
Julia Tutorial
Author: Hasan Poonawala

Contents

1 Introduction 1
1.1 Online Course . 1

2 Installing Julia 2
2.1 MacOS . 2
2.2 Windows . 2

3 Basic Usage 3
3.1 Recommended Workflow . 3
3.2 First Run . 3
3.3 Package Management For Projects . 4

3.3.1 Local Environments . 4

4 Jupyter Notebooks 5

5 Creating Packages 6

6 Incorporating ‘Local’ Packages 7
6.1 Add externalProject folder as a subfolder of MyProject . 7
6.2 Add source files such as externalProject.jl . 7

7 Simulating Dynamical Systems And Robots 8
7.1 Example: Simulation Of Double Pendulum . 8
7.2 Example: PID Control Double Pendulum . 10
7.3 Example: Neural Network Control Of Double Pendulum . 10
7.4 Contacts . 11

1 Introduction

The Julia programming language is meant to be an open-source and efficient way to implement computing
algorithms. You may start by visiting this homepage that mentions advantages. For robotics, a specific
advantage is the work by groups at MIT and elsewhere that implements robotics-relevant algorithms as
Julia packages. A description of these packages can be found on the Julia Robotics webpage.

For our purposes, using Julia involves creating Julia code that imports a variety of packages and combines
them to achieve some goal. Using the right packages and understanding how to combine them depends on
understanding the theory behind the corresponding implementations. Below, we briefly mention installation
and first runs, and then get to the part about adding packages.

1.1 Online Course

See MIT’s Fall 2020 Course on Julia

1

https://julialang.org
https://juliarobotics.org
https://computationalthinking.mit.edu/Fall20/

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

2 Installing Julia

Visit this page for platform-specific instructions.

2.1 MacOS

The installation includes downloading the .dmg file, double-clicking it, and then moving the Julia image to
the Applications folder. I directly edited the file /etc/paths to add the Julia binaries folder to the path.

2.2 Windows

The installation on Windows is far smoother than I expected.

(a) Double-click to run installation file, then click on ‘Next’
(b) Copy and store the installation directory
that you choose, even if you use the default.
Click ‘Install’.

Figure 1: Installing Julia on Windows.

And you’re done, sort of. You must navigate to a specific folder to run Julia, which turns out to be the
location you saved with \bin appended to it:

Microsoft Windows [Version 10.0.]

(c) 2018 Microsoft Corporation. All rights reserved.

c:\Users\Hasan >

c:\Users\Hasan > cd AppData\Local\Julia-1 .3.1\ bin

c:\Users\Hasan\AppData\Local\Julia-1 .3.1\bin >

c:\Users\Hasan\AppData\Local\Julia-1 .3.1\bin > julia

This approach is limiting, and so we tell Windows where to find the Julia executable, as described on this
page. There is one error, in that this link does not mention the possible need to append \bin. The windows
you should expect to see while adding the path is below.
Now, you should be able to start Julia from any folder:

Microsoft Windows [Version 10.0.]

(c) 2018 Microsoft Corporation. All rights reserved.

c:\Users\Hasan >

c:\Users\Hasan > julia

2

https://julialang.org/downloads/platform/
https://julialang.org/downloads/platform/
https://julialang.org/downloads/platform/

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

(a) Run sysdm.cpl through the Windows Run
window

(b) Get to the ‘advanced’ tab, click on the ‘En-
vironment Variables’ button.

(c) Highlight the ‘Path’ entry and hit ‘Edit’.

(d) Click on ’New’ and enter the folder location
with the \bin appended as shown.

Figure 2: Adding Julia to the PATH.

3 Basic Usage

3.1 Recommended Workflow

My Julia involves using a Unix terminal to enter the Julia REPL (see Section 3.2) and run scripts from
within that REPL. I edit scripts using a text editor. This setup is identical to starting MATLAB and calling
code from the command window, after modifying it in the text editor window.

Previously this workflow meant switching between two windows. I now use VS Code as the editor, which
allows me to pull up a terminal window within the editor window.

A BAD way to use Julia is to use it like you would use Python or C++, namely to call scripts from the
command line by excuting ‘julia <filename>‘, without entering the REPL.

Another choice is to always use local environments for projects (see Section 3.3.1). This approach is similar
to using venv/vitualenv/poetry in Python.

3.2 First Run

At the command prompt, after adding the Julia directory to the path, run:

3

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

$ julia

which takes you into an interactive shell (REPL, or read-eval-print-loop). More details on first steps in that
shell can be found here.

To figure out which directory you are in:

julia > pwd()

To run a file test.jl, you can use either the command prompt

$ julia test.jl

or the Julia REPL:

julia > include("test.jl")

Again, I recommend avoiding the first method at least during code development.

3.3 Package Management For Projects

When you start Julia, you are in the default project/environment, which has a list of included packages
stored in the files Manifest.toml and Project.toml. These files describe the installed packages, including
a description of dependencies. See here for details. To run the code in Problem ??, you must install some
packages that aren’t included in the install.

To add these packages, Julia offers a package REPL that can be accessed from the Julia shell by pressing
] :

julia >]

results in

(v1.3) pkg >

You can now add a package PackageName by running:

(v1.3) pkg > add PackageName

Every file you run after starting Julia has access to this package, because Julia starts in the default
environment. When you always run a .jl file using the default Julia environment, the folder containing
that file won’t get its own Manifest.toml and Project.toml files.

3.3.1 Local Environments

To create local projects different from the default, you use environments. Environments provide a way to
isolate package dependencies for specific code from each other. To do so, run

(v1.3) pkg > activate .

including the period, and the prompt changes to

(foldername) pkg >

4

https://docs.julialang.org/en/v1/manual/getting-started/
https://docs.julialang.org/en/v1.0/stdlib/Pkg/

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Adding packages now will only add them to this project. In turn, this folder gets its own Manifest.toml

and Project.toml files.

To see this, you can run the st command in the package REPL:

(v1.3) pkg > st

will return something different from

(foldername) pkg > st

if you added something to the specific project.

On my machine, for folder dp_cl I get

(v1.3) pkg > st

Status ‘~/. julia/environments/v1.3/ Project.toml ‘

[a2e0e22d] CalculusWithJulia v0.0.1

[7876 af07] Example v0.5.3

[283 c5d60] MeshCat v0.9.1

[6 ad125db] MeshCatMechanisms v0.6.0

[366 cf18f] RigidBodyDynamics v2.2.0

[e61f16d8] RigidBodySim v1.3.0

versus

(v1.3) pkg > activate .

Activating environment at ‘~/Teaching/julia/dp_cl/Project.toml ‘

(dp_cl) pkg > st

Status ‘~/Teaching/julia/dp_cl/Project.toml ‘

[7073 ff75] IJulia v1 .20.2

[283 c5d60] MeshCat v0.5.0

[6 ad125db] MeshCatMechanisms v0.2.1

[91 a5bcdd] Plots v0 .22.2

[366 cf18f] RigidBodyDynamics v1.3.0

[e61f16d8] RigidBodySim v1.0.0

[90137 ffa] StaticArrays v0 .10.2

The project I created has older versions of the same packages, which is one reason you might like to use
environments.

4 Jupyter Notebooks

Jupyter is a nice browser-based environment in which to run Julia code as a notebook. Some students had
issues getting Jupyter to work, which may be an issue with Windows.

You need the IJulia package installed in Julia, see this page for details. You don’t have to install Jupyter
first, but I did. I used python3 and pip3:

$ pip3 install jupyter

Add the IJulia package:

5

https://github.com/JuliaLang/IJulia.jl

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

julia >]

(v1.3) pkg > add IJulia

To run jupyter in some folder:

$ jupyter notebook

at which point your browser launches a window showing files in that folder. You may then create a new
notebook to run Julia code.

5 Creating Packages

The full guide to creating packages can be found here.

The relationship between import and using is described here. That wikibook also describes how modules
and packages may be used. An example for a package directory can be found here.

A package is a project with a name, uuid and version entry in the Project.toml file, and a src/PackageName.jl
file that defines the module PackageName. This file is executed when the package is loaded.

In some folder baseFolder, create a subfolder corresponding to PackageName using the command, in the
Pkg REPL:

(v1.3) pkg > generate PackageName

Return to Julia REPL, enter the subfolder

julia > cd("PackageName/")

Enter Pkg REPL, activate this folder

julia >]

(v1.3) pkg > activate .

(PackageName) pkg >

Return to the Julia REPL. When you execute

julia > import PackageName

you should see a successful precompilation the first time, and no errors on subsequent uses.

Now, try running

(julia)> PackageName.greet ()

This function is predefined when you generate the package, via the module (a file) src/PackageName.jl:

module PackageName

greet() = print("Hello World!")

end # module

6

https://julialang.github.io/Pkg.jl/v1/creating-packages/
https://en.wikibooks.org/wiki/Introducing_Julia/Modules_and_packages
https://docs.julialang.org/en/v1/manual/code-loading/

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Your goal is to add functionality by modifying this file.

For example:

module PackageName

import Random

import JSON

greet() = print("Hello World!")

greet_alien () = print("Hello ", Random.randstring (8))

end # module

For this new version of the package to work, you will need to add Random, JSON to the project.

6 Incorporating ‘Local’ Packages

Suppose you are in a project with name/folder name MyProject. Someone shares their package externalProject
with you, as a folder named externalProject. Assume that this package’s src folder contains externalProject.jl:

module externalProject

greet() = print("externalProject Hello World!")

end # module

You can incorporate this package into your project in two ways. Note that a registered project (like
RigidBodySim) does not require these steps.

6.1 Add externalProject folder as a subfolder of MyProject

To correctly use externalProject – defined in the subfolder externalProject – to your project in MyProject,
you could run

julia >]

(v1.3) pkg > activate .

(MyProject) pkg > dev --local externalProject

julia > import externalProject

julia >externalProject.greet()

Hello World!

6.2 Add source files such as externalProject.jl

We can include the module defined in externalProject.jl to the folder MyProject/src/, and then modify
the file MyProject/src/MyProject.jl:

module PackageName

greet() = print("Hello World!")

7

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

include("externalProject.jl")

end # module

We access the functions in externalProject as follows:

julia > PackageName.externalProject.greet()

externalProject Hello World!

julia > PackageName.greet()

Hello World!

7 Simulating Dynamical Systems And Robots

We focus on solving ODE’s with continuous right-hand side. Some book-keeping by the programmer may
allow simulation of discontinuous systems. A detailed description is available here.

The main idea is to combine solvers for Ordinary Differential Equations with pacakges that convert Universal
Robot Description Formats (URDFs) into a set of simulatable ODEs.

We use the following packages, but not their latest versions due to compatibility issues:

[0c46a032] DifferentialEquations v6.12.0

[90137ffa] StaticArrays v0.12.1

[283c5d60] MeshCat v0.9.1

[6ad125db] MeshCatMechanisms v0.6.0

[366cf18f] RigidBodyDynamics v2.2.0

[e61f16d8] RigidBodySim v1.3.0

• The RigidBodyDynamics package allows specification of articulated robots, either explicitly, or through
parsing of URDFs. Specification means link lengths and inertias, and joint information of how these
links (rigid bodies) are joined to one another.

• RigidBodySim provides Julia tools for simulation and visualization of systems of interconnected rigid
bodies (both passive and controlled), built on top of RigidBodyDynamics, DifferentialEquations, and
RigidBodyTreeInspector.

• The packages MeshCat and MeshCatMechanisms allow visualization of mechanisms, and is used by
RigidBodySim.

7.1 Example: Simulation Of Double Pendulum

We may manually define a (planar) double pendulum using the code. Note, this code doesn’t show the
packages you need to use/import:

g = -9.81 # gravitational acceleration in z-direction

world = RigidBody{Float64 }("world")

doublependulum = Mechanism(world; gravity = SVector(0, 0, g))

axis = SVector (0., 1., 0.) # joint axis

I_1 = 0.333 # moment of inertia about joint axis

c_1 = -0.5 # center of mass location with respect to joint axis

m_1 = 1. # mass

8

https://nextjournal.com/sosiris-diffeq/ode-diffeq

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

frame1 = CartesianFrame3D("upper_link") # the reference frame in which the

↪→ spatial inertia will be expressed

inertia1 = SpatialInertia(frame1 , moment=I_1 * axis * axis ’, com=SVector

↪→ (0, 0, c_1), mass=m_1)

upperlink = RigidBody(inertia1)

shoulder = Joint("shoulder", Revolute(axis))

before_shoulder_to_world = one(Transform3D , frame_before(shoulder),

↪→ default_frame(world))

attach !(doublependulum , world , upperlink , shoulder , joint_pose =

↪→ before_shoulder_to_world)

l_1 = -1. # length of the upper link

I_2 = 0.333 # moment of inertia about joint axis

c_2 = -0.5 # center of mass location with respect to joint axis

m_2 = 1. # mass

inertia2 = SpatialInertia(CartesianFrame3D("lower_link"), moment=I_2 *

↪→ axis * axis ’, com=SVector(0, 0, c_2), mass=m_2)

lowerlink = RigidBody(inertia2)

elbow = Joint("elbow", Revolute(axis))

before_elbow_to_after_shoulder = Transform3D(frame_before(elbow),

↪→ frame_after(shoulder), SVector(0, 0, l_1))

attach !(doublependulum , upperlink , lowerlink , elbow , joint_pose =

↪→ before_elbow_to_after_shoulder)

The double pendulum is the mechanism named doublependulum.

Alternatively, if a URDF is available, like the one that comes with RigidBodyDynamics:

urdflocation = joinpath(dirname(pathof(RigidBodyDynamics)), "..", "test",

↪→ "urdf", "Acrobot.urdf")

doublependulum = parse_urdf(urdflocation)

Once you have a mechanism, you can simulate it using:

state = MechanismState(doublependulum)

there are multiple ways to set the full state config ,velocity. one is:

set_configuration !(state , shoulder , 0.3)

set_configuration !(state , elbow , 0.4)

set_velocity !(state , shoulder , 1.)

set_velocity !(state , elbow , 2.);

Call a simulator for initial condition started

set total time and timesteps of solution:

ts , qs, vs = simulate(state , 5., ?? = 1e-3); #?? is Delta t,doesn ’t render

↪→ here , see Julia files)

Now the solution qs with times ts may be animated:

vis = Visualizer (); open(vis); #Call this once , not for every simulation

mvis = MechanismVisualizer(doublependulum ,URDFVisuals(urdflocation),vis)

setanimation !(mvis , ts , qs)

9

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

7.2 Example: PID Control Double Pendulum

A control function may be specified to set joint torques in the simulation. This function is pretty rigid,
you only have the time and state to work with. The rest of the control function needs to be hard-coded.

urdfloc = joinpath(dirname(pathof(RigidBodySim)), "..", "test", "urdf", "

↪→ Acrobot.urdf")

mechanism = parse_urdf(Float64 , urdfloc)

state = MechanismState(mechanism)

set_configuration !(state , [0.1; 0.2])

function control !(tau , t, state)

Do some PD. Note tau is symbolic in actual Julia code

tau .= -20 .* velocity(state) - 100*(configuration(state) - [pi ;0.0])

end

problem = ODEProblem(Dynamics(mechanism ,control !), state , (0., 10.))

sol = solve(problem , Vern7()) # Can replace Vern7() with other integration

↪→ schemes

mvis = MechanismVisualizer(mechanism , URDFVisuals(urdfloc),vis)

setanimation !(mvis , sol; realtime_rate = 1.0);

7.3 Example: Neural Network Control Of Double Pendulum

If your control torque computations need more than just time t and state, we need a workaround to the rigid
nature of the control function. For example, let’s say that a structure nncontrol contains neural networks
that we wish to use to compute torques. (Note: I use Julia package Flux to work with neural networks.)
Here’s one way that I know of, using the setparams! feature in the Dynamics function, where we define a
new intermediate control function mysp! which has more freedom.

function control !(tau , t, state)

tau .= p

end

function mysp!(state ,p,nncontrol)

qgoal =[-0.6;1.3]

p[:] = -12* velocity(state) -50*(configuration(state)-qgoal) +

↪→ nncontrol.gravity_net(qgoal)

end

problem = ODEProblem(Dynamics(mechanism ,control !; setparams !=(state ,p)->

↪→ mysp!(state ,p,nncontrol), state , (0., 10.),p)

sol = solve(problem , Vern7())

mvis = MechanismVisualizer(mechanism , URDFVisuals(urdfloc),vis)

setanimation !(mvis , sol; realtime_rate = 1.0);

There may be other and better ways to do the same thing. The function calls for the method above may
also be overly complicated.

10

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

7.4 Contacts

Most robot arms have a base link that is rigidly attached to the world frame. For a robot like a quadruped
robot, none of its links are rigidly attached to the world frame. Its base link has a ‘floating’ joint with respect
to the world frame. If we simulate this quadruped, it falls through the ‘floor ’under gravity. Simulators like
Gazebo can take in meshes and create collisions. Unfortunately, Julia falls short on this aspect.

What we need to do is to add contacts manually.

This section describes describes the process. Let’s repeat the usual steps: Load packages:

using RigidBodyDynamics , MeshCat , MeshCatMechanisms

using LinearAlgebra , Printf

Load mechanism:

load mechanism

mechanism=parse_urdf("Cheetah.urdf";scalar_type=Float64 ,floating=true)

remove_fixed_tree_joints !(mechanism)

Define the ground that the robot’s feet will collide with:

create a half space representing ground

hs_p = Point3D(root_frame(mechanism) ,0.0 ,0.0 ,0.0)

hs_v = FreeVector3D(root_frame(mechanism) ,0.0 ,0.0 ,1.0)

hs = RigidBodyDynamics.Contact.HalfSpace3D(hs_p ,hs_v)

ce = RigidBodyDynamics.Contact.ContactEnvironment{Float64 }()

add half space to mechanism

push!(ce.halfspaces ,hs)

mechanism.environment = ce

Define the contact model:

create a soft contact model conmod3

import RigidBodyDynamics.Contact.ViscoelasticCoulombModel

import RigidBodyDynamics.Contact.HuntCrossleyModel

import RigidBodyDynamics.Contact.SoftContactModel

conmod1 = HuntCrossleyModel (50e3 ,1.5*0.2*50e3 ,1.5)

conmod2 = ViscoelasticCoulombModel (0.5 ,10e5 ,10e3)

conmod3 = SoftContactModel(conmod1 ,conmod2)

Create contact points on bodies in the Mechanism

cp1 = RigidBodyDynamics.Contact.ContactPoint(Point3D(default_frame(bodies(

↪→ mechanism)[7]) ,0.0,0.0,-1.0),conmod3)

add_contact_point !(bodies(mechanism)[7],cp1)

cp1 = RigidBodyDynamics.Contact.ContactPoint(Point3D(default_frame(bodies(

↪→ mechanism)[8]) ,0.0,0.0,-1.0),conmod3)

add_contact_point !(bodies(mechanism)[8],cp1)

cp1 = RigidBodyDynamics.Contact.ContactPoint(Point3D(default_frame(bodies(

↪→ mechanism)[9]) ,0.0,0.0,-1.0),conmod3)

add_contact_point !(bodies(mechanism)[9],cp1)

cp1 = RigidBodyDynamics.Contact.ContactPoint(Point3D(default_frame(bodies(

↪→ mechanism)[10]) ,0.0,0.0,-1.0),conmod3)

add_contact_point !(bodies(mechanism)[10],cp1)

11

ME/AER 676 Robot Modeling & Control University of Kentucky. Spring 2023

Define a control that regulates the quadruped towards some target pose:

PD control on shoulders and joints

function mytorque !(torques :: AbstractVector , t, state :: MechanismState)

desvec = [1.0;0;0;0;0;0;0;.1;.1; -.1; -.1; -1; -1;1.0;1.0]

torques .= 0

for i=1:8

torques [6+i]=-5* state.v[6+i] - 50*(state.q[7+i] - desvec [7+i])

end

end

Simulate as usual:

set the robot state

state=MechanismState(mechanism)

zero_velocity !(state)

set_configuration !(state ,[1.0;0;0;0;0;0;2.0;.5;.5; -.5; -.5; -1; -1;1;1])

define simulation time

final_time = 5.00

simulate

ts, qs, vs = simulate(state , final_time ,mytorque !);

display

mvis2 = MechanismVisualizer(mechanism , URDFVisuals("Cheetah.urdf"),vis2)

setanimation !(mvis2 ,ts ,qs)

You should now see the Cheetah drop from a height, and land on its feet with a small bounce in the body
due to leg compliance. The feet don’t move much at all.

12

	Introduction
	Online Course

	Installing Julia
	MacOS
	Windows

	Basic Usage
	Recommended Workflow
	First Run
	Package Management For Projects
	Local Environments

	Jupyter Notebooks
	Creating Packages
	Incorporating `Local' Packages
	Add externalProject folder as a subfolder of MyProject
	Add source files such as externalProject.jl

	Simulating Dynamical Systems And Robots
	Example: Simulation Of Double Pendulum
	Example: PID Control Double Pendulum
	Example: Neural Network Control Of Double Pendulum
	Contacts

