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1 Introduction

We view a mechanical system as a collection of objects that have four major types of forces:

1. Inertial forces

2. Elastic forces

3. Frictional forces

4. Reaction forces

Inertial forces are forces that are experienced when the momentum of an object changes.
Elastic forces arise due to a resistance to change in shape. Frictional forces arise due to a
resistance to relative motion between surfaces in contact. Reaction forces typically arise at
contacts, and represent constraints of motion.

1.1 Lumped Models

An object like a physical spring is made material that has both mass and elasticity. Similarly,
a block of metal will compress slightly when appropriate forces are applied. However, for
purposes of modeling, we will assume that springs are massless, and objects with masses
lack elasticity, that it is, they are perfectly rigid. We are effectively lumping the mass and
elasticity in a system into idealized masses and idealized springs.

1.2 Frames of Reference and Motion

This course focuses on systems with two spatial dimensions. Therefore, we can draw all our
systems on a sheet of paper, representing the two-dimensional plane. Most of the content
can be extended to the three-dimensional space directly. The symbol R2 denotes this plane.

Points in the two-dimensional plane do not have intrinsic coordinates. Every Cartesian coordinate frame
assigns its own unique coordinate to a point in two-dimensions.

NOT Cartesian
Frames

Cartesian Frame

A Cartesian coordinate frame in R2 consists
of a single point and two vectors. These two
vectors must be perpendicular, and have the
same length. The vectors effectively define
what unit length means in this coordinate
system. Moreover, in a Cartesian frame,
unit length doesn’t change when you rotate
objects.

Table of Contents 3
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oA

p

xA

yA
pAy

pAx

Consider a Cartesian coordinate frame A
with origin oA and vectors xA and yA that
define the x− and y− axis of frame A. The
Cartesian coordinates (pAx , p

A
y ) of a point p in

frame A are the lengths between the origin
and the points of intersections of perpendic-
ular lines from q to the x− and y− axes.

p = oB

q

oA xA

yA
xB θ

yB

The same point in space can have multiple
coordinates, each corresponding to a differ-
ent frame. We can relate descriptions of
the same point in space in different coor-
dinate frames via rigid coordinate transfor-
mations. In the figure to the right, if we are
given coordinates of q in frame B, which are
(qBx , q

B
y ), then we compute the coordinates

of q in frame A as

qA =

[
qAx
qAy

]
=

[
cos θ − sin θ
sin θ cos θ

] [
qBx
qBy

]
︸ ︷︷ ︸

Rotation

+

[
pAx
pAy

]
︸ ︷︷ ︸

translation

= RqB + T (1)

This transformation can be split into two terms, one that rotates the original coordinates
through the matrix R and then translates by the vector T . Therefore, when describing
motion of objects in two dimensions (and also three dimensions), we may separate it into
translation and rotation.

Main Takeaway. To describe the position of a point, we need to choose a coordinate
frame. Since we may define several coordinate frames in the plane, one challenge is making
sure that we perform calculations in the same reference frame. Relative positions, and
therefore motions, may be decomposed into translation and rotation.

Table of Contents 4
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2 Inertia (Masses)

Since motion may be separated into rotational and translational components, we separate
inertial forces into translational and rotational components.

2.1 Translation and Translational Inertia

We denote the linear inertial of a body by m. A linear inertia is always associated with a
point, and for a body, we associate the entire mass of the body with its center of mass. The
center of mass is the average location of all the mass of the body, relative to a reference
frame. The center of mass turns out to be independent of the reference frame with respect
to which we calculate it, making things easier.

m
f

external force

q
linear position of m

represents non-moving ref-
erence frame

Figure 1: Translating Mass

For geometrically symmetric objects with
uniform material density, the center of mass
is located as the geometric center of the
shape. For example, the mass shown as a
square on the right has its center of mass at
the center of this square. We therefore as-
sign the horizontal location of the mass m
as q, relative to the reference indicated by
the hashed lines. The horizontal location of
mass m, is therefore q. If we associate the
position with time, to obtain q(t), we may
define its velocity q̇(t) = dq/dt and acceler-
ation q̈(t) = d2q(t)/dt2.

m

q

Figure 2: Diagram when q(t) = 0

Convention. For the figure on the right,
the value of q(t) is zero. If we matched
the method shown in Figure 1, we would be
drawing an arrow of length zero, meaning no
arrow. Instead, the diagram still contains an
arrow labeled q, where q̂ indicates the pos-
itive sense of the axis that determines the
location q(t) of the mass m. In practice, if
the arrowhead does not touch a perpendicular line (dashed or solid), then it indicates direc-
tion, and its length is unimportant.

Table of Contents 5
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2.2 Rotation and Rotational Inertia

A body is rotating relative to a frame if we can find one point on that body that is moving
with respect to that frame, and another point that is stationary with respect to that frame.
Often, this stationary point is fixed, for example a disk spinning about an axis on the right.

The angular position is θ(t) in rad. The angular velocity is θ̇(t) in rad/s. The angular
acceleration is θ̈(t) in rad/s2.

A rotational inertia of an object is associated with an axis. The rotational inertia J of a body
that moves in a plane is associated with an axis passing through a point and perpendicular
to the plane. Therefore, for two-dimensional systems, the rotational inertia is effectively
associated with a point. Again, we typically use the center of mass as a reference point.
Unlike for translational inertia, if we use a different point, we get a different value for the
rotational inertia (see Parallel Axis Theorem below).

axis of rotation

fixed
referenceθ(t)

J

Rotational Inertia
about axis of rotation

Angular Position

τ(t)

Torque

3D view

+

J θ(t)τ(t)

In-plane view

axis of rotation

Figure 3: Rotating Mass

For rotational mechanical systems, the (rotational) inertia J depends on the mass (linear
inertia) and the shape of the body.

r

axis of rotation

r

mass m
Given a disk of mass m and radius r,
with uniform thickness, its inertia is
Jdisk = 1

2
mr2.

Table of Contents 6
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l/2

l/2

Given a bar of mass m and length l,
with uniform thickness, its inertia is
Jbar = 1

12
ml2.

axis of rotation

Parallel Axis Theorem. Given a rotational inertia J0 about an axis passing through the
center of mass of an object, the rotational inertia J about an axis parallel to the first axis is
given by

J = J0 +ml2,

where l is the distance between the parallel axes.

l

Example. Given a bar of mass m and
length l, with uniform thickness, its inertia
about the center of rotation is
J = J0 +m

(
l
2

)2
, or

J = ml2

12
+ ml2

4
= ml2

3

2.2.1 Newton’s Laws

Newton’s second law gives
Jθ̈(t) = τ(t).

The rotational kinetic energy of this body is

1

2
Jθ̇2(t).

The power consumed by the body is τ(t)θ̇(t) N ·m/s.

Table of Contents 7
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3 Elasticity (Springs)

3.1 Linear Springs

End-points

k

Free length d0
We depict a linear spring using the symbol
to the right, which can be described as a
zig-zag pattern that mimics a coiled spring.
As shown, no forces act on the spring, and
the length between its endpoints is called the
free length d0. We assume that this spring is
ideal, so that it has no mass. Additionally,
this ideal behavior implies that the forces at the two ends are always equal and opposite.

fs = 0 fs = 0

k

Free length d0

fs > 0fs > 0

fs > 0fs > 0

∆d < 0

∆d > 0

The length of a spring changes based on the
force applied at its ends. To calculate the
spring force fs we will use in our models, we
need to understand three things:

1. The free length d0 of the spring

2. The relationship between the exten-
sion ∆d of the spring and the configu-
ration of the system.

3. The relationship between force fs and
the extension of the spring (spring
model); the latter is given by the ac-
tual length minus the free length.

If this information is not given, we may assume the following defaults:

1. Default free length: the free length corresponds to the length of the spring when all
variables are at 0.

2. Default relationship: The spring force is linear in the spring extension fs = k∆d.

L(t)

q1(t) q2(t)

k

Figure 4:

Consider the spring on the right, with spring
constant k. Its two ends are at configura-
tions q1(t) and q2(t). Therefore, the length
d(t) of the spring is d(t) = q2(t)− q1(t) + L.
As shown, q1(t) = 0 and q2(t) = 0, so
d(t) = L. If no other information is given,
we may apply the defaults: the free length is
the length when all configurations are zero.

Table of Contents 8
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This means d0 = L. The force-extension re-
lationship is taken to be linear by default.
Therefore,

fs = k∆d (2)

= k(d(t)− d0) (3)

= k(q2(t)− q1(t) + L− L) (4)

= k(q2(t)− q1(t)) (5)

NOTE: We could write down the same expression for fs if L was not provided, by
observing that L always cancels out under the default assumptions.

q1(t) q2(t)
L

k. d0 6= L. Cubic

A more complete picture is given to the
right. Now, q1(t) 6= 0 and q2(t) 6= 0. The
free length has been given as d0 6= L. In this
case,

fs = k(∆d)3 (6)

= k(d(t)− d0)3 (7)

= k(q2(t)− q1(t) + L− d0)3 (8)

which cannot be simplified as before.

Table of Contents 9
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3.2 Spring Forces on Inertias

m

q(t)

k

L

The figure on the right depicts a spring k
connected to a fixed object on its left and a
mass m on its right. Through these connec-
tions, the extension of the spring depends on
q, which is the position of the mass m rela-
tive to the second reference. As described in
Section 3.1, this diagram indicates that the free length of the spring is L (position of mass
m is q = 0).

m

k

L

m

k

L+ q

q(t)

Now, we move the mass m to a position
q 6= 0. In this case, we can draw an arrow
from the reference to the actual position of
m, unlike the diagram above where q was
zero.

By Newton’s Third Law, every force has an
equal and opposite reaction. So, if a spring
is connected to a mass, the motion of the
mass may extend or compress the spring.
The force applied by the mass on the spring
is equal and opposite to the force applied by
the spring on the mass. Therefore, the spring force fs acting on a mass must be equal to
the force required to produce the extension (or compression) of the spring. This situation is
depicted as:

k

fsfs mfs

For the relationship between the length of the spring and the configuration qi of the mass
mi, the critical question is: does an increase in qi extend or compress the spring?
There are two ways to use the answer of that question.

1. The FBD always has the spring force pulling the mass mi towards the spring, and
the spring force is proportional to changes that extend the spring. The spring force is
proportional to qi(t) if increasing qi(t) extends the spring, otherwise it is proportional
to −qi(t). The latter statement is the same as saying increasing −qi(t) extends the
spring, so the spring force is proportional to −qi(t).

2. The spring force is always proportional to qi(t), the spring force pulls mass mi towards
it if increasing qi(t) extends the spring, otherwise it pushes mi away from it.

Table of Contents 10
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Below are some cases where you can see how to apply these two conventions. Use whichever
you find easier to apply consistently.

m

q(t)

k

mFBD:

Case 1a and Case 1b
(identical)

kq(t) = fs

q(t)

Case 1a: spring to left of mass, q(t) increases to the right. We automatically declare that
the FBD of the mass will have fs on the left pointing leftwards. Increasing q(t) extends the
spring, so

fs = kq(t),

and mq̈ = −fs = −kq(t).

Case 1b (Alternative): The spring force is declared to be fs = kq(t). Since Since increasing
q(t) extends the spring, the FBD of the mass will have fs on the left pointing leftwards
(pulling the mass). We use the FBD to find that mq̈ = −fs = −kq(t).

Note that Case 1a and 1b aren’t really distinguishible. The next situation shows where
applying the two methods produces different terms, but the same final EOM.

Case 2a: spring to right of mass, q(t) increases to the right. The FBD of the mass will have
fs on the right pointing rightwards. Increasing q(t) compresses the spring, so

fs = −kq(t),

and mq̈ = fs = −kq(t).

Case 2b (Alternative): spring to right of mass, q(t) increases to the right. We take the spring
force to be

fs = kq(t).

Increasing q(t) compresses the spring, so the FBD of the mass will have fs on the right
pointing leftwards towards m. Now, mq̈ = −fs = −kq(t).

m

q(t)

k

mFBD: Case 2a:
fs = −kq(t)

q(t)

mCase 2b:
fs = kq(t)

q(t)

Table of Contents 11
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Notice that case 2a and 2b result in the same dynamics, with different expressions for the
spring force.

3.3 Torsional Springs

The rotational stiffness k of an element produces a restoring torque τs that is an algebraic
function of the angular displacement θ of the element. Springs that produce such a spring
are called torsional springs. When the algebraic function is linear,

τs(t) = kθ(t),

where here the unit of stiffness k is N ·m/rad. Since τs is a restoring force, its direction will
be opposite to the direction of increasing θ(t).

k

τs(t)
θ(t)

Sign is opposite to positive
sense of θ

Right end of element

Example 1 (Single DOF Rotational System). Write down the equations of motion of the
following rotating body:

τ(t)

θ(t)

J

+
J

τs(t)

τ(t)

θ(t)

Free body Diagram

k

c

�

Note that the diagram just shows two cylinders. One is long with small radius with symbol
k, the other is thin with large radius and symbol J . We therefore interpret the long cylinder
as a massless torsional spring with rotational stiffness k, and the cylinder J as a perfectly
rigid object with rotational inertia J . Again, this model is lumping inertia and elasticity.
We assume that J purely rotates, so its translational inertia (mass) is irrelevant.

Table of Contents 12
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Apply Newton’s second law to get

Jθ̈(t) = τ(t)− τs(t) (9)

= τ(t)− kθ(t) (10)

=⇒ Jθ̈(t) + kθ(t) = τ(t) (11)

Table of Contents 13
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4 Friction (Dampers)

4.1 Linear Friction

End-points

c

length L(t)

fdfd
dL
dt
> 0dL

dt
> 0

fdfd
dL
dt
< 0dL

dt
< 0

We use a dashpot, or damper, to represent
frictional forces. The symbol for a damper
is shown in the figure to the right. When no
information is provided, we take the model
for the force due to this damper to be linear.
That is,

fd = c
d

dt
L(t).

Similar to an ideal spring, an ideal damper
has no mass. This assumption means that
the damping force at both ends are equal in
the ideal case.

When we connect a damper to a mass, the
mass feels the opposite force. The diagrams below shows how to correctly account for the
force on a masses Free Body Diagram due to a damper:

m

q(t)

c

mFBD:
cq̇(t) = fd

q̇(t) > 0

When increasing q(t) decreases L(t), we may use two equivalent approaches. One approach
is to identify the positive direction of L̇(t), and use a force with magnitude fd = cL̇(t) and
direction such that it points from the mass towards the damper. The other method is to
simply apply the idea that the damping force opposes motion, and so the damping force
cq̇(t) points in the opposite direction of the mass’ velocity.

m

length L(t)

q(t)

c

mFBD:
cdL
dt

= −cq̇(t) = fd

dL
dt
> 0

m
cq̇(t) = fd

q̇(t) > 0

Table of Contents 14
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4.2 Rotational Friction

θ(t)

τd(t) c

The relative motion between two objects
may produce a resistive force fd which is usu-
ally modeled as an algebraic function of the
linear velocity between the two surfaces.

If an object is in pure rotational motion, the
linear velocity is proportional to the angular
velocity of the object, and the resistive force
acts as a resistive torque τd about the axis
of rotation.

When this relationship is linear, we can express it as

τd = cθ̇(t),

where c has units N ·m · s/rad Here, the simplest approach is to observe that the damping
torque has direction opposite to the positive sense of θ, which is also the positive sense of
θ̇(t).

Table of Contents 15
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5 Connectors and Pulleys

Our model of a system will combine lumped inertias, springs, and frictional elements. Some
of these elements only translate, some will only rotate about a fixed axis, and some elements
will both translate and rotate.

In keeping with our approach of lumping physical quantities into representative elements,
we represent physical connections between elements by the following types of elements:

1. Perfectly rigid massless rods:

• Force on both ends are always equal (like spring, damper)
• Length never changes =⇒ velocity of both ends are equal

2. Perfectly inextensible massless strings

• Tension acts along string, and is equal at all points
• When tension positive, velocity of both ends are equal
• The tension cannot be negative. Physically, the string is ‘slack’ and applies zero

force on the objects it is connected to. The motion of the ends are independent.

m

k

L

c

(a)

m

k

c

massless rods

(b)

m

k

c

(c)

m

k

c

(d)

Figure 5: The use of massless rods to connect the mass, spring, and damper lead to a
simplified diagram in Figure 5d in which the ends of the elements are not shown. Figure 5a-
c shows that the massless rods effectively move the end-points of the elements, since the
same force is transmitted at all points. This diagram also explains why we prefer to infer
the free-length of the spring from the diagram and positions of masses, since the end-points
can be moved on mass-less springs without changing the extension of the spring.

Table of Contents 16
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Figure 5 shows an example of how we connect elements using massless rods, and then simplify
the diagram by removing explicit points of connection. Similarly, Figure 6 depicts connection
between elements using strings.

An important idea is that these connectors are ideal, and so we never observe any forces due
to those connectors. The tension T is an internal force, and should never appear in a
final set of Equations of Motion, although it shows up when applying Newton’s laws.

m

q(t)

string

θ(t)

+

J

r

T

T

k2

string
spring

Connection nor-
mally not shown
(See Example 8)

k1

c

Figure 6: The mass-spring-damper system of Figure 5 connected to a spring on the right
through a string wrapped around a pulley. The tension in the string is T , which is the same
at all points for an ideal string. Assuming the spring is always in tension (T ≥ 0), then any
vertical motion of the upper end-point of spring k2 causes an equal motion of the mass m,
and vice versa. The force fs2 on m due to spring k2 is fs2 = −k2q. Make sure you understand
why this force is NOT k2q.
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6 Examples

Example 2 (Spring-Mass-Damper). Find the EOM for the System shown below.

m

q

f(t)

k

c

FBD: m f(t)
fs = kq

fd = cq̇

�

Solution: Since no information is provided, we assume spring and damper are linear, and
that the spring has zero extension when q = 0.

Applying NSL: mq̈(t) = f(t)− fs − fd = f(t)− kq(t)− cq̇(t), so that we get

mq̈(t) + cq̇(t) + kq(t) = f(t).

We will see this kind of second-order system many times.

Example 3. Find the EOM for the System shown below.

m1

m2

q1 q2

f1(t)

f2(t)

k3

k2k1

c1

�

Solution: There are two independent masses, so that the system is described by two inde-
pendent positions q1 and q2. We would therefore expect two differential equations to model
this system.

Since no information is provided, we assume springs and dampers are linear, and that the
springs have zero extension when q1 = 0 and q2 = 0.

Table of Contents 18
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Mass 1 The position of this mass is given by q1(t). The free body diagram is

m1

fs2

f1

fs1

fd1

Spring k1 By our convention,
fs1 = k1q1(t).

Damper c1 By a similar convention,

fd1 = c1q̇1(t).

Spring k2 The change in length of the spring from its free length is q2(t)− q1(t), so that

fs2 = k2(q2(t)− q1(t)).

Newton’s Second Law

(12)m1q̈1(t) =
∑

f

= fs2 + f1 − fs1 − fd1
= k2q2(t)− k2q1(t) + f1(t)− k1q1(t)− c1q̇1(t)

Mass 2 The position of this mass is given by q2(t). The free body diagram is

m2

fs3

f2fs2

Spring k3 By our convention,
fs3 = −k3q2(t).
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Newton’s Second Law

(13)m2q̈2(t) =
∑

f

= fs3 + f2 − fk2
= −k3q2(t) + f2(t)− k2q2(t) + k2q1(t)

Combined Equations of Motion (EoM)

m1q̈1(t) + c1q̇1(t) + (k2 + k1)q1(t)− k2q2(t) = f1(t) (14)

m2q̈2(t)− k2q1(t) + (k2 + k3)q2(t) = f2(t) (15)

Example 4. Derive the equations of motion of for the system below. The spring is at its
free length (extension is zero) when q2 = d.

m1 m2

q1

c

f(t)

k1 k2

q2(t)

�

There are two independent masses, so that the system is described by two independent
positions. We again expect two differential equations to model this system.

Mass 1 The position of mass m1 is q1(t). The FBD is

m1 fs2fs1

Applying the usual conventions, we have

fs1 = k1q1(t).

The length of the spring k2 is q2(t) and the free length is d. The extension or compression
of the second spring is q2(t)− d, so that under a linear model,

fs2 = k2(q2(t)− d).
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Applying Newton’s second law, we get

(16)m1q̈1(t) =
∑

f

= fs2 − fs1
= k2(q2(t)− d)− k1q1(t)

Mass 2 The position of mass m2 is q1(t) + q2(t), since the quantity q2(t) is defined with
respect to a moving frame with translational position q1(t), and q1(t) is defined relative to
an inertial frame.

The free body diagram is

m2 f
fs2

fd

The friction force is due to linear damping with coefficient c, and the velocity of m2 is
q̇1(t) + q̇2(t). Therefore,

fd = cq̇1(t) + cq̇2(t).

Applying Newton’s second law, we get

(17)m2(q̈1(t) + q̈2(t)) =
∑

f

= f − fs2 − fd
= −k2(q2(t)− d)− cq̇1(t)− cq̇2(t)

Combined EoM

m1q̈1(t) + k1q1(t)− k2(q2(t)− d) = 0 (18)

m2q̈1(t) +m2q̈2(t) + cq̇1(t) + cq̇2(t) + k2(q2(t)− d) = f(t) (19)
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Example 5 (Suspension Model With Gravity). Write down the equations of motion of the
system: Find the equilibria, and rewrite the EoMs in terms of relative displacements. �

m1

m2

q1

q2

u

k2

k1

c2

c1

g

1
Figure 7: Suspension Model

Solution: We have two masses, and we therefore need two free body diagrams.

For mass m1, we have five forces: two from two springs, two from two dampers, and gravity.
For mass m2, we have three forces: one from one spring k2, one from one damper c2, and
gravity.

m1

fs1 = k1(q1 − u) fd1 = c1(q̇1 − u̇)

fs2 = k1(q2 − q1) fc2 = c2(q̇2 − q̇1)

m1g

q1(t)
m2

fs2 = k1(q2 − q1) fc2 = c2(q̇2 − q̇1)
m2g

q2(t)

Spring k1 and Damper c1 Since these two elements are connected between m1 and the
reference with position u(t), their extension is proportional to q1−u. If q1 is positive, lengths
of both elements increase. If u is positive, lengths of both elements decrease. Therefore,
assuming linear spring and dampers, fs1 = k1(q1 − u), and fd1 = c1(q̇1 − u̇).

Table of Contents 22



ME 340 Intro. to Mech. Systems 6 EXAMPLES

Spring k2 and Damper c2 Since these two elements are connected between m1 and m2,
the extension of these elements is q2 − q1. So, fs2 = k2(q2 − q1), and fd2 = c2(q̇2 − q̇1).

Applying Newton’s Second Law to m1:

m1q̈1 =
∑

f (20)

= fs2 + fd2 − fs1 − fd1 −m1g (21)

= k2(q2 − q1) + c2(q̇2 − q̇1)− k1(q1 − u)− c1(q̇1 − u̇)−m1g (22)

Applying Newton’s Second Law to m2:

m2q̈2 =
∑

f (23)

= −fs2 − fd2 −m2g (24)

= −k2(q2 − q1)− c2(q̇2 − q̇1)−m2g (25)

Combined equations of motion:

m1q̈1 = k2(q2 − q1) + c2(q̇2 − q̇1)− k1(q1 − u)− c1(q̇1 − u̇)−m1g (26)

m2q̈2 = −k2(q2 − q1)− c2(q̇2 − q̇1)−m2g (27)

Unforced Equilibria. We have two variables q1 and q2. To find the equilibria, we set the
inputs to zero:

m1q̈1 = k2(q2 − q1) + c2(q̇2 − q̇1)− k1(q1 − 0)− c1(q̇1 − 0)−m1g (28)

m2q̈2 = −k2(q2 − q1)− c2(q̇2 − q̇1)−m2g (29)

or

m1q̈1 = k2(q2 − q1) + c2(q̇2 − q̇1)− k1(q1)− c1(q̇1)−m1g (30)

m2q̈2 = −k2(q2 − q1)− c2(q̇2 − q̇1)−m2g (31)

We replace q1(t)→ q1e =⇒ q̇1 → 0, q̈1 → 0 and
q2(t)→ q2e =⇒ q̇2 → 0, q̈2 → 0 :

m10 = k2(q2e − q1e) + c2(0− 0)− k1(q1e)− c1(0− 0)−m1g (32)

m20 = −k2(q2e − q1e)− c2(0− 0)−m2g (33)

or

0 = k2q2e − (k1 + k2)q1e −m1g (34)

0 = −k2q2e + k2q1e −m2g (35)
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We must solve these equations above to obtain q1e and q2e as expressions of only the system
parameters and g. Adding the two equations leads to:

0 = k1q1e − (m1 +m2)g (36)

=⇒ q1e =
(m1 +m2)g

k1
(37)

Now, 0 = −k2q2e + k2q1e −m2g =⇒ q2e = q1e −
m2g

k2
(38)

=
(m1 +m2)g

k1
− m2g

k2
(39)

To derive the EoM, since δqi = qi(t)− qie, we substitute

q1(t)→ δq1(t) + q1e =⇒ q̇1(t)→ δq̇1(t), q̈1(t)→ δq̈1(t) (40)

q2(t)→ δq2(t) + q2e =⇒ q̇2(t)→ δq̇2(t), q̈2(t)→ δq̈2(t) (41)

This substitution leads to

m1q̈1 = k2(q2 − q1) + c2(q̇2 − q̇1)− k1(q1 − u)− c1(q̇1 − u̇)−m1g, and (42)

m2q̈2 = −k2(q2 − q1)− c2(q̇2 − q̇1)−m2g, (43)

which in turn becomes

m1δq̈1 = k2(δq2 + q2e − δq1 − q1e) + c2(δq̇2 − δq̇1)− k1(δq1 + q1e − u) · · · (44)

− c1(δq̇1 − u̇)−m1g, and (45)

m2δq̈2 = −k2(δq2 + q2e − δq1 − q1e)− c2(δq̇2 − δq̇1)−m2g. (46)

Finally, we simplify this to

m1δq̈1 = k2(δq2 − δq1) + c2(δq̇2 − δq̇1)− k1(δq1 − u)− c1(δq̇1 − u̇) (47)

+ k2(q2e − q1e)− k1q1e −m1g, and (48)

m2δq̈2 = −k2(δq2 − δq1)− c2(δq̇2 − δq̇1)−k2(q2e − q1e)−m2g. (49)

The parts in red are equal to zero, according to (34) and (35). The parts in blue look similar
to the original EoM, but without terms involving gravity! Finally,

m1δq̈1 = k2(δq2 − δq1) + c2(δq̇2 − δq̇1)− k1(δq1 − u)− c1(δq̇1 − u̇) (50)

m2δq̈2 = −k2(δq2 − δq1)− c2(δq̇2 − δq̇1) (51)

Table of Contents 24



ME 340 Intro. to Mech. Systems 6 EXAMPLES

Example 6 (Spring Connected To Damper). Write down the equations of motion of the
system: �

m
f(t)

q(t)

c1k1

Figure 8: System with serially connected spring and dashpot.

Solution: Since there is only one mass, m, we need only one FBD. However, we cannot
know the forces in spring k1 and damper c1 without knowing the extension in those elements.
To figure out the extension, we name the point of connection between them as A, and assign
a position q1 to A, as shown:

m
f(t)

q(t)

q1(t)

c1k1
A

Figure 9: System with serially connected spring and dashpot. Add a position at A.

By creating q1, we may write the extension of the spring k1 as q1, and the extension of the
damper c1 as q − q1.

FBD of Mass m:

m ffd1 = c1(q̇ − q̇1)

Applying Newton’s Second Law to m:

mq̈ =
∑

f (52)

= f − fd1 (53)

= f − c1(q̇ − q̇1) (54)
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An important question: is q1 a part of the input to the system, or is it a part of the system’s
state?
Answer: It is not an input, since nothing external to the system can set q1(t) to a value,
which is what characterizes an input.

Since it is not an input, how do we deal with it in state-variable equations or input-output
differential equations?

The answer is that we relate it to q through a equation arising out of the behavior at A. If
this equation is an algebraic relationship between q and q1, then q1 is not an independent
state. If this equation is a differential equation that is different from the one due to NSL at
m, then we have identified another state of the system.

Ideal connectors are perfectly rigid, so they instantaneously transmit forces from one end to
the other. This means that the forces on both ‘ends’ are equal. Applying this principle to
the point A, we may draw:

A
fd1fs1

Since the forces at the ends of this ideal connector (of zero width) are equal, we get,

fs1 = fd1 .

Equivalently, we can pretend that a mass mA exists at A, but later use the fact that mA = 0.
FBD for mA:

mass mA = 0 fd1fs1

NSL: ma × q̈1 =
∑

f (55)

=⇒ 0× q̈1 = fd1 − fs1 (56)

=⇒ 0 = fd1 − fs1 (57)

=⇒ fd1 = fs1 (58)

Therefore, whichever way we choose to deal with what happens at A (treat it as perfectly
rigid connector or massless connector), we get the same equation:

fd1 = fs1 (59)

=⇒ c1(q̇ − q̇1) = k1q1 (60)

=⇒ c1q̇ = k1q1 + c1q̇1 (61)
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Therefore, we obtain an additional first-order ODE corresponding to q1 being a state of the
system.

Collecting these differential equations, we get the EoM:

mq̈ + c1q̇ = f + c1q̇1 (62)

c1q̇1 + k1q1 = c1q̇ (63)

We may take the state x to be x1 = q, x2 = q̇, and x3 = q1, input u(t) is f(t), and output y
is q1 − q.
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Example 7 (Two DOF Rotational System). Write down the equations of motion of the
following rotating bodies:

k3
τ2

θ2(t)

J2
c2

k2
τ1

θ1(t)

J1
c1

k1

Assume that J1 = J2 = J , k1 = k2 = k, c1 = c2 = 0, and k3 = 0. Further, assume τ1 = 0.
Write down the input-output equations with input u = τ2 and output y = θ1 − θ2.

Solution: We apply the rules and conventions described in earlier sections and obtain the
following free body diagrams for the two rotational inertias:

+

J1 τ1(t)

θ1(t)

c1θ̇1(t)

k1θ1(t)

k2(θ1 − θ2)

+

J2 τ2(t)

θ2(t)

c2θ̇2(t)

k3θ2(t)

k2(θ1 − θ2)

�

Apply Newton’s second law to get

J1θ̈1 = τ1 − k1θ1 − c1θ̇1 − k2(θ1 − θ2) (64)

J2θ̈2 = τ2 − k3θ2 − c2θ̇1 + k2(θ1 − θ2) (65)

We apply the substitutions given in the problem description to get

Jθ̈1 = −kθ1 − k(θ1 − θ2) (66)

Jθ̈2 = τ2 + k(θ1 − θ2) (67)

and then

Jθ̈1 = −kθ1 − ky (68)

Jθ̈2 = u+ ky (69)
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and finally, using the p-operator

Jp2θ1 = −kθ1 − ky (70)

Jp2θ2 = u+ ky (71)

How do we eliminate the terms θ1 and θ2? We use the equation for the output: y = θ1 − θ2.
We’ll use the equations above to substitue for θ1 and θ2

(Jp2 + k)θ1 = −ky =⇒ θ1 =
−ky

(Jp2 + k)
(72)

Jp2θ2 = u+ ky =⇒ θ2 =
u+ ky

Jp2
(73)

So, we get

y = θ1 − θ2 (by definition) (74)

=⇒ y =
(−ky)

(Jp2 + k)
− (u+ ky)

Jp2
(substituting (72), (73)) (75)

=⇒ (J2p4 + 3Jkp2 + k2)y = (Jp2 + k)u (algebraic manipulations) (76)

=⇒ J2y(4)(t) + 3Jkÿ(t) + k2y(t) = Jü(t) + ku(t) (apply the p-operator) (77)
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Example 8. Consider the mechanical system
shown above. Assume that the cable around
the cylinder neither stretches nor slips.
Find the EOM and express it in state-variable
form, where the output is the force acting on
the spring. �

k θ(t)

r
Jc

m

g

q(t)
f

k

Solution: Note that q = rθ. The string tension creates torques that act on the rotational
inertia J , and a force that acts on the mass m. Noting these points, we can write the the
following free-body diagrams:

J

+

θ

τs = kr2θ

fs = krθ

cθ̇
T

Tr

q

m

f mg

T

Applying Newton’s second law,

Jθ̈ = Tr − kr2θ − cθ̇ (78)

mq̈ = f − T +mg (79)

We define the state as x1 = θ, x2 = θ̇.

Why do we exclude q? The answer is that q and θ are algebraically related, q = rθ,
so that they are not independent variables. Therefore, we must eliminate both q and T
from (78) and (79).

Jθ̈ = r (f −mrθ̈ +mg)︸ ︷︷ ︸
T (From (79))

−kr2θ − cθ̇ (80)

=⇒ (J +mr2)θ̈ = fr +mgr − cθ̇ − kr2θ (81)
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Now that we have the EoM in terms of θ, we may derive the state-variable equations. These
would be

ẋ1 = x2

ẋ2 = ?

y = krx1

7 Series And Parallel

7.1 Linear Springs

Springs in Parallel:

k1

k2
⇐⇒

k1 + k2

Springs in Series:

k1k2

⇐⇒

k1k2
k1+k2

7.2 Linear Dampers

Dampers in Parallel:

c1

c2
⇐⇒

c1 + c2

Dampers in Series:
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c1c2

⇐⇒

c1c2
c1+c2

7.3 Torsional Springs

Torsional Springs in Series:

τ

θ(t)

J

k2k1

Let’s add a zero-inertia wheel between the two torsional spring elements.

τ

θ(t)

J

k2

θ2(t)

J2 = 0

k1

Free-body Diagrams:

+

J2

θ2(t)
k1θ2(t)

k2(θ2 − θ)

Free body Diagram J2

+

J τ(t)

θ(t)

k2(θ2 − θ)

Free body Diagram J
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Applying Newton’s laws, we get

J2θ̈2 = −k1θ2 − k2(θ2 − θ) (82)

Jθ̈ = τ + k2(θ2 − θ) (83)

Since J2 = 0, we derive

k2θ = (k1 + k2)θ2 (From (82)) (84)

Therefore, we can substitute this expression into (83) to obtain

Jθ̈ = τ + k2θ2 − k2θ (85)

=⇒ Jθ̈ = τ + k2
k2θ

k1 + k2
− k2θ (86)

=⇒ Jθ̈ = τ +
k22 − k1k2 − k22

k1 + k2
θ (87)

=⇒ Jθ̈ +
k1k2
k1 + k2

θ = τ (88)

Comparing this expression to the single rotational mass-spring system in (11), we can see
that the equivalent torsional stiffness is

keq =
k1k2
k1 + k2

.

Torsional Springs in Parallel:

This situation is similar to that in Example 7.
The FBD is straightforward, and leads to the
dynamics

Jθ̈ = τ − k1θ − k2θ (89)

=⇒ Jθ̈ + (k1 + k2)θ = τ (90)

=⇒ keq = k1 + k2 (91)

k2
τ

θ(t)

J

k1
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8 Gears

θ1

τ1

J1
r1

θ2

τ2
J2

r2

A B

We assume that gears rotate without slip-
ping of the teeth. The effect is that there
exists an algebraic relationship between θ1
and θ2. There’s a point on one gear (A)
that’s in contact with a point on the other
gear (B) (an over-simplification of meshing
of the teeth). The velocities of those two
points must be exactly the same for no slip-
page to occur:

r1θ̇1 = r2θ̇2.

Furthermore, both gears experience an equal and opposite contact force. Therefore,

θ̇1 =

(
r2
r1

)
θ̇2 = Nθ̇2, (92)

where N is the gear ratio. Integration of relationship (92) implies that

θ1 = Nθ2 + const.

We often assume that the constant is zero, in which case

θ1 = Nθ2.

Similarly, we may differentiate relationship (92) to arrive at

θ̈1 = Nθ̈2.

It is also possible to define the gear ratio for the two gears as N = r1/r2, in which case
θ̇1 = θ̇2/N . For each problem, we must clearly specify the gear ratio to avoid confusion.

8.1 Ideal Gears and Torque Ratios

θ1

τ1

FFr1

J1 +

θ2

τ2

F

Fr2

J2+

Figure 10: Free body diagrams

We derive the equations of motion for the
gear system as follows. An important term is
the internal contact force along the common
tangent to both gears. This contact force
is equal and opposite, but applies differing
torques on each gear.

Applying Newton’s laws, we get

J1θ̈1 = τ1 + Fr1 (93)

J2θ̈2 = τ2 − Fr2 (94)
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The gears do not slip, therefore
θ̈1 = Nθ̈2,

where N = r2/r1.

Since θ1 and θ2 are not independent, we will be able to obtain the equations of motion in
terms of only one of these angular positions by eliminating F from (93) and (94):

(N2J1 + J2)θ̈2(t) = τ2(t) +Nτ1(t) (95)

If these gears were ideal, meaning they are perfectly rigid without having any inertia, then
we would have J1 = J2 = 0. When these two ideal gears are meshed, we get τ2(t) = −Nτ1(t).
Therefore, these ideal gears act as a torque amplifier when N > 1 and τ1 is a torque we
generate and τ2 is a torque that we want to apply on some other system. This amplification
is independent of θ̈2(t).

Suppose the two gears are rotating at constant velocity. Even if the gears are not ideal,
meaning J1, J2 are non-zero, it turns out that τ2 = −Nτ1, because θ̈2 = 0. Therefore, for
two meshed gears that are either not rotating or rotating at constant velocity, the gears act
as a torque amplifier when N > 1.

These considerations affect the design of robots, for example, where ideally we must drive
the joints of the robot using low-inertia high-torque motors. To achieve a high torque output
using lighter motors, we use gears to connect the motor output shaft to the link.

8.2 Example

Example 9. Consider the gears on the right,
where we do not show the bearing within
which gear J1 rotates. The gears roll with-
out slipping, so r1θ̇1 = −r2θ̇2. This negative
sign accounts for the fact that if θ1 increases,
θ2 must decrease for no slippage to occur.

The gear ratio N is N = θ̇1
θ2

= −r2/r1.

Write the input-output equations with input
u and y = θ1. �

k

c

θ2

J2

r2

J1

θ1

u

r1

Solution: Free-body diagrams:

+

J1

θ1

u

F

Fr1
+

J1

θ2
kθ2

cθ̇2

F

Fr2
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Note: In the FBD for J1, we may choose F to point left instead of the right. This requires
that in the FBD for J2, we must have F point to the right. We still get the same final EoM
once we eliminate F .

Applying Newton’s laws to the two bodies, we get the Equations of Motion:

J1θ̈1 = Fr1 + u

J2θ̈2 = −cθ̇2 − kθ2 + Fr2

substituting θ1 → y, θ2 → θ1/N → y/N (Make sure you understand why we use y/N instead
of Ny) :

J1ÿ = Fr1 + u (96)

J2
N
ÿ = − c

N
ẏ − k

N
y + Fr2 (97)

Now (
J2
N
ÿ = − c

N
ẏ − k

N
y + Fr2

)
× 1

N
→ J2

N2
ÿ = − c

N2
ẏ − k

N2
y − Fr1 (98)

We just need to add Equation (96) to the one above to eliminate F :(
J1 +

J2
N2

)
ÿ = − c

N2
ẏ − k

N2
+ u (99)

Finally,
(N2J1 + J2)ÿ + cẏ + ky = N2u (100)

(Check your understanding: Compare the equation above to (95). How would you
choose/modify output y and input u, and parameter values, to make them match?)
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9 Levers

l1

l2

θ

q2

q1
A

B
Moment of Inertia J

Axis of Rotation

Consider the lever to the right. It consists of
a rigid mass that has a length much greater
than its other two dimensions, which rotates
about an axis (fulcrum) perpendicular to its
length.

We’re interested in the vertical displace-
ments of the end-points A and B, given by
q1 and q2 respectively. These displacements
depend on θ as

q1 = l1 sin θ, q2 = l2 sin θ. (101)

Therefore,

q1 =
l1
l2
q2, so that q̇1 =

l1
l2
q̇2, and q̈1 =

l1
l2
q̈2.

9.1 Small angle approximation

If θ ≈ 0, then sin θ ≈ 0. Then q1 ≈ l1θ, and q2 ≈ l2θ. Importantly, the relationship is linear
for small angles.

Example 10. Find the equations
of motion for the lever and mass
system on the right.

Use the small angle approximation
to obtain equations linear in the po-
sitions. �

l/4

3l/4

θ

B

A

c2

k2 k1

c1
q

m

J

Solution: Since we will use the small-angle approximation, we treat the motion of the
translating mass, spring, and dampers as being purely horizontal. More importantly, the
points A and B are approximated as moving purely horizontally, despite being located on
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the purely rotating body J . This behavior is only valid under the small-angle approximation
of motion.

Since no information is provided, we assume springs and dampers are linear, and that the
springs have zero extension when θ = 0 and q = 0. We know how to handle the forces on
mass m due to spring k1 and damper c1.

Spring k2. The spring extends when θ > 0 and q = 0, or when θ = 0 and q < 0. The
extension due to rotation of J is lθ/4 (small angle approximation). Therefore, the spring
force in extension is

fs2 = k2

(
lθ

4
− q
)
.

Damper c2. The velocity of point b has a magnitude 3lθ̇/4. When θ̇ > 0, the inertia J is
spinning counter-clockwise, and point B is moving to the right (assuming θ ≈ 0). We should
then expect the damping force to be

fd2 = c23lθ̇/4 =
3c2l

4
θ̇,

pointing to the left when indicated on the FBD of J .

Fee-body diagrams:

J
m

q

fs2

fd2

fs2
fs1 = k1q
fd1 = c1q̇

Apply Newton’s second law:

Jθ̈ = −fs2
l

4
− fd2

3l

4
= −k2

(
lθ

4
− q
)(

l

4

)
−
(

3c2l

4
θ̇

)(
3l

4

)
= −k2l

2

16
θ +

k2l

4
q − c29l

2

16
θ̇

mq̈ = fs2 − k1q − c1q̇ =
k2l

4
θ − k2q − k1q − c1q̇
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Collecting terms where possible,

Jθ̈ +
c29l

2

16
θ̇ +

k2l
2

16
θ =

k2l

4
q

mq̈ + c1q̇ + (k1 + k2)q =
k2l

4
θ

It is important to remember that for this system q and θ are not algebraically related, since
they are connected by a spring, not a rigid connection.
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