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1 MANIFOLDS

1 Manifolds

The essence of a manifold, a type of set, is that you are unable to use a single system of numbers to
consistently describe the whole manifold. You start by choosing one system of numbers (coordinates), but
are then forced to switch to a different system of numbers for describing the manifold.

Example 1. We use latitude φ ∈ [−90◦, 90◦] and longitude θ ∈ (−180◦, 180◦] to describe locations of points
on the Earth, like in GPS systems. One issue is that the North Pole, a single point, has latitude 90◦ but
an infinite set of possible longitude values. Another way to think about this is that points with the same
latitude correspond to a circle, except for φ = ±90◦, where the circle at other latitudes – infinite points –
reduces to point as φ→ ±90◦.

One consequence of this issue is that using the change in latitude and longitude as a proxy for measuring
distance traveled on the Earth’s surface works much better at the Equator than at the poles. If you had to
choose, you would rather ‘circle the world by traveling East-West’ at the poles than at the Equator.

Even if you stay within a limited region of a manifold, in many applications, you may need to deal with
multiple coordinate systems and enforce consistency between coordinate descriptions. For example, you
might want to combine multiple LIDAR sensor readings taken by a robot moving in a room. The room
doesn’t change with the robot’s pose, but the spherical coordinates assigned to things in the room by using
the LIDAR sensor depend on the robot’s pose, since the LIDAR readings are relative to the robot’s frame, not
the room’s. To combine these LIDAR readings into a map of the room requires enforcing consistency between
the multiple descriptions of things in the room. When we describe motion on manifolds, we also need to
develop notions of velocities and accelerations that are consistent with these coordinates, and transformations
between coordinates.

Unfortunately, the price of all this consistency is a steep learning curve.

Definition 1 (Topological Manifold). A manifold M (manifold) is a second-countable Hausdorff topological
space that is locally homeomorphic to Euclidean space Rm. The dimension of the manifold becomes m.

A space is second-countable if every cover has a finite sub-cover. A space is Hausdorff if for any pair of
points we can find two mutually disjoint sets that contain only one of the pair.

Definition 2 (Differentiable Manifold). A manifold M (manifold) is a second-countable Hausdorff topolog-
ical space that is locally diffeomorphic to Euclidean space Rm.

A manifold Q is a second-countable Hausdorff space with a set of compatible charts that cover Q. The
charts are local diffeomorphisms to Rn, the compatibility makes the charts an atlas. One either uses chart
φ to map an open set of Q to its coordinates in Rn, or to assign an open set of points on the manifold to an
open set of Rn, which effectively defines coordinates.

Example 2 (Euclidean Space Rn). Every finite-dimensional Euclidean space Rn is a topological manifold.
The identity map is a trivial homeomorphism (and diffeomorphism) mapping this manifold to Rn, that is,
m = n.

1.1 Coordinates

The notion of the differentiable manifold being locally diffeomorphic to Rm means that there is a differentiable
bijective map ϕ:U 7→ Rm where U ⊂ M is an open subset of M . Since the range space of ϕ is Rm, the
diffeomorphism ϕ is assigning m-dimensional coordinates to points on the manifold. These m-dimensional
coordinates are sometimes referred to as intrinsic coordinates. We can perform operations on points in U
through operations on their intrinsic coordinates. This indirect operation makes sense precisely because ϕ
is smooth and bijective.

Example 3 (Coordinates for Euclidean Space). Recall that we can describe points in Euclidean space
without using coordinates, but to perform computations we assigned coordinates by choosing a frame. That
frame can be chosen in many ways, with consistency achieved using homogenous transformations. Note that
since we assign coordinates to points in a Euclidean space, a single frame assigns unique coordinates to all
points in Euclidean space. By contrast, we can’t assign a unique latitude and longitude to all points on the
Earth.
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1.2 Embedded Manifolds 1 MANIFOLDS

Manifolds locally look like Euclidean space Rm, but they do not behave like Rm in a global sense. One
consequence of this behavior is that one cannot always assign global coordinates to a manifold, that is, one
cannot assign a unique vector Rm to every point of M and still perform meaningful calculations. The lack
of global coordinates is often why we consider embedded manifolds, where we can use the coordinates Rn
together with the constraints hi to perform calculations.

1.2 Embedded Manifolds

For our purposes, we consider manifolds that are embedded submanifolds. We use l constraints on Rn to
specify M , where l < n. Each constraint is represented by a smooth function hi:Rn → R, so that

(1)M = {x ∈ Rn:hi(x) = 0,∀i ∈ {1, . . . , l}}

If a point x ∈ Rn belongs to the manifold M , then x is said to be the extrinsic coordinates of that point
on the manifold. The manifold M is said to be embedded in Rn.

Whitney Embedding Theorem An important question is whether there are manifolds for which it is
impossible to define extrinsic coordinates, meaning that these manifolds have a geometry so complex that
they cannot be embedded into any Rn. The answer is that it is always possible to embed a smooth manifold.
Therefore, we can always talk in terms of both extrinsic and intrinsic coordinates for a smooth manifold.

Example 4 (Sphere). We can define the surface S2 of a sphere of radius 1 as an embedded submanifold of
R3 using the constraint x2 + y2 + z2 = 1. That is,

S2 = {(x, y, z) ∈ R3:x2 + y2 + z2 − 1 = 0}
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Figure 1: The surface of the sphere (left) can be mapped to R2 (right) where the x and y axes correspond
to longitude and latitude respectively. Since this mapping is a diffeomorphism, the inverse map exists.

Example 5 (Coordinates for S2). Just as points in Euclidean space can be assigned different coordinates
depending on how we define a reference frame, we may be able to assign multiple coordinates to points on a
Manifold. The main difference is that these coordinates may only work for a subset of the manifold, unlike
Euclidean space.
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1.3 Fibre Bundles 1 MANIFOLDS

One example of coordinates for the surface S2 of a sphere is the longitude φ and latitude θ with respect
to a point p∗ ∈ M corresponding to (φ, θ) = (0, 0) and a great circle (θ = 0) passing through p∗. We can
define the map ϕ:S2 7→ R3 as

x = cos θ cosφ (2)

y = cos θ sinφ (3)

z = sin θ (4)

As required, ϕ is a smooth map. In fact, it is smooth for all values of R2, but is not injective (one-to-one) for
all R2. To make sure that ϕ is a diffeomorphism, we define its domain as −π/2 < θ < π/2 and −π < φ ≤ π.
One can check that indeed x2 + y2 + z2 = 1 for all extrinsic coordinates (x, y, z) corresponding to intrinsic
coordinates (θ, φ).

1.3 Fibre Bundles

A fibre bundle is a space M that is locally a product space, but not globally so. That is, we can decompose
M locally into the Carteisan product B × F , where B is the base space and F is the fibre space.

Specifically, the similarity between a space E and a product space B × F is defined using a
continuous surjective map π:E → B The space E is known as the total space of the fiber bundle,
B as the base space, and F the fiber.

Mappings between total spaces of fiber bundles that “commute” with the projection maps are
known as bundle maps. A bundle map from the base space itself (with the identity mapping as
projection) to E is called a section of E. Fiber bundles can be specialized in a number of ways,
the most common of which is requiring that the transition maps between the local trivial patches
lie in a certain topological group, known as the structure group, acting on the fiber F .

A non-trivial fibre bundle is the decomposition of the Mobius strip into the axial and transverse ‘mani-
folds’. Locally, the bundle is the product R× R, but globally not.

Two important types of fibre bundles are vector bundles and principal bundles. In vector bundles, the
fibres are vector spaces, for example the tangent bundle. In principal bundles, the fibres are groups. For
example, the set of reference frames for the tangent bundle. These two examples shows the concept of
associated bundles, since the reference frame for each fibre of the vector bundle often belongs to a group.

A common application of fibre bundles arises when the base space is the manifold. An example is the
tangent bundle TM of a manifold M , which is itself a manifold. Here, the base space is the manifold M and
the fibre at x ∈M is the tangent space TxM . It is precisely the tangent bundle that is most relevant to us.

1.3.1 Vector Bundles

The fibres are vector spaces, with the additional requirement that the structure group be a linear group. For
our purposes, we will deal with tangent bundles, which are examples of vector bundles. To each x ∈ M we
associate a Euclidean vector space with the same dimensions as M .

1.3.2 Principal Bundles

A principal bundle P is a manifold that formalizes the product of M × G, where G is a group. In our
applications, the principal bundle will consist of products between a manifold and the set of bases we can
assign to the tangent spaces to the manifold.

On each fibre we must have a free and transitive action given by group G, so that each fibre must be a
principal homogenous space. We must have

1. An action by G on P , so that (x, g)h = (x, gh)

2. A projection from P onto M

The bundle is often specified along with the group by referring to it as a principal G-bundle. The group G
is also the structure group of the bundle.
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2 VECTOR SPACES, BASES, COORDINATES

2 Vector Spaces, Bases, Coordinates

Before we proceed to working with tangent vectors/spaces/bundles, we must review the basics of vector
spaces. See Appendix A for a complete development of a vector space from first principles. The main
point here is that a basis B for an n-dimensional vector space V is a collection of n independent vectors
{e1, e2, . . . , en}, each in V , that span the vector space. This spanning property of the basis means that any
vector v ∈ V is a linear combination of the basis vectos with coefficients (α1, α2, . . . , αn).

These coefficients are typically referred to as the components or coordinates of a vector. Formally, v is a
symbol, while [v]B = (α1, α2, . . . , αn) refers to a representation of v with respect to B. However, when the
basis is obvious, we refer to the representation also through symbol v. Therefore, we often see the expression

v︸︷︷︸
formally [v]B

=


α1

α2

. . .
αn

 . (5)

When the basis B is the standard one, this simpler notation works well enough, which is why it is taught as
such in introductory classes.

2.1 Covariant and Contravariant Coordinates of A Vector

The standard representation [v]B of a vector v with respect to a basis B, also called the coordinates of v,
are an example of contravariant coordinates. If we define a new basis B′, whose elements create a matrix
representation T with respect to B, then the coordinates with respect to B′ are

[v]B′ = T−1[v]B. (6)

p

e1A

e2A

z1

z2

x1

x2

Figure 2: The basis A (blue) may be used to define
two sets of coordinates for p. The coordinates (x1, x2)
are contravariant, and the coordinates (z1, z2) are co-
variant.

Let’s say that the basis elements in B have some
representation with respect to a third basis B0. The
basis vector e′i ∈ B′ may be represented in B0 by
multiplying the representation of the elements in B
by T :

[e′i]B0 = T [ei]B0 . (7)

The fact that the correct transformation for the vec-
tor coordinates [v]B are in opposition to the correct
transformation for [ei]B0

are why the vector coordi-
nates are called contravariant. This contravariance
is also why we denote the indices of the elements
of [v]B as superscripts, instead of the more familiar
subscripts.

A geometric way to calculate these contravariant coordinates is to draw lines parallel to the coordinate
axes, as seen in Figure 2, and obtain the length of the intersection onto the coordinate axis. In Figure 2, the
contravariant (and standard) coordinates are [v]B = (x1, x2). These parallel lines are actually orthogonal
with respect to the basis B, and so in a sense this operation is still an orthogonal projection, but with respect
to the potentially non-Cartesian basis B.

Instead of orthogonal projections with respect to B, that leads to contravariant coordinates, we may use
orthogonal projections where orthogonality is in a Cartesian sense. In Figure 2, this Cartesian-orthogonal
projection leads to coordinates (z1, z2). These coordinates are covariant, and by convention their indices are
subscripts. Note that v 6= z1e

1
A + z2e

2
A

2.2 Reciprocal Basis
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3 TANGENT AND COTANGENT SPACE

p

e1A

e2A

z1

z2

e1B

e2B

x′1

x′2

x1

x2

z′1

z′2

Figure 3: The reciprocal basis A (blue) may
be used to define another sets of contravari-
ant coordinates for p, and covariant coordi-
nates for p. Additionally, moving along e1B
keeps the projection of p onto e2A (second
covariant coordinate) constant. Or, moving
along e1A only changes the projection along
the e1B .

An important idea is that we may use the basis of a vector
space to define a basis for its dual space, through a reciprocal
basis. The reciprocal basis is one way to bring a notion of
Cartesian orthogonality into a basis that is not Cartesian.

Let B1 = {e1, e2, . . . , en be a basis for a vector space V ,
and B2 be the collection of vectors {f1, f2, . . . , fn} satisfying

ei · fj = δij︸︷︷︸
Kronecker delta

=

{
1 , if i = j,

0 , otherwise.
(8)

Note that the dot product 〈·〉 here is defined with respect to a
Cartesian basis. Figure 3 illustrates a reciprocal basis.

If we associate the basis A with an n × n matrix M in
some Cartesian basis, then the reciprocal basis has coordinates
(M−1)T in that Cartesian basis. A unitary matrix defines a
basis that is its own reciprocal basis.

The significance of the reciprocal basis is that it formalizes
how to define subspaces orthogonal (relative to a cartesian ba-
sis) to other subspaces. Therefore, we may modify a vector
without changing its Euclidean projection onto a subspace of
interest. Equivalently, the closest point in a subspace won’t
change (but the distance to that closest point changes).

Formally, Consider a basis B, and a partition of the basis
into BS and B\BS . If B′ is the reciprocal basis of B, then the
partition BS of B induces a partition of B′ into B′S and B\B′S/
Finally, v ·w = 0 for any v ∈ Span (BS) and w ∈ Span (B\B′S)

3 Tangent And Cotangent Space

Recall that we use l constraints on Rn to specify a manifold M , where l < n. Each constraint is represented
by a smooth function hi:Rn → R.

We assume that the l differentials dhi are linearly independent at each point x ∈ M . In this case, the
dimension of the manifold is m = n− l.

3.1 Tangent Space

To an m-dimensional manifold, we can assign a tangent space TxM at each x ∈M which is an m-dimensional
vector space specifying the set of instantaneous velocities possible at x. For an embedded manifold in Rn,
the tangent space TxM is an affine subspace of Rn, where the origin of TxM corresponds to x.

Example 6 (Tangent Space to Rn). The tangent space TpRn to a point p ∈ Rn is itself another copy of
Rn. That is, the possible velocities for a point p ∈ Rn creates a space that similar to Rn. The fact that
Euclidean space and its tangent space is the same is the reason that one often confuses point vectors (which
are coordinates) with velocity vectors. The fact that the tangent space at each point in a Euclidean space is
the same (Rn) is what allows one to treat velocities as free vectors.

We can compute the tangent space as follows: Consider all curves in passing through a point q ∈ Rm.
Each curve γ is a one-dimensional set parametrized by a parameter, say t, belonging to a range, where

γ(0) = q. The derivative ∂γ
∂t

∣∣∣
t=0

defines a vector tangent to the curve at q, and the collection of all such

vectors at q (corresponding to all possible curves through q ) forms a vector space at q. When these curves
are defined in intrinsic coordinates, the tangent space will turn out to be Rm. When the curves through q
are defined in extrinsic coordinates, the tangent space turns out to be a hyperplane tangent to the manifold
at p, where p = ϕ(q).
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3.2 Cotangent Space 3 TANGENT AND COTANGENT SPACE

In fact, this process gives an explicit way to assign coordinates to the hyperplane using the intrinsic
coordinates. Specifically, we can consider a curve through q in Rm whose tangent is parallel to a coordinate
axis of Rm. We can map this curve to its extrinsic coordinates in M ⊆ Rn, and find the derivative of the
resulting curve, which gives us a vector in Rn. The derivatives of these two curves (when seen as a curve in
extrinsic and intrinsic coordinates) are related through the derivative of the diffeomorphism ϕ. That is, if
v ∈ TxRm is the velocity at x in intrinsic coordinates, the corresponding derivative u of the curve in extrinsic
coordinates is

(9)u =
∂ϕ

∂q
v.

Therefore, given ϕ, we can use a basis for Rm (which serves to represent TqRm) to generate a basis for

TpM . That is, if e1, . . . , em is a basis for Rm, then ∂ϕ
∂q e1, . . . ,

∂ϕ
∂x em forms a basis for TpM .

Example 7 (Tangent Space to Sphere). We have the map ϕ:Rm 7→ U ⊂ M . The partial derivative of ϕ
with respect to (θ, φ) at q = (θ, φ) is

(10)Dϕ =

− cos θ sinφ − sin θ cosφ
cos θ cosφ − sin θ sinφ

0 cos θ


The tangent space at a point p ∈ M ⊆ R3 is simply the span of the columns of Dϕ in (10) with the

values (φ, θ) = q given by ϕ−1(p).

Remark 1. Note that the tangent space does not change for different diffeomorphisms ϕ, only the basis for
the tangent space will change. In fact, more formal definitions of a smooth manifold insist that the set
of diffeomorphisms that map the same point p ∈ M to different coordinate spaces Rm be consistent when
it comes to assigning coordinates to their tangent spaces, so as to make the tangent space computations
independent of the coordinates (diffeomorphism) used.

3.2 Cotangent Space

We can associate any vector space V with a dual space V ∗ consisting of the space of linear functionals on
V . An element of V ∗ is a real-valued function of V , and is linear with respect to V . Since TxM is an
m-dimensional vector space we can associate a dual space T ∗xM , called the cotangent space, to it.

A natural basis for T ∗xM is the set of n linear functions whose evaluations of the n-basis vectors of TxM
form the Kronecker delta function. In effect, this natural definition is an analogue to the reciprocal basis
of a vector space basis. Under the usual outer product, this analogy becomes equivalence.

3.3 Smooth Vector Field

A smooth vector field on a manifold M is a smooth map f :M → TxM . This map is typically represented
as a column vector of m real-valued functions.

Example 8 (Vector Field on S2). The first (or second) column of the matrix Dϕ in (10) defines a vector
field on M ⊆ R3.

3.4 Smooth Covector Field

Similarly, a smooth covector field on a manifold M is a smooth map w:M → T ∗xM . This map is typically
represented as a row vector of m real-valued functions.

Example 9 (Covector Field on S2). The gradient of any smooth scalar function on S2 defines a covector
field on S2. Taking the function h(p) = x2 + y2 + z2 − 1, a covector field on S2 is w(p) given by

(11)w(p) = dh(p) =
[
2x 2y 2z

]
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3.5 Distributions and Codistributions 4 TENSORS

3.5 Distributions and Codistributions

Let X1(x), . . . , Xk(x) be vector fields on M that are linearly independent. A distribution ∆(x) is the point-
wise linear span of these vector fields

(12)∆ = span {X1(x), . . . , Xk(x)}

This definition ensures that at each x ∈ M , ∆ defines a k-dimensional subspace of the tangent space TxM
at x. Similarly, a codistribution Ω(x) on M is the span of a set of linearly independent covector fields on M .

Example 10 (Tangent space as a Codistribution). If we view each column of the matrix Dϕ in (10) as a
vector field, say X1(p) and X2(p), then at a given p ∈M , the tangent space TpM is precisely the distribution
∆ = span {X1(p), X2(p)}, that is, TpM = ∆.

4 Tensors

Our use of tangent spaces will require us to define functions over them. This requirement will make us come
across tensors, which we now introduce.

If we take a product space of m vector spaces, and want to map an element of this product space to R,
there are many ways to do so. For example, consider V ×W , and the map simply the sum of the elements.
That is, given v ∈ V ⊆ Rn1 from the first space and w ∈W ⊆ Rn2 from the second space, our map is just

T (v, w) =

n1∑
i=1

vi +

n2∑
i=1

wi. (Not a tensor.) (13)

This map is linear in the product space V ×W , but only affine in either V or W when the vector from
the other space is fixed. We actually want it to be linear in each of the individual spaces, when the vector
from the other spaces are fixed. These individually-linear maps from a collection of vector spaces to R are
what tensors are. Naturally, tensors are nonlinear in the product space.

T (v, w) =

min(n1,n2)∑
i=1

viwi. (A tensor.) (14)

4.1 Covariance and Contravariance

A tensor is simply a multilinear map. However, once we decide to represent it using numbers, we have to
pick bases, opening a can of worms.

We represent tensors as a collection of coefficients once we define a basis for each vector space. For
example, the tensor in (14) may be given a representation

Tαβv
αwβ ,

where we are using the Einstein summation convention, and Tα,β are the components or coefficient of the
tensor T . If n1 = n2 = 2, then we have four coefficients T11, T12, T21, T22 given by

T11 = 1, T12 = T21 = 0, and T22 = 1. (15)

Notice the conventions of superscripts and subscripts. The superscripts on v and w indicate that the
computation is with respect to contravariant coordinates for V and W in some basis. If we want the tensor
computation to be invariant with respect to a change of basis, we must change the coefficients Tαβ covariantly
with the change of bases for V and W , and therefore we use subscripts for the indices of T according to the
convention. We don’t have to follow these conventions that result in invariance under change-of-bases, but
the tensor becomes an inconsistent way to compute properties of geometric objects without this invariance.
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4.2 Tensor order

The dictates of invariance makes us categorize tensors as (m,n)-tensors, where m is the number of contravari-
ant coordinates and n is the number of covariant coordinates. Alternatively, m is the number of arguments
that are covariant, and n is the number of arguments that are contravariant. Note that Kreyszig refers to
(r, s)-tensors where r is the number of covariant coefficients/coordinates of the tensor.

Example 11. A metric tensor is a (0, 2)-vector. A common example is the inertia tensor of a mechanical
system, and the evaluation of this tensor on two copies of the velocity of the system gives us (twice) the
mechanical energy of the system. The representation of this tensor in an appropriate basis is called the
mass matrix of the system. Again, the invariance properties of tensors are useful because we don’t want the
mechanical energy to change when we use different bases to describe the same velocity.

4.3 Dual Vector Spaces

A dual vector or one-form is exactly a (0, 1)-tensor, since it is covariant, and maps vectors (contravariant
objects) linearly to a real number. The dual space V ∗ of a vector space is the set of (0, 1)-tensors with
arguments in V , which is itself a vector space. Dual vectors are also called covectors, and dual spaces
covector spaces.

4.3.1 Gradients

The definitions of gradients are almost always introduced using a row vector containing the partial derivatives
of f with respect to each coordinate.

∇f =
∂f

∂x
=
[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
, (16)

where we have suppressed the dependence of these terms on x.
Now, if we want the derivative of f along a direction v ∈ V , we take the ‘inner product’:

df(v) = 〈∇f, v〉 =

n∑
i=1

∂f

∂xi
vi (17)

A more formal approach is to define the gradient ∇f of a function f :V → R as a (0, 1)-tensor, and so
that it is an element of V ∗, which makes it a linear function on V . The evaluation ∇f(v) is the (directional)
derivative of f along v. We get linearity in v, but we are also allowed to take linear combinations of elements
of V ∗. Since we view ∇f as an element of V ∗, whose basis is {e1, e2, . . . , en}, our standard representation
in (16) implies that

∇f =
∂f

∂x1
e1 +

∂f

∂x2
e2 + · · ·+ ∂f

∂xn
en (18)

The evaluation of v by the (0, 1)-tensor ∇f becomes

∇f(v) =

(
∂f

∂x1
e1 +

∂f

∂x2
e2 + · · ·+ ∂f

∂xn
en
)

(v1e1 + v2e2 + · · ·+ vnen) (19)

=
∂f

∂xi
vjei(ej) (20)

We see that our standard definition of the directional derivative in (17) only makes sense when the basis
of the dual vector space satisfies

ei(ej) =

{
1 if i = j,

0 otherwise.
(21)

This condition is similar to that of the reciprocal basis condition, however here the bases are for different
spaces, namely V and V ∗. This detail about the implicit basis for V ∗ given that of V is left out of most
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discussions. This detail becomes important when dealing with coordinate changes, which is often not a
concern when introducing the gradient. If we are working in a different basis for V ∗ that is not the standard
one derived from V , then we would have to choose a different representation for ∇f . This reciprocal nature
of the basis for V ∗ makes sense, since then moving along ei should create an effect on ∇f(v) that is only
proportional to ∂f

∂xi
, which is true since the cartesian-orthogonal projection along other dual basis elements

remains unchanged.
If gradients are actually (0, 1)-tensors, and (16) is only a representation of this tensor in some basis of

V ∗, then why do gradient descent algorithms update a vector of parameters θ by adding a scaled form of the
transpose of this representation to the parameters? The answer is that the vector of a certain magnitude as
measured by the standard Euclidean metric that will have the smallest value of df(v) ends up having the
same components (with a negative sign) as the gradient, given the related bases for V and V ∗. This notion
of magnitude comes from a metric tensor. If we chose a different metric, we would get a different update
direction.

5 Connections

Suppose we have a function f :M → Y , where M is a manifold, and Y is some topological space. Given
distinct points x1 ∈ M and x2 ∈ M , how should we compare the values f(x1) and f(x2)? That is, how do
we connect the images from two different points? Mathematically, what topology or algebra should we use
for the images at different points on the manifold?

The trivial connection is to just use the topology/algebra given by Y , so that we don’t care which points
of M produced the elements of Y that we are comparing. For example, if a function assigns a vector in some
space V to each point in a manifold, then the difference in the function would be simply f(x2)− f(x1) ∈ V .
The reason we need non-trivial connections is that the trivial connection is sometimes naive.

One example of needing a non-trivial connection is when we define directional derivatives of vector fields
(section of a tangent bundle) along curves on a manifold by directly taking differences between the vectors
at two different points, and then proceeding with a limit. The issue is that this directional derivative
will then depend on the basis we choose for the tangent spaces, which may depend on the coordinates
for the manifold. In effect, we lose geometric behavior (invariance to coordinate transformations) because
our method for comparing objects in the image space ignores the geometry of the underlying domain (the
manifold).

5.1 Differential Geometry and Connections

There are two uses for connections in differential geometry. One is to move a geometric object at one point
to another point locally. For example, parallel transport of a vector along curves. It suffices to define an
isomorphism between the image spaces at two different points. w The other is to differentiate geometric
objects along curves in the manifold, giving rise to covariant derivatives.

Naturally, these two uses can be related by insisting that the local shifting corresponds to a zero rate
of change of a covariant derivative. In general, we see that most definitions enforce this relationship, even
though it’s not clear that it is required:

. . . the usual notion of connection is the infinitesimal analog of parallel transport. Or, vice
versa, parallel transport is the local realization of a connection.

Thus the connection ∇ defines a way of moving elements of the fibers along a curve, and this
provides linear isomorphisms between the fibers at points along the curve:

Γ(γ)ts = Eγ(s) → Eγ(t) (22)

from the vector space lying over γ(s) to that over γ(t). This isomorphism is known as the
parallel transport map associated to the curve.

Parallel transport can be approximated using Schild’s ladder. By the Ambrose-Singer holonomy theorem,
the result of parallel transport along closed curves is related to the curvature of connection ∇.

In differential geometry, we always exploit smoothness and differentiability, so that all connections are
Ehresmann connections.
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5.2 Types of Connections

A function on a manifold defines a fibre bundle. The connections we define depend on the topology of the
fibres, and what we need from the connection. In general, we distinguish between connections on vector
bundles and those in principal bundles.

There are

1. Ehresmann connections are connections on fibre bundles, whether vector or principal

2. Linear or Kozsul connections, which effectively define covariant derivatives on vector bundles, are linear
Ehresmann connections on vector bundles.

3. Principal connections are Ehresmann connections on principal G-bundles

4. Affine connections are linear connections on tangent bundles, but may also be defined as principal
connections on the frame bundles.

5. Cartan connections are a specialization of Principal connections.

5.3 Ehresmann connections

This section is almost verbatim from Wikipedia. First, we must define the vertical and horizontal bundles.
Given π:E →M , which induces dπ:TE → TM then we define the vertical bundle V as

V = ker (dπ) (23)

The horizontal bundle H is the complement of V in TE, so that TE is the direct sum of H and V :

TE = H ⊕ V (24)

The horizontal bundle has the following properties:

• For each e ∈ E, He is a vector subspace of the tangent space TeE to E at e, called the horizontal space
He of the connection at e

• He depends smoothly on e

• For each e, He ∩ Ve = {0}

• For any e ∈ E, and v ∈ TeE, TeE = He + Ve

The Ehresmann connection on E is this smooth subbundle H of TE.

Connection form. Another way to define the connection is by defining v the projection onto V along H,
such that H = ker v. Moreover, v2 = v, and the projection of an element in V is the element itself.

Horizontal lift. The Ehresmann connection defines a general form of parallel transport, called the hori-
zontal lift. A lift of a curve γ in M is a curve γ̃ through E such that π(γ̃) = γ. A lift is horizontal if, in
addition, every tangent of the curve lies in the horizontal subbundle of TE:

5.3.1 Connections on Vector Bundles

Let E be a smooth vector bundle on a differentiable manifold M . The set of sections on E is Γ(E). A
connection on E is a smooth R-linear map

∇: Γ(E)→ Γ(T ∗M ⊗ E)

such that the Leibniz rule holds for all smooth f on M and sections s on E:

∇(fs) = df ⊗ s+ f∇s (25)
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This connection on a smooth manifold immediately leads to a covariant derivative

∇X : Γ(E)→ Γ(E)

along a section X ∈ Γ(TM) by contracting X with the resulting covariant index in the connection:

∇X(s) = (∇(s))(X). (26)

The covariant derivative satisfies the linearity property in X and the Leibniz property in s:

∇fXs = f∇Xs; ∇Xfs = ∂X(fs) + f∇Xs, (27)

where the derivative is the directional one. In practice, we define linear transformations using Christofel
symbols.

5.4 Kozsul Connection

An Ehresmann connection H on E is said to be a linear (Ehresmann) connection or Kozsul connection if
He depends linearly on e ∈ Ex for each x ∈M .

5.4.1 Affine Connections

An affine connection is a linear connection on a tangent bundle. The linear connection immediately defines a
covariant derivative and vice versa. Given a basis for the tangent space, we may provide Christoffel symbols
that dictate the projection operation central to linear connections on vector bundles.

Note that the term ‘affine’ comes from the fact (source) that the tangent spaces being connected are
affine, so that the modern definition of a linear connection implies an affine transformation between two
affine spaces.

5.4.2 Covariant Derivatives From Christoffel Symbols

At q and q′ = q + dq, we have tangent spaces TqQ and Tq′Q.
Suppose we have a basis vector ei ∈ Tq′Q. We can translate this basis vector in the ambient space,

which is Euclidean so that translation is in the usual sense, and move its point of attachment to q which
is the origin of TqQ. However, most likely this translated vector ēi does not lie in TqQ. So, we project the
translated version of ei to e′i ∈ TqQ. A simple way to project is linearly.

Under parallel translation in the ambient space and linear translation of the result onto TqQ, we now get
an element e′i ∈ TqQ. Now, there’s an existing ith basis vector in TqQ, and we just defined a new version
from e′i. We can say that the difference between them is another vector dei ∈ TqQ, which has coordinates

(28)dei = (deji )ej .

At the end of this process, we can write the valid vector equation in TqQ as e′i = ei + dei for each i.
The parallel translation might be unique, but the projection need not be. Whatever projection rule we

choose, we will define some correction terms dei that help relate the basis vectors from two different tangent
spaces. We can make the coordinates of dei depend linearly on the difference dq between q and q′. This
linearity makes sense, since it implies that as dq → 0, e′i → ei. We can make this linear map depend on q,
so that up to a first order approximation, we will define

(29)deji = Γjik(q)dqk,

so that

e′i = ei + Γjik(q)dqkej (30)

The function Γjik gives the components of the affine connection, or equivalently, the covariant derivative.
We have a vector field X(q) = Xi(q)ei(q). How do we define the derivative? It is clear that X(q+ dq)−

X(q) makes no sense.
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q

e1

e2

q′

e1

e2

ē1 /∈ TqQ

project to TqQ

de1

e′1

Figure 4: The basis element e1 of Tq′Q is mapped to e′1 ∈ TqQ through a translation in ambient space
followed by a linear projection onto TqQ. The difference between the original basis element e1 ∈ TqQ and
this mapped one from Tq′Q is the vector de1 ∈ TqQ.

We have to first pull X(q + dq) back to TqQ. Now, X(q + dq) is some linear combination of the basis
vectors ei ∈ Tq+dqQ. To map X(q + dq), we simply use the same linear combination of the mapped basis
vectors ẽi (denoted as e′i in the previous section). We do this pulling back through the coordinates.

(31)ẽi = ei(q) + Γjik(q)dqkej

(32)

X̃ = Xi(q + dq)ẽi

= (Xi(q) + ∂jX
idqj)

(
ei(q) + Γjik(q)dqkej

)
= Xi(q)ei + ∂jX

idqjei + Γjik(q)Xidqkej

where it appears that the product ∂jX
kdqjdqk is ignored. Now, X̃ −X at any q is

dX = X̃ −X = ∂jX
idqjei + Γmik(q)Xidqkem. (33)

We may use the above expression to compute the covector ∂X/∂qj . It’s ith component is

(34)(∇jX)i = ∂jX
i + ΓijkX

k

5.5 Principal Connection

The frame bundle of a manifold M is a special type of principal bundle in the sense that its geometry is
fundamentally tied to the geometry of M .

6 Riemannian Metrics

A metric on a vector space in Rm is a (0, 2)-tensor. It’s representation is therefore an m ×m matrix. For
robotic systems, the metric tensor is known as the inertia tensor, which is also a Riemannian metric. The
Riemannian property comes from the fact that we can define a continuous tensor field.

Once we define a metric Gq:TqQ×TqQ 7→ R, we get an affine connection, covariant derivative, and hence
geodesics. The coordinate-independent equations of a mechanical system are then

∇q̇ q̇ = G]q(−dV + f + fd)
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where V is a conservative potential, fd is the dissipation, and f are the external generalized forces.
Our quest is that for any (suitable) coordinate system, we can achieve motions once we estimate Gq, fd,

and dV in that coordinate system. This approach opens the door to sensorimotor control. Note that these
quantities have been difficult to extract from data thus far.

In general, the bases for a vector and covector space are unrelated, until we can define a metric, or more
accurately, a (0, 2)-tensor.

6.1 Preservation of Exterior Products

Let’s say we equip Rn and (Rn)∗ with bases B1 and B2 respectively. Let the metrics on Rn and (Rn)∗, and
the exterior product, be the usual ones. So, if we have representations v, for v ∈ Rn and ω for ω ∈ (Rn)∗,
we get

‖v‖2I = vT v (35)

‖ω‖2I = ωTω (36)

〈ω, v〉 = ωT v (37)

Suppose we transform Rn by a linear transformation represented as T1 in B1 and (Rn)∗ by a linear
transformation represented as T2 in B2. Then, we would see that the v 7→ T−11 v and ω 7→ T−12 ω.

‖v′‖2I = vTT−T1 T−11 v (38)

‖ω′‖2I = ωTT−T2 T−12 ω (39)

〈ω′, v′〉 = ωTT−T2 T−11 v (40)

So, if we want the linear functional evaluations of vectors to be invariant after the change of bases, we
need T2 = T−T1 . Let M−1 = TT1 T1. Then,

‖v′‖2I = vTT−T1 T−11 v = ‖v‖2M (41)

‖ω′‖2I = ωTTT1 T1ω = ‖ω‖2M−1 (42)

〈ω′, v′〉 = ωT v (43)

While changing the basis of Rn to vectors with cartesian coordinates T1, and the basis of (Rn)
∗

correspond-
ingly to covectors with coordinates T−T1 , we preserve linear functionals, but not the metric. To preserve the
metric, we must choose TT1 T1 = I, meaning cartesian transformations.

6.2 In Coordinates

Once we define coordinates, we get the Euclidean metric for free on TqQ through the natural basis. However,
we may prefer a different size measure for vectors defined using the natural basis. This metric is the
Riemannian metric M(q). As the derivation in Section ?? shows, to choose metric M(q) on TqQ requires us
to choose metric M−1(q) on T ∗qQ to keep the results of linear functionals invariant.

The metric also leads to the sharp map G]q:T ∗qQ → TqQ which maps torques (cotangents) to velocities

(tangents). In effect, F 7→ M−1(q)F ∈ TqQ. Similarly, we get the flat map G[q:TqQ → T ∗qQ which maps
velocities to torques. In effect, v 7→ M(q)v ∈ T ∗qQ. The point of these maps is to ensure that taking the
outer product between cotangent and tangent is the same as evaluating the metric after transformation:

FT v = 〈F, v〉 = 〈G](F ), v〉M = 〈M−1(q)F, v〉M = FTM−T (q)M(q)v = FT v

Similarly 〈F, v〉 = 〈F,G[(v)〉M−1 .
Alternatively, we may say that the metric on TqQ induces a metric for T ∗qQ under the natural basis, or

a basis for T ∗qQ under the natural metric, and the natural exterior product makes sense either way.
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6.3 Errors On Manifolds

Consider two points q ∈ Q and r ∈ Q, with the understanding of the current and reference configurations.
We may define an smooth function φ:Q ×Q → R. It is an error function if it is positive definite. In other
words φ(q, r) ≥ 0 with equality if and only if q = r. It is symmetric if φ(q, r) = φ(r, q) for all q, r ∈ Q.

6.4 Transport Map and Velocity Error

Let d1φ and d2φ denote the differentials of φ with respect to the first and second arguments. A map
T(q,r:TrQ→ TqQ is a transport map if it is compatible with the configuration error, meaning that

d2φ = −T ∗(q,r)d1φ, (44)

where T ∗(q,r:T ∗qQ → T ∗rQ is the dual map of T(q,r. Intuitively, this map correctly relates the steeptest
direction of decreasing errors at the two points q and r. For Euclidean-distance based errors, T ∗(q,r) = I for
all q, r.

Given q̇ ∈ Q and a velocity ṙ ∈ TrQ, the velocity error is

ė = q̇ − T(q,r)ṙ, (45)

where ṙ has been transported into TqQ.
It is then possible to show that

d

dt
φ(q(t), r(t)) = d1φ(q(t), r(t)) · ė(t) (46)

7 Lie Groups

Definition 3 (Lie Group). A Lie group is a finite dimensional smooth manifold G together with a group
structure on G, such that the multiplication G × G → G and the attaching of an inverse g 7→ g−1:G → G
are smooth maps.

Example 12 (SO(3)). The space of rotation matrices forms a Lie group under matrix multiplication. The
dimension of the manifold of rotation matrices is 3. SO(3) is also called a Matrix Lie Group.

7.1 Lie Algebra and the Tangent Space of Lie Groups

To every Lie group G we can associate a Lie algebra whose underlying vector space g is the tangent space
of the Lie group at the identity element.

Definition 4 (Lie Algebra). A Lie algebra is a vector space g, together with a non-associative operation
called the Lie bracket, an alternating bilinear map

g× g→ g, (x, y) 7→ [x, y],

satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,∀ x, y, z ∈ g.

Remark 2. Alternating: [x, x] = 0 ; Non-associative: [[x, y], z] 6= [x, [y, z]]

Example 13 (Lie Algebra of SO(3)). The Lie algebra of SO(3) consists of a vector space so(3) and a Lie
bracket given by the usual matrix commutator. so(3) is the set of 3× 3 real skew-symmetric matrices, and
the Lie bracket is

[R1, R2] = R1R2 −R2R1.

Properties of so(3):

• Linear

• Interpretation as cross product

• xTSx = 0 for any x.

• S(Ra) = RS(a)RT
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7.2 Exponential Map

The exponential map turns out to be natural. This means the following diagram (taken from Lerman’s
notes) commutes for any Lie group morphism φ:H → G:

h g

H G

δφ

exp exp

φ

Definition 5. The exponential of X ∈ g is given by exp(X) = γ(1) where γ:R → G is the unique one-
parameter subgroup of G whose tangent vector at the identity is equal to X.

Moreover, we have that γX(s+ t) = γX(s)γX(t), γX(0) = I

Example 14. For a Matrix Lie Group, the exponential of X is

exp(X) =

∞∑
k=0

Xk

k!
= I +X +

1

2
X2 +

1

6
X3 + · · · .

Example 15. The unit circle centered at 0 in the complex plane is a Lie group (called the circle group)
whose tangent space at 1 can be identified with the imaginary line in the complex plane, {it : t ∈ R}. The
exponential map for this Lie group is given by

it 7→ exp(it) = eit = cos(t) + i sin(t),

that is, the same formula as the ordinary complex exponential.

7.3 Adjoints

The adjoint of a linear map f :V →W is the map f∗:W ∗ → V ∗, which satisfies

f∗(φ)(v) = φ(f(v)), equivalently, 〈f∗(φ), v〉 = 〈φ, f(v)〉

The Representation Theorem states that given a finite dimensional inner product (vector) space V , every
linear functional on V may be represented as an inner product with a unique element in V . The exterior
product of T (v) with w ∈ W ∗ is effectively a linear functional on V , and so the adjoint map is providing
the representation of that linear functional as an element of V ∗, or V through the canonical transformation.
Effectively, the adjoint of f gives us a way to perform an exterior product in W as either an exterior or inner
product in V .

If the map f has a matrix representation A in the bases of V and W , then the map f∗ has a representation
AT when using the canonical bases for V ∗ and W ∗.

Example 16 (Jacobian). In velocity kinematics, the Jacobian J(q) defines a map from joint velocities at q
to task-space velocities q̇ → J(q)q̇ = ξ. Therefore, J(q)T defines a map from task-space forces (co-vectors
in task space) to joint-torques (co-vectors in joint-space), which then is mapped to an acceleration through
the sharp map (J(q)TFext 7→M−1J(q)TFext).

7.4 Adjoint Representations in Groups

A representation of a group G on a vector space V over a field K is a group homomorphism from G to
GL(V ), the general linear group on V . That is, a representation is a map

ρ:G→ GL(V )

such that
ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G.
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In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same
type (such as two groups, two rings, or two vector spaces). A homomorphism commutes with the algebraic
structure operation.

We can look at representations of a given group on any vector space1. But there is exactly one distin-
guished vector space that comes automatically with each group: its own Lie algebra2. This representation
is the adjoint representation.

The adjoint action Ig(h) = ghg−1 is a homomorphism3. We may see that

Ig(e) = geg−1 = gg−1 = e, ∀g ∈ G.

The property Ig(e) = e means that any curve through e on the manifold G is mapped by this homo-
morphism to another (not necessarily the same) curve through e. Therefore the adjoint representation maps
any tangent vector (of a curve on G) in TeG to another tangent vector in TeG. In contrast left- (and right-)
translations Lg map tangent vectors in TeG to tangent vectors in TgG.

The induced map (by Ig) of any tangent vector in TeG (an element of the Lie algebra) to another
tangent vector in TeG is called the adjoint transformation of TeG induced by g. This induced map defines
a representation of the group G on TeG, because TeG is a vector space.

• adjoint map: Ig(h) = ghg−1

• The derivative of Ig at the origin is Adg:TeG→ TeG; Adg(dIg)e = gXg−1

• the map
Ad:G→ Aut(g), g 7→ Adg

is a group representation called the adjoint representation of G. Note that Ad converts g into a linear
map no g, which is what we wanted

• Differentiating the adjoint map at origin produces the adjoint action of Lie algebra: adx(y) = [x, y]:

ad(X) = (d Ad)e(X)

• The adjoint representation of the Lie algebra is then ad: g→ Der(g), where Der(g) is the Lie algebra
of Aut(g)

• Ad and ad are related through the exponential map: Specifically, Adexp(x) = exp(ad) for all x in the Lie
algebra. It is a consequence of the general result relating Lie group and Lie algebra homomorphisms
via the exponential map.

The naturality of the exponential functions leads to the following diagrams:

g g

G G

Adg

exp exp

Ig

g gl(g)

G GL(g)

ad

exp exp

Ad

In other words, for all t

1. g exp(tX)g−1 = exp(t Adg(X))

2. Ad(exp(tX)) = exp(t ad(X))

7.5 Orientation Group SO(3)

The orientation group SO(3) is given by

SO(3) = {R ∈ R9×9:RTR = I, det(R) = 1} (47)

The identity element is I, and the group operation is matrix multiplication.

1The representation maps to the group of general linear transformations on this vector space
2Taken from this blog.
3It is also a realization, not a representation, since it’s domain is a group G and not a vector space
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7.5.1 Lie Algebra

Moreover, this group is a Lie group. Consider a curve R(t), where R(t) ∈ SO(3) for each t ∈ [0, 1]. For every
r, we know that R(t)R(t)T = I. Taking the derivative with respect to time, we get

Ṙ(t)R(t)T +R(t)Ṙ(t)T = 0 (48)

S(t) = Ṙ(t)R(t)T =⇒ S + ST = 0 (49)

We may then obtain that

Ṙ(t) = S(t)R(t) (50)

The derivative of R(t) when R(t) = I, is simply S(t), which is a skew-symmetric matrix. Therefore, the
Lie algebra so(3) is the set of skew-symmetric matrices.

There’s a natural homeomorphism from R3 to so(3) given by

S(ω) = ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (51)

An alternative definition for the Lie Algebra is the set of all the left invariant vector fields on the Lie
group. A vector field X on a Lie group G is left invariant if

(dLg)(X(x)) = X(Lg(x)) = X(gx) (52)

It can be shown that this definition is equivalent to the tangent space at identity, which is a practical way
of determining the Lie algebra.

Due to the homeomorphism between so(3) and R3, we may then write

Ṙ(t) = S(ω(t))R(t) (53)

for some curve ω(t) in R3.

7.5.2 Adjoint Representation

We have that for R ∈ SO(3), R(a× b) = (Ra)× (Rb). We may view S:R3 → so(3) as a map. Therefore,

(Rw)× b = (Rw)× (RRT b) = R(w ×RT b) = RS(w)RT b (54)

=⇒ S(Rw) = RS(w)RT = (Ad(R)) (S(w)) (55)

Ad creates AdR
so(3) Input to AdRAdR(X)

gXg−1

so(3) output of AdR

8 Dynamical Systems, Tangents, Vector Fields

Vector fields are used to define differential equations, since they pick elements from the tangent space at
each point of a space.

Consider an autonomous nonlinear differential equation on a state space X ⊆ Rn given by

(56)ẋ = f(x).

The function f(x) is precisely a vector field on X, and f(x) ∈ TxX.
Consider a nonlinear system with inputs of the form

(57)ẋ = f(x) + g1(x)u1 + · · · gm(x)um

= f(x) +G(x)u

where f(x), g1(x), · · · , gm(x) are smooth vector fields on M , u ∈ Rm, and the ith column of G(x) is gi(x).
We assume M = Rn for simplicity. System (57) is known as an affine input system, since the dynamics
(vector field) are affine in the input u. Note that the vector field can still be nonlinear in the state x.
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x ∈ R2

x1

x2

(a)

x ∈ R2

x1

x2

(b)

Figure 5: Two vector fields on R2

Example 17 (Linear Systems). Compare (57) to the linear system ẋ = Ax+Bu.

Example 18 (Angular Velocity). Suppose we have a rigid body at orientation given by angle θ(t) about

some axis
−→
k at time t. We typically refer to its angular velocity as θ̇, assuming a frame conveniently aligned

with
−→
k . Its angular velocity ω is ω = θ̇k in the same frame that defines k.

Now, suppose we have a point p(t) on this body. We have learned that its velocity is ω × p(t). What
happens when the orientation is given by a rotation matrix?

Or, how do we compute the velocity of a point q(t) when

q(t) = R(t)q + d(t)?

Derive Ṙ(t) = SR(t) when RRT = I. Explain that this version works in world frame.

Example 19 (Rigid Body Dynamics). Let x(t) ∈ R3 be the location of the origin of a frame attached to a
rigid body at time t, relative to an inertial frame. Let R(t) be its orientation relative to that same inertial
frame. Let I0 anad ω0(t) be the rotational inertia and angular velocity of the rigid body in the inertial frame.
The dynamics of the rigid body pose in the inertial frame are given by

ẋ(t) = v(t) (58)

mv̇(t) = f(t) (59)

Ṙ(t) = S(ω0)R(t) (60)

d

dt
(I0ω0) = τ0 (61)

The orientation dynamics is easier to express in a body-fixed frame

(62)Iω̇ + ω × Iω = τ

Remark 3 (Quadrotor Dynamics). A quadrotor is often treated as a rigid body on which acts three torques
and a thrust at its center of mass.
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8.1 Lie Algebra

Choosing a feedback control u = k(x) for the system (57) is like choosing a vector field out of the distribution
implied by f(x) and G(x). Our ability to dictate the evolution of x with time therefore depends on this
distribution. We now introduce some algebraic operations that help analyze the possible behaviors allowed
by a distribution consisting of a finite set of linearly independent vector fields.

8.2 Lie Bracket

Let f and g be differentiable vector fields on Rn. The Lie bracket of f and g, denoted [f, g], is a vector field
on Rn given by

(63)[f, g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x)

where ∂g
∂x is the Jacobian of g(x).

Note that the Lie Bracket maps two vector fields on Rn into another vector field on Rn.

Example 20 (Lie bracket as Commutation).

We also denote [f, g] as adf (g), so that we can define repeated Lie brackets with respect to f through

the recursion adkf (g) = [f, adk−1f (g)], where ad0
f (g) = g.

8.3 Lie Derivative

Let f :Rn → Rn be a vector field on Rn and h:Rn → R be a scalar function. The Lie derivative of h with
respect to f , denoted Lfh, is given by

(64)Lfh =
∂h

∂x
f(x)

The Lie derivative yields another scalar function, implying that we can define repeated Lie brackets as
Lkfh = Lf (Lk−1f h), where L0

fh = h.
The Lie Brackets and Derivatives satisfy the following identity:

(65)L[f,g]h = LfLgh− LgLfh.

Combined with the definition of repeated Lie brackets/derivatives, this identity gets used in showing
many results.

8.4 Involutivity

A distribution ∆ = span{X1, . . . , Xk} is involutive if and only if there exist scalar functions αijk:Rn → R
such that

(66)[Xi, Xj ] =

m∑
k=1

αijkXk, ∀ i, j, k

In other words, a distribution is involutive if it is closed with respect to the Lie bracket operation.

9 Feedback Linearization

The motivation for feedback linearization is to create a systematic procedure for designing controllers for
nonlinear systems of the form (57) using well-known linear system design principles, when possible. We use
ideas from differential geometry to characterize when a system can be feedback linearized.

Example 21. Feedback Linearization Consider the system

(67a)ẋ1 = a sinx2

(67b)ẋ2 = −x21 + u
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It isn’t clear how to choose u so as to influence x1. If we change the variables, locally, through the
transformation

(68a)y1 = x1
(68b)y2 = a sinx2 = ẋ1,

The dynamics become
(69a)ẏ1 = y2

(69b)ẏ2 = a cos(x2)(−x21 + u)

Choosing

(70)u =
1

a cosx2
v + x21

yields
(71a)ẏ1 = y2
(71b)ẏ2 = v

which we know how to design for and analyze.
Suppose we get a closed-loop response y(t) by using some control v = −Ky. The response in the original

coordinates is
(72a)x1(t) = y1(t)

(72b)x2(t) = sin−1
y2(t)

a

9.1 Single Input Systems

A system ẋ = f(x) + g(x)u is feedback linearizable if there exists a diffeomorphism T :U → Rn defined on
an open region U ⊆ Rn containing the origin, and nonlinear feedback u = α(x) + β(x)v, with β(x) 6= 0 on
U , such that the transformed state y = T (x) satisfies the system of linear equations ẏ = Ay + bu where A
and b represent as a chain of integrators.

Since y = T (x), and T is a diffeomorphism, we can derive

ẏ =
∂T

∂x
ẋ (73)

=⇒ Ay + bv =
∂T

∂x
(f(x) + g(x)u) (74)

=⇒ AT (x) + bv =
∂T

∂x
(f(x) + g(x)u) (75)

Going by each component of the n equations, we get

T2 = LfT1 + LgT1u (76)

T3 = LfT2 + LgT2u (77)

...

v = LfTn + LgTnu (78)

Since T (x) is independent of u, but v depends on u, we get

LgT1 = LgT2 = · · · = LgTn−1 = 0 (79)

LgTn 6= 0 (80)

thereby reducing the n components to

Ti+1 = LfTi, i ∈ {1, . . . , n− 1} (81)

v = LfTn + LgTnu (82)
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We now work to eliminate Ti for i ≥ 2. We do this by using the relationship between Lie brackets and
Lie derivatives in (65). This relationship implies that (81) and (82) become

Ladk
f (g)

T1 = 0, k ∈ {0, 1, . . . , n− 2} (83)

Ladn−1
f (g)T1 6= 0 (84)

If we can find T1 satisfying the conditions above, we can find T2, . . . Tn inductively, and then find u.
First of all, we need adkf (g) for k ∈ {0, . . . , n− 1} to be independent so that (84) is satisfiable. For (83)

to have a solution, we know that adkf (g) for k ∈ {0, . . . , n − 2} must lead to an involutive distribution, by
the Frobenius Theorem (see below).

Theorem 1. A system ẋ = f(x) + g(x)u is feedback linearizable if and only if there exists an open region
U ⊆ Rn containing the origin in which

1. adkf (g) for k ∈ {0, . . . , n− 1} are linearly independent in U .

2. ∆ = span{g, adf (g), . . . , adn−2f (g)} is involutive in U .

9.2 Frobenius Theorem

This theorem is concerned with the existence of a solution to a system of partial differential equations in
terms of a distribution corresponding to those PDEs.

Definition 6. A distribution ∆ = span {X1, . . . , Xm} on Rn is said to be completely integrable if and only
if there are n −m linearly independent functions h1, . . . , hn−m satisfying the system of partial differential
equations

LXihj = 0, for 1 ≤ i ≤ m, 1 ≤ j ≤ n−m (85)

Theorem 2 (Frobenius Theorem). A distribution ∆ is completely integrable if and only if it is involutive.

A Vector Spaces

Definition 7 (Group). A group G is a set together with a binary operation · that satisfies the following
properties for all a, b, c ∈ G:

(i) Closure: a · b ∈ G;

(ii) Associativity: a · (b · c) = (a·)b · c;

(iii) Existence of identity element e ∈ G such that a · e = e · a = a;

(iv) Existence of inverse element d ∈ G such that d · a = a · d = e.

Example 22. Real numbers form a group under addition.

Example 23. Real numbers without 0 form a group under multiplication.

Definition 8 (Field). A field F is a set together with two operations – addition +:F× F 7→ F and multipli-
cation ·:F× F 7→ F – that satisfy the eight axioms listed below.

(i) Addition and multiplication are associative

(ii) Addition and multiplication are commutative

(iii) Existence of additive and multiplicative identity elements

(iv) Existence of inverse element for addition for each v ∈ V

(v) Existence of inverse element for multiplication for each v ∈ V except for the additive identity
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(vi) Distributivity of multiplication with respect to addition

Example 24. Real numbers are a field under usual addition and multiplication.

Definition 9 (Vector space). A vector space over a field F is a set V together with two operations – vector
addition +:V × V 7→ V and scalar multiplication ·:F× V 7→ V – that satisfy the eight axioms listed below,
for all u, v, w ∈ V and a, b ∈ F.

(i) Addition is associative: u+ (v + w) = (u+ v) + w;

(ii) Addition is commutative: u+ v = v + u;

(iii) Existence of identity element 0 ∈ V such that v + 0 = v;

(iv) Existence of inverse element x ∈ V such that v + x = 0;

(v) Compatibility of scalar multiplication with respect to field multiplication: a · (bv) = (a · b)b;

(vi) Existence of identity element e ∈ F under scalar multiplication such that ev = v;

(vii) Distributivity of scalar multiplication with respect to vector addition: a · (u+ v) = a · u+ b · v;

(viii) Distributivity of scalar multiplication with respect to field addition: (a+ b) · u = a · u+ b · u.

Example 25. The set of n-tuples of real numbers, denoted Rn, over the field of real numbers form a vector
space when addition and scalar multiplication of these n-tuples are taken to be element-wise addition and
scalar multiplication. The 0 vector is the vector with all elements 0, and the inverse of v ∈ Rn is −v = (−1)·v.

Definition 10 (Vector Space Basis). A basis B of a vector space V is a set of vectors in V such that all
other vectors can be written as a finite linear combination of the elements of B.

Remark 4 (Basis for Rn). A basis for vector space Rn contains exactly n linearly independent vectors.

Remark 5 (Coordinates for Rn). A basis for Rn equips each point x ∈ Rn with a coordinate given by the n
coefficients of the basis vectors in the linear combination that yields x.

Definition 11 (Inner Product Space). An inner product on a vector space V defined over a field F is a
function 〈·, ·〉:V × V 7→ F with the following properties

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;

(ii) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉, for all x, y, z ∈ V and a, b ∈ F;

(iii) 〈x, x〉 ≥ 0, for all x ∈ V , and 〈x, x〉 = 0 ⇐⇒ x = 0.

An inner product space is a vector space equipped with a suitable inner product.

An inner product defines the notion of angle between two vectors, specifically defining when two vectors
are orthogonal (perpendicular) to each other.

Example 26. Vector space Rn equipped with the usual dot product forms an inner product space. Two
vectors in Rn are orthogonal when the angle between them is 90◦.

Definition 12 (Norm). A norm on a vector space V defined over field F (which is a subfield of the complex
numbers C ) is a function p:V 7→ R with the following properties:

For all a ∈ F and x, y ∈ V ,

(i) p(x+ y) ≤ p(x) + p(y);

(ii) p(ax) = |a|p(x);

(iii) If p(x) = 0 then x = 0.

A norm defines a notion of size of vectors.
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Example 27. An inner product space V with field R may be equipped with a norm p as follows:

p(u) =
√
〈u, u〉.

Remark 6. For real vector spaces defined over R, the symbol ‖·‖ is often used to denote the norm, instead
of p(·).

Definition 13 (Metric). A metric on a space X is a function d:X ×X 7→ R with the following properties

(i) d(x, y) ≥ 0 for all x, y ∈ X, and d(x, y) = 0 ⇐⇒ x = y;

(ii) d(x, y) = d(y, x), for all x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

A metric defines a notion of distance on a space.

Example 28. An inner product space V may be equipped with a norm ‖·‖, which then defines a metric
d:V × V → R as

d(u, v) = ‖u− v‖.
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