sensor accuracy
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Extended Kalman Filter

For linear systems with gaussian additive noise, the Kalman filter
provides the least uncertain estimate.
When the system is nonlinear:

Xe41 = F(Xe, ur) + v¢ (1)
Yt = h(Xt) + We, (2)
use linearization:
of of Oh
Ay = — By = — C, =
t 8X x=pt ’ t au u=ur £ BX pred

A blind application of Kalman filter updates using A, B, and C;
is not guaranteed to work but often does well in practice.
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Example: 2D SLAM Rotating robot

The inputs are the speed s of the robot along its current heading
direction, and the angular velocity w.

St
ug =
Wt

The motion model is now nonlinear:

Xr X, sy cos B,
Yr = |yr| + |sesin0,| + ve=f(xt, ur)
9r t+1 0r ¢ Wt

We linearize to get part of the A and B matrices

X, 1 0 —sinf,s:]| |x cosf, 0
Vr =10 1 —cosfO,s:| |y,| + |sinf, O us+ vt
0, 1 00 1 0, . 0 1
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Example: 2D SLAM Rotating robot

The position of a landmark /; in the robot's frame becomes

_|cosO, —sinO| |lIx — X
Yi= lsing, cosb, ly —yr] "

The full measurement y corresponds to stacking the y;s.

The measurement model is nonlinear: y = h(x) # Cx for any
matrix C.

As mentioned earlier, we linearize

_ oh

_aX:

C
u fred
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Limited Sensing

We've assumed that we can see all landmarks at once.
In practice, we can see nearby landmarks.
This limitation creates a data association problem when landmarks

look similar to each other. For example, the entry to an office
cubicle.
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EKF SLAM: Building the Map

Filter Cycle, Overview:

o u ke

State prediction (odometry)
Measurement prediction
Observation

Data Association kW
Update

Integration of new landmarks
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EKF SLAM: Building the Map

» State Prediction Odometry:
}ACR = f(XR7u)
& Cr=F,CrFY +F,UFT

Robot-landmark cross-
covariance prediction:
Cru; = F; Cruy,

(skipping time index k)

XR Cr Crvy Crm, -+ Crum,

my Cwuyr  Cumy  Cuym, -+ Cwmym,
xp = | M2 Cp=| Cmr Cmomy Cuy o+ Cupm,

m, |, Cv.r Cwum.my Cumam, -+ Cwu,

k
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EKF SLAM: Building the Map

= Measurement Prediction

[

Xk =

a Global-to-local
frame transform #

/

a 2 = h(ky)

Cr  CryMy Crum, Crum,

Cmir Cumy Cmymy -+ Cumym,

Cp=| Cmar Cvomy Cry o+ Cpm,
Cu,r Cuamy Crmam, -+ Cm, |y

22



EKF SLAM: Building the Map

= Observation (x,y)-point landmarks
Lk "
) N
: Zk = :c; - [ Z; ]

Y2

J__ | G“a Ry = [ Zf)l }22 }

XR Cr Crvy Crm, -+ OCru,
my Cmir Cumy Cmymy -+ Cumym,

xp = | M2 Cp=| Cmar Cvomy Cry o+ Cpm,
m, |, Cu,r Cuamy Crmam, -+ Cm, |y
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EKF SLAM: Building the Map

. .- - -
Data Association Associates predicted
measurements zj
% with observation zj,
= e
SY = RL+H'C HT
L o
XR Cr  Crmy Crm, -+ Crum,
m; Cwuyr  Cumy  Cuym, -+ Cwmym,
xp = | M2 Co=| Omr Cuomy  Cum, -+ Cipm,
n;n C}\/.!,.R CM;.M; CM..,M;, CM X
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EKF SLAM: Building the Map
» Filter Update

[

Xk =

XR
my
my

The usual Kalman
6 filter expressions

K = ék HTSk_l

g X, =X + K v
Cp = (I — K H)Cy

&

Cr  CrMy, Crm, -+ Cgru,

Cur Cvy  Cmm, -+ Cuym,

C.=| Cmr Cuomy Cum, - Cipm,
Cm,r Cm,m, Cwum,m, -+ OCn,
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EKF SLAM: Building the Map

» Integrating New Landmarks
State augmented by

* myy1 = g(XR; Z;)

CMn+1 :GRCRG§+GZRJGZ

g Cross-covariances:
‘ "‘.' CM",+1Mi = GR CVRMnL
a CM,s1r =GRCR

Cru,  CrMuis

XR Cr Cry Crm, -
m; CMl R CM1 CM] Ms . CM1 M, CM1 Mpia
my Cvmzr Cumpmy Cv;  + Cmpm, Cmpm,,
Xp = . Cr= . . . . .
Cu,r Cm,my,  Cumym, Chu,, CM, M,
Crirty - Oyt Cunn |y 56

m,
myy1 |, CroiR COMpyiiny



SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot "closes a loop”)

= Structurally identical to data association,
but
= high levels of ambiguity
= possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)
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SLAM: Loop Closure

= Before loop closure

Y
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.g.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties

(Linear Case)

* The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

2t = When a new land-
mark is initialized,
its uncertainty is
maximal

= |Landmark uncer-
tainty decreases
monotonically
with each new

R ———" — observation

o
T

Standard Deviation in X (m)
T

iy
i

L n L
60 70 80 90

R—— " [Dissanayake et al., 2001] 4o

gl ]
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KF-SLAM Properties
(Linear Case)

= In the limit, the l[andmark estimates
become fully correlated

[Dissanayake et al., 2001] 44



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
in the vehicle location estimate.

© ¢
> = &
"

[Dissanayake et al., 2001] 45



EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Data Acquisition

[courtesy by E. Nebot]
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Victoria Park: Estimated
Trajectory

250
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Vlctorla Park: Landmarks

B

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard]
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EKF SLAM Example: Tennis
Court

odometry estimated trajectory

[courtesy by John Leonard] 48



EKF SLAM Example: Line

Features
= KTH Bakery Data Set “[« 7
10 ;?/ 5k :)—yl ” +
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[Wulf et al., ICRA 04] 49



EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of landmarks: O(n2)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n2)

* Problem: becomes computationally
intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
= FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.

51



EKF-SLAM: Summary

= The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge if nonlinearities are large
(and the reality is nonlinear...)

= Can deal only with a single mode
» Successful in medium-scale scenes

= Approximations exists to reduce the
computational complexity
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