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ME 340 Intro. to Mech. Systems 1 INTRODUCTION: DYNAMICAL SYSTEMS

1 Introduction: Dynamical Systems

We want to describe the behavior of various physical and non-physical variables over time.
To be able to do so, we introduce the notion of signals and systems.

1.1 Signals

A physical variable, for example the speed v of a car, is a well-defined concept independent
of time. This physical variable belongs to a set, for example v ∈ R, the set of real numbers.

We can associate a physical variable with time. For example, the positions of all cars on
a road, or currents through components of an electrical circuit. This association takes the
form of a function that maps time to the set of values that the variable can take. For the
example of a car’s speed, we have

v:R→ R, t 7→ v(t).

Observe that we often use the same symbol that represents a physical quantity to also
represent the physical variable as a function of time. The notation above says that the
function v is a map from time (the set of real numbers) to the possible values that the
physical variable can take (which is also the set of real numbers). The notation also shows
what the transformation would look like. A given value of time t is mapped to the value of
the speed of the car at time t.

These functions of time constitute signals. We will see how we can view systems in terms
of signals and how they modify signals.

1.2 Systems

A system is some subset of the universe relevant to us. The remainder of the universe
becomes the environment with which the system interacts. Note that defining a system
becomes an act of choice.

The interaction between a system and its environment occurs through inputs and outputs.
An input is a physical quantity that is directly influenced by the environment, and cannot
be changed by the system. To most objects on Earth, gravitational force is an input. For
a vehicle suspension system, the road surface profile is an input. An output is typically a
physical quantity that can be influenced by the system, and also affect the environment. It
is not required that an output actually affect the environment. What we can or want to
observe about the system is often taken as its output.

Example 1. A bouncing ball is a system that interacts with the rest of the universe through
gravitational forces, and the reaction forces with the ground. The height of the ball above
the ground is one possible output.
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ME 340 Intro. to Mech. Systems 1 INTRODUCTION: DYNAMICAL SYSTEMS

From the view of the environment, the system accepts inputs from the environment and
produces outputs.

System
input u output y

Assume that we have some meaningful physical variables q that describe a system of interest.
For example, the positions of all cars on a road, or currents through components of an
electrical circuit. Suppose we know all physical inputs u(t) to the system for a future period
of time. For the cars, let the possible inputs be the forces acting on the car, typically the
reaction forces at the wheels, gravity, and air drag. For a circuit, the input may be a voltage
applied across two points. How do we know what q(t) will be, given u(t)?

In the simplest case, q(t) is an algebraic function of the input u(t). For example, the output
current i(t) through a resistance R across which we apply a given input voltage e(t) is simply

i(t) =
1

R
e(t).

For such a system, time is irrelevent, since the output at one moment of time doesn’t depend
on any other moment of time.

1.3 Dynamical Systems

A dynamical system is one where time factors into the relationship between inputs and
outputs.
The inputs are signals u(t), and the outputs are also signals y(t) A dynamical system can
then be thought of a signal that converts one signal into another. This conversion occurs in
‘real-time’.

Dynamical System
input u(t) output y(t)

Bicycle

Ground
Profile p(t)

Seat
Height
h(t)

t
p(t)

t
h(t) ?

For example, consider a bicycle as the sys-
tem, with the ground’s shape as an input
over time and the height of the seat as out-
put. Why is the output not just a mul-
tiple of the input at each time? The an-
swer is that the system has an internal state
which remembers the history of inputs, and
the output depends on this history through
dependence on the state of the system.
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Definition 1 (State). The state of a dynamical system consists of a set of independent
quantities that together allow prediction of the state at future times, given the inputs applied
to the system for all future time.

The state summarizes the history of a system, since the current state and (future) input
dictates the future state. State is typically denoted by x, and state at time t is x(t). The
next section discusses the use of ordinary differential equations (ODEs) to predict the future
state from the current state and future inputs.

Sumary. A dynamical system consists of inputs, outputs, and a state. The next section
describes the situation where ODEs describe the evolution of the state over time.

2 ODE Models

A differential equation is an equation that relates one or more functions and their deriva-
tives. An ordinary differential equation (ODE) is a differential equation containing one
or more functions of one independent variable and the derivatives of those functions. The
term ordinary is used in contrast with the term partial differential equation which may be
with respect to more than one independent variable. For example consider the following
models:

ODE:
d2

dt2
q(t) +

d

dt
q(t) + sin q(t) + (q(t))3 = 0

ODE:
d2

dx2
q(x) +

d

dx
q(x) + sin q(x) + (q(x))3 = 0

PDE:
∂2

∂x2
q(x, y) +

∂

∂y
q(x, y) + sin q(x, y) + (q(x, y))3 = 0

2.1 ODEs From First-Principles

For some systems, the physical quantities of interest (the output signals) are not algebraically
related to the input signals. Instead, principles from physics, or another domain, define
an algebraic relationship between physical quantities and their time derivatives. These
relationships define a set of ordinary differential equations containing those variables.
We refer to these ordinary differential equations as the equations of motion (EOMs) of
the system. Several systems can be usefully, if not perfectly accurately, modeled by a set of
ordinary differential equations.
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Example 2 (Simple Pendulum). The sim-
ple pendulum is a mass m suspended by
a rigid massless string of length L from a
point, moving under the effect of gravity g.
This system can be described by the angle
θ, with time t as the independent variable.
The rotational version of Newton’s laws pro-
vide the EoM:

mL2θ̈ +mgL sin θ = 0,

which is a second-order differential equation
in θ(t) with independent variable t.

θ

m

Fixed object
hinge

g

L

Summary. We focus on systems whose physical quantities all depend on a single one-
dimensional variable, usually time or a single spatial dimension (called the independent
variable). Once we make this choice, we are dealing with ODE models of the how these
quantities change with respect to the independent variable. We refer to the ODEs as the
Equations of Motion.

2.2 When Are ODE Models Appropriate?

We’ve seen the idea that models are often wrong, in the sense that they are not perfect.
However, these imperfect models are often still useful for making predictions about a system.
When are ODE models appropriate? By definition, ODE models require the variables to be
functions of a single independent variable, which is often time.

The angle of the simple pendulum only depends on time, and therefore we expect an ODE
model to be appropriate. Either from experience, or this class, you will know that the simple
pendulum tends to oscillate around the downward position (θ = 0).

Consider a cantilever beam on the right. We
want to know the vertical displacement at
each point on the beam, under different load-
ing conditions. That is, what is the relation-
ship between the shape of the beam and the
forces on it? Since the beam is a continuum,
this vertical displacement is a (continuous)
function of position x along the beam, say
ν(x). If this function changes over time, we
represent it instead by ν(x, t).
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The general equation governing the evolution of ν(x, t) is

∂2

∂x2

(
E(x)I(x)

∂2

∂x2
ν(x, t)

)
= −µ ∂

2

∂t2
ν(x, t) + q(x), (1)

where E(x) is the Young’s Modulus along the beam, I(x) is the cross-sectional moment of
inertia along x, µ is the linear mass density, and q(x) is the loading force applied at each x.

Equation (1) is a PDE, and is hard to solve in closed-form unless p(x) = 0 for each x. This
condition corresponds to free vibrations of the beam, which is interesting, but leaves out
many other engineering scenarios. For example, what happens if there’s a heavy mass m at
the end? then q(l) = mg 6= 0 and solving this equation is challenging.

Equilibrium behavior and ODEs. In ME 302, you would seek to understand the equi-
librium position ν(x) of the beam. The partial derivative due to time disappears, leaving

d2

dx2

(
E(x)I(x)

d2

dx2
ν(x)

)
= q(x) (2)

For the case of a uniform beam, E(x) = E, I(x) = I for all possible x, so we get

EI
d4

dx4
ν(x) = q(x) (3)

This model is an ODE, since there is only one independent variable, x. Common engineering
scenarios correspond to specific loading functions q(x), and engineering textbooks contain
closed form solutions for the end-point deflection ν(l) given such q(x), where l is the length
of the beam.

Unloaded Free Oscillations and ODEs: When q(x) = 0, we may separate the solution
ν(x, t) of (1) into ν(x, t) = X(x)f(t) (See this webpage for more details). This separation
means we can think of a shape X(x) that gets scaled by a number f(t) that changes over
time.

Rewriting (1), under the assumption of uniformity, we get

EI
∂4

∂x4
(X(x)f(t)) = −µ ∂

2

∂t2
(X(x)f(t)) (4)

=⇒ EIf(t)
∂4

∂x4
X(x) = −µX(x)

∂2

∂t2
f(t) (5)

=⇒ EI

µX(x)

∂4

∂x4
X(x) = − 1

f(t)

∂2

∂t2
f(t) = ω2

n (6)

We may replace partial derivatives by total derivatives. The equation determining f(t) is
now

d2

dt2
f(t) + ω2

nf(t) = 0.

This equation is a second-order differential equation much like the simple pendulum above.
The beam truly vibrates. We may think of this solution as a shape X(x) (also called mode)
that oscillates with amplitude f(t).

6
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2.3 Lumped vs Distributed Parameter Models

The cantilever beam is challenging to analyze because mass and elasticity are continuously
distributed throughout the beam, and especially along the length of it. This continuum
nature almost always leads to PDE-based models, which are difficult to handle.

By contrast, models such as that of the Solar system, where bodies are treated as point-
masses, are easier to handle. This simplicity due to treating planets as point-masses, instead
of bodies with distributed mass, is an example of a common approach to simplifying models.
This approach involves assuming that a physical variable spread continuously throughout
some region can be replaced by a physical variable of the same kind located at entirely one
location, or ascribed to one discrete object. This procedure is known as lumping physical
variables, and leads to Lumped Parameter Models.

Cantilever. We can also lump the elasticity of a cantilever beam under some conditions. If
we apply a single force P at the free end of the beam, (x = l), then the equilibrium deflection
is given by ν(l) = PL3

3EI
. Thus, at equilibrium,

P =
3EI

L3
ν(l) which looks like F = kx.

To deflect the end of a (uniform) cantilever beam by y and hold it there, we need a force
(3EI/L3)y. This relationship between force on the beam and deflection of the beam is far
simpler that what we’d predict from the PDE in (1). More importantly, it suggests that we
can view cantilever beams as a linear spring when connected to a mass that’s not moving, or
moving slowly! When the deflection changes slowly, we may lump the distributed elasticity
of the beam into a single elasticity given by a linear spring with spring constant 3EI/L3.
Additionally, we also account for the mass m of the beam by either neglecting it or adding
a suitable multiple of it to the mass M attached at the end.

Electrical Circuits. Another example is found in electrical circuits. Every part of the
circuit resists the flow of electricity. Resitance is continuously distributed throughout a
real circuit. Yet, we assume that all the resitance is located in a finite number of discrete
resistors, and all other components offer no resistance to the flow of current. Therefore, we
use a lumped physical model to represent what is actually a distributed physical reality.

In many cases, this process is quite acceptable. For example, all the resistance in the circuit
may be quite small compared to an individual component, and the lumped parameter model
is close-enough to reality. The simplicity of this lumped model is worth the small loss in
accuracy.

Not so fast. In some situations, design and analysis using a lumped physical model to
represent a distributed reality may lead to wrong and even dangerous designs. One example
is in robotic surgery, where it may be dangerous to model the elastic and inertial properties
of soft tissue as a lumped system with rigid masses and mass-less springs. Another example
is in electrical wiring, where long wires typically thought of as only resistors now act as
inductors, affecting the voltages and signals flowing in the electrical system.
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Equations of Motion
(Coupled ODEs in qi(t), q̇i(t), . . . , q

(n)
i (t))

Linear Input-Output
Differential Equation
any

(n)(t)+ · · · a0y(t) =
bmu

(m)(t)+ · · ·+b0u(t)

State-Variable
Equations
ẋ = f(x, u)
y = g(x, u)

Define
y, u

Define
x, y, u

Figure 1: Relationship between ODE representations for a dynamical system.

3 Representations Of ODE Models

We now understand that we will represent dynamical systems, where reasonable, by a set of
ordinary differential equations. What will these ODEs look like? There are effectively three
kinds of formats for the ODEs:

1. Equations of Motion (EOM)

2. State-Variable Equations (SV)

3. Input-Output Differential Equations (IO)

Figure 1 depicts the relationship between the three representations of dynamical systems as
ODES.

3.1 Equations of Motion

The equations of motion are the set of Ordinary Differential Equations obtained after ap-
plying domain principles to a system.

Consider the double pendulum in Figure 2. It is made up of two rigid links connected to
each other, and one to an immovable reference, using rotational joints. We may derive its
equations of motion (EoM) by appying Newton’s Second Law to each of the two rigid masses.
This procedure would lead to the two differential equations:

(1a)(
m1L

2
c1 +m2L

2
1

)
θ̈1 + d(θ2)θ̈2 + 2h(θ2)θ̇1θ̇2 + h(θ2)θ̇

2
2

+m2L2g cos(θ1 + θ2) + (m1Lc1 +m2L1) g cos θ1 = 0

(1b)d(θ2)θ̈1 +m2L
2
2θ̈2 − h(θ2)θ̇

2
1 +m2L2g cos(θ1 + θ2) = 0

8
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θ1

m1

m2
−θ2

Fixed object

hinge

g

L1

Lc1

L2

Figure 2: Double Pendulum

where d(θ2) = (m2L
2
2 +m2L1L2 cos θ2) and h(θ2) = −m2L1L2 sin θ2. We have neglected the

rotational inertia of the links about their centers of masses.

While this representation captures the rules governing the motion of the double pendulum,
we aren’t able to do much with them. We convert them into either State-Variable Equations,
or Input-Output Equations.

3.2 State-Variable Equations

Suppose we know q̇(t) as an explicit function of time, then we can integrate it to get q(t):

q(t) =

∫ t

t0

q̇(τ)dτ.

Now, we have an implicit function in the form of an ODE, that we can solve to obtain q(t).

Suppose we don’t have knowledge of q̇(t)? Maybe instead we know q̈(t) as an explicit function of time.
Now,

q̇(t) =

∫ t

t0

q̈(τ)dτ, and then q(t) =

∫ t

t0

q̇(τ)dτ.

This process is easily extended to knowledge of higher-order derivatives of q(t).

When would we know q(n)(t) = dn

dtn
q(t) as a function of time? Usually never. Instead, suppose

some physical principle provides f such that q̇(t) = h(q(t), u(t)). Then,

q̇(t) = h(q(t), u(t)) =⇒ q(t) =

∫ t

t0

q̇(τ)dτ =

∫ t

t0

h(q(τ), u(τ))dτ.

9
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Sometimes, we may instead know q̈(t) as a function of both q̇(t), q(t), and u(t), in the form
q̇(t) = h(q̇(t), q(t), u(t)). Define the vector

x(t) =

[
q(t)
q̇(t)

]
.

Then

ẋ(t) =

[
q̇(t)
q̈(t)

]
=

[
q̇(t)

h(q̇(t), q(t), u(t))

]
= f(x(t), u(t)).

Again, with some abuse of notation, we have an implicit function for x(t) involving first-order
derivatives of x(t) only:

x(t) =

∫ t

t0

f(x(τ), u(τ))dτ.

Solving this equation, which is same as solving the ODE ẋ(t) = f(x(t), u(t)), would yield
x(t). If we know that y(t) = g(x(t), u(t)), then once we solve for x(t), we know what y(t) is.

The equations

ẋ(t) = f(x(t), u(t)) (2)

y(t) = g(x(t), u(t)) (3)

together form the State-Variable equations. Notice that

1. The LHS (left-hand side) of (2) is a first-order derivative of x(t).

2. The RHS (right-hand side) of (2) is an algebraic function of only state x(t) and input
u(t).

3. The LHS of (3) is y(t), NOT a derivative of it.

4. The RHS of (3) is also an algebraic function of only state x(t) and input u(t).

If the LHS and RHS of these equations do not meet the above condition, then they are not
valid SV equations.

3.3 Input-Output Differential Equations

When we use State-Variable Equations, we need to solve as many ODEs are the size of the
state x(t). Sometimes, we’re interested in a particular function g(x(t), u(t)), instead of the
full state x(t). In this case, we can define the output y(t) = g(x(t), u(t)). However, we
avoid the two-step process of solving for x(t) and then using g to compute y(t). Instead, we
convert the EOMs into an Input-Output Differential Equation and solve for y(t) without
ever using the state x(t).
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Consider a one-dimensional input u(t) and one-dimensional output y(t). An input-output
differential equation for a linear system is then of the form

any
(n)(t)+an−1y

(n−1)(t) + · · ·+ a2ÿ(t) + a1ẏ(t) + a0y(t) (4)

= bmu
(m)(t) + bm−1u

(m−1)(t) + · · ·+ b2ü(t) + b1u̇(t) + b0u(t) (5)

where an, an−1, . . . a0, bm, bm−1, . . . , b0 are real-valued coefficients. For systems with nonlinear
dynamics, some terms in the equation above will be nonlinear.

3.3.1 EoM To IO Equations Using The p-operator

The Equations of Motion are a set of noninear coupled equations with a number of variables.
The input-output equations are derived from these equations by a process of elimination
identical to solving algebraic systems of equations.

How do we go from differential equations to a system of algebrai equations? We use the
p-operator. The idea is

Replace
d

dt
→ p (6)

so,
d

dt
x(t)→ px (7)

d

dt

(
d

dt
x(t)

)
→ d

dt
(px(t))→ ppx→ p2x (8)

x(n)(t) =
dn

dtn
x(t)→ pnx (9)

This step is purely for convenience when manipulating differential equations, by replacing
the derivative with the quantity p, and treating it as a variable that we manipulate using
usual algebra.

Note that
p(xy) = ypx+ xpy,

since
d

dt
(x(t)y(t)) = y(t)

dx

dt
+ x(t)

dy

dt

m
f

q2q1

kc

Example. Consider the translational me-
chanical system to the right. We may derive
its equations of motion as:

mq̈2 + kq2 − kq1 = f (10)

cq̇1 + kq1 − kq2 = 0 (11)

11
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If we choose the output as y = q1 and input
as u = f , we get the IO differential equation

mcy(3)(t) +mkÿ(t) + kcẏ(t) = ku(t) (12)

To derive the IO equation in (12), we will use the p-operator. First, replace variables with
u and y where appropriate.

mq̈2 + kq2 − kq1 = f (13)

cq̇1 + kq1 − kq2 = 0 (14)

becomes

mq̈2 + kq2 − ky = u (15)

cẏ + ky − kq2 = 0 (16)

Now, we replace derivatives using the p-operator:

mp2q2 + kq2 − ky = u (17)

cpy + ky − kq2 = 0 (18)

Collect like terms, treating p as a variable, not a derivative:

(mp2 + k)q2 − ky = u (19)

(cp+ k)y − kq2 = 0 (20)

Now, we just need to eliminate q2 so that we get an equation in just y and u, and their
derivatives as captured by p. Note that other problems may require us to eliminate more
than just one variable.

Solve for q2 in (20):

(cp+ k)y − kq2 = 0 =⇒ q2 =
cp+ k

k
y (21)

Substitute this into (19):

(mp2 + k) q2︸︷︷︸
replace

−ky = u→ (mp2 + k)
(cp+ k)

k
y − ky︸ ︷︷ ︸

collect

= u (22)

=⇒
(

(mp2 + k)(cp+ k)

k
− k
)
y = u (23)

=⇒
(

(mcp3 +mkp2 + kcp+ k2 − k2)
k

)
y = u (24)

=⇒ (mcp3 +mkp2 + kcp)y = ku (25)

=⇒ mcp3y +mkp2y + kcpy = ku (26)

=⇒ mcy(3)(t) +mkÿ(t) + kcẏ(t) = ku(t) (27)

In the last step, we replace the p-operator by derivatives applied to the variable on the right.

12
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Linear Equations of Motion
(Coupled ODEs in qi(t), q̇i(t), . . . , q

(n)
i (t))

Input-Output
Differential Equation
any

(n)(t)+ · · · a0y(t) =
bmu

(m)(t)+ · · ·+b0u(t)

p-operator

Transfer Function
ŷ(s) = G(s)û(s)

Laplace Transform
IC = 0

Inverse LT

Laplace
Transform

Figure 3: From EOMs to IO to Transfer Functions. Instead of using the p-operator approach,
we may derive IO equations from IOM by computing a Laplace Transform and then its
inverse.

3.3.2 Relationship to Laplace Transforms

Later, we will see how to use Laplace transforms to obtain transfer functions that relate
input to ouputs. These Transfer functions are closely related to IO equations. We can easily
convert Transfer functions into IO differential equations and back. Figure 3 depicts this
seemingly round-about approach.

4 Examples

Problem 1 (Textbook Example 3.2). Write output in terms of spring tension fs2 and total
momentum mT of masses.

m1

q1(t)

k1

c

k2

m2
u(t)

q2(t)

Solution: We get the free-body diagrams:

13
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k1q1

c(q̇2 − q̇1)

k2(q2 − q1)

q1

m1

c(q̇2 − q̇1)

k2(q2 − q1)
u

q2

m2

Applying Newton’s second law, we get EOMs:

m1q̈1 = k2(q2 − q1) + c(q̇2 − q̇1)− k1q1, and (1)

m2q̈2 = u− k2(q2 − q1)− c(q̇2 − q̇1). (2)

How should we choose the state?

1. By default: use positions q1, q2, and their velocities v1 = q̇1, v2 = q̇2. Later, remove
non-independent states.

2. Determine which physical variables are needed to compute the outputs, and use them
to define a state.

The solution in the textbook goes with the first approach, arguing that the default choice
results in independent states.

Default approach:
The state is taken to include q1, q2, v1, and v2. As usual, we get the first two equations
directly, and the derivatives v̇1 and v̇2 from (1) and (2):

q̇1 = v1,

q̇2 = v2,

v̇1 =
1

m1

(k2(q2 − q1) + c(v2 − v1)− k1q1) , and

v̇2 =
1

m2

(u− k2(q2 − q1)− c(v1 − v1)) .

Outputs:

y1 = k2(q2 − q1), and

y2 = m1v1 +m2v2.

There are no independent states, and so these are the state-variable equations.

Output approach: The outputs are y1 = k2(q2 − q1), and y2 = m1v1 + m2v2. Clearly, the
state will need to include q1, q2, v1, and v2 for the outputs to be an algebraic function of the
state.

14
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m1

q1(t)

k1 = 0

c

k2

m2
u(t)

q2(t)

Problem 2 (Textbook Example 3.5). Write output in terms of spring tension fs2 and total
momentum mT of masses, when k1 = 0. Repeat the problem when q1 is an additional output
of interest.

Solution:
The textbook states that we should expect three state variables because there are three
energy storing elements: two masses and a spring. The velocities v1 and v2 are chosen as
states, as is the relative displacement qR = q2 − q1.

Default approach:
Setting k1 = 0 in the default solution of Example 3.2 results in:

q̇1 = v1,

q̇2 = v2,

v̇1 =
1

m1

(k2(q2 − q1) + c(v2 − v1)) , and

v̇2 =
1

m2

(u− k2(q2 − q1)− c(v1 − v1)) .

There’s no clear way to determine algebraic relationships between the state variables that
enable us to eliminate dependent state variables.

Ouput approach:
If the output is just fs2 = k2(q2 − q1), let’s choose one state as qR = q2 − q1. We don’t have
a method to calculate q̇R( = vR). We have a rule to calculate q̈R (= v̇R). Therefore, by
including vR in the state, we can write the equations

q̇R = vR,

v̇R = q̈2 − q̈1

= − 1

m1

(k2(q2 − q1) + c(v2 − v1)) +
1

m2

(u− k2(q2 − q1)− c(v1 − v1))

=
1

m2

(u− k2qR − cvR)− 1

m1

(k2qR + cvR)

y = k2qR

which is a valid state-variable representation of the system.

15
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If the output mT is included, we would have y2 = m1v1 +m2v2. There’s no way to make mT

an algebraic function of qR and vR. This issue suggests that we need to include either v1 or
v2 in the state:

q̇R = vR,

v̇R = − 1

m1

(k2qR + cvR) +
1

m2

(u− k2qR − cvR)

v̇2 =
1

m2

(u− k2qR − cvR)

y1 = k2qR

y2 = m1(v2 − vR) +m2v2

Instead, one can choose to use v1:

q̇R = vR,

v̇R = − 1

m1

(k2qR + cvR) +
1

m2

(u− k2qR − cvR)

v̇1 =
1

m1

(k2qR + cvR)

y1 = k2qR

y2 = m1v1 +m2(vR + v1)

Instead, we can replace vR by v1 and v2:

q̇R = v2 − v1,

v̇1 =
1

m1

(k2qR + c(v2 − v1))

v̇2 =
1

m2

(u− k2qR − c(v2 − v1))

y1 = k2qR

y2 = m1v1 +m2v2

If additionally an output is taken to be q1, the same problem arises. We can’t represent the
output q1 in terms of the states we have chosen so far. The correct solution is to add q1 as

16
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a state

q̇1 = v1

q̇R = v2 − v1,

v̇1 =
1

m1

(k2qR + c(v2 − v1))

v̇2 =
1

m2

(u− k2qR − c(v2 − v1))

y1 = k2qR

y2 = m1v1 +m2v2

y3 = q1

Example 3. Consider a dynamic system modeled by

q̈1 + 2q̇2 + 3q1 = f (3)

q̈2 + 4q̇1 + 5q2 = 0 (4)

where f is an external force. Find an IO OdE with u = f , y = q1.

Plug in u = f , y = q1:

ÿ + 2q̇2 + 3y = u

q̈2 + 4ẏ + 5q2 = 0

Rewrite using p operator ( dn

dtn
q(t)→ pnq)

p2y + 2pq2 + 3y = u

p2q2 + 4py + 5q2 = 0

Group terms, where p follows normal algebra of numbers:

(p2 + 3)y + 2pq2 = u

(p2 + 5)q2 + 4py = 0

Eliminate q2, leaving y, u, p and model parameters if any:

p4y + 15y = p2u+ 5u.

This equation implies that

y(4)(t) + 15y(t) = ü(t) + 5u(t).
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