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1 The Laplace Transform

1.1 Definition

Definition 1. Let q(t) be a function of t, where t ≥ 0. Then, the (one-sided) Laplace
transform of q(t) is given as

q̂(s) = L{q(t)} =

∫ ∞
0

e−stq(t)dt.

The independent variable t, which is usually time, is a non-negative real variable.

The variable s is a complex variable, that is, s ∈ C.

The Laplace transform is an oper-
ator which operates on functions
in the time domain (dependent
variable is time, a non-negative real
number) and produces functions
in the s-domain (a.k.a frequency
domain), meaning they are functions
of the complex variable s.

Under appropriate technical condi-
tions, we can define the inverse
L−1 {·} of the Laplace transform of
a function.

Space of time-
domain functions

q(t) q̂(s)
L{q(t)}

L−1 {q̂(s)}

Space of s-
domain functions

1.2 Examples of Laplace Transforms

Example 1 (Unit Step). The unit step function is

H(t) =

{
1 if t > 0,

0 if t ≤ 0.

Taking the Laplace transform:
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ME 340 Intro. to Mech. Systems 1 THE LAPLACE TRANSFORM

L{H(t)} =

∫ ∞
0

e−stH(t)dt.

=

∫ ∞
0

e−st 1 dt.

=

[
−1

s
e−st

]∞
t=0

= 0−
(
−1

s

)
(non-trivial limit as t→ 0+)

=
1

s

�

Example 2 (Exponential function). The exponential function, parametrized by a is

q(t) = e−at

Taking the Laplace transform:

L{q(t)} =

∫ ∞
0

e−ste−atdt.

=

∫ ∞
0

e−(s+a)tdt.

=

[
− 1

s+ a
e−(s+a)t

]∞
t=0

= 0−
(
− 1

s+ a

)
(non-trivial limit as t→ 0+)

=
1

s+ a

�

Example 3 (Sinusoid function). The exponential function, parametrized by a frequency ω
rad/s is

q(t) = sin(ωt).

Euler’s formula states that for any real number a, eja = cos(a) + j sin(a). Therefore,

q(t) =
ejωt − e−jωt

2j
.
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Table 1: Some important functions and their Laplace transforms

q(t) q̂(s) = L{q(t)}

unit impulse δ(t) 1

unit step H(t) 1
s

e−at 1
s+1

sin(ωt) ω
s2+ω2

cos(ωt) s
s2+ω2

t 1
s2

tn n!
sn+1

Taking the Laplace transform:

L{q(t)} =

∫ ∞
0

e−stsin(ωt)dt.

=

∫ ∞
0

e−st
(
ejωt − e−jωt

2j

)
dt.

=
1

2j

∫ ∞
0

e−stejωtdt− 1

2j

∫ ∞
0

e−ste−jωtdt.

=
1

2j
L
{
e−jωt

}
− 1

2j
L
{
ejωt
}

We know how to evaluate Laplace transforms of exponential functions:

L{q(t)} =
1

2j

1

(s− jω)
− 1

2j

1

(s+ jω)

=
1

2j

(
s+ jω − (s− jω)

(s− jω)(s+ jω)

)
=

ω

s2 + ω2

�

Example 4 (Impulse function). The impulse function, parametrized by time t0 is

δ(t− t0) =

{
∞ if t = t0,

0 if t 6= t0.
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When t0 = 0,

δ(t) =

{
∞ if t = 0,

0 if t 6= 0.

Taking the Laplace transform:

L{q(t)} =

∫ ∞
0

e−stδ(t)dt.

= e−st|t=0.

= 1

�

1.3 But What Is It?

This section describes one way to interpret a Laplace transform.

Imagine you wanted to describe q(t) to someone. One way to do so is to provide the value
of q(t) at every t, of which there are uncountably many.

Instead, note that a signal q(t) may be approximated by a Maclaurin series (Taylor series
expanded at 0):

q(t) =
∞∑
n=0

q(n)(0)

n!
tn, (1)

where q(n)(t) is the nth derivative of q(t) with respect to t, and n! is n ·(n−1) ·(n−2) · · · ·2 ·1.
The function q(t) is approximated by a polynomial in t, with coefficients that depend on
the derivatives of q(t) at 0. We now use a countably infinite set of numbers, instead of an
uncountably infinite set, to describe q(t). For example,

et = 1 + t+
1

2
t2 +

1

6
t3 + · · · .

To communicate et, we would send 1, 1/2, 1/6, . . . .

That’s still a lot of numbers. Is there a simpler way to communicate q(t)? One way is to
hope that a simple rule generates the sequence of partial derivatives q(n)(0). For example,
for the exponential above, q(n)(0) = 1 for all n ≥ 0!

The rule that generates the sequence q(n)(0) is related to generating functions. For many
useful functions q(t), the generating function in question is a rational function of s. We
only need to communicate a finite set of coefficients to describe this rational function, and
therefore q(t), even for functions like et. The generating function is 1

s
q̂(1

s
), where q̂(s) =

L{q(t)}.
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Example 5 (q(t) = eat). Consider q̂(s) = L{eat} = 1
s+a

.

The generating function is therefore 1
s
q̂(1/s) = 1

1−sa . This function corresponds to the series∑
n≥0 a

n(sn) so that f (n)(0) = an. So, let’s add up this series.

f(t) = a+ at+
a

2
t2 +

a3

6
t3 + · · · (2)

= 1 + at+
a

2
t2 +

a3

6
t3 + · · · (3)

= eat, the intended function. (4)

�

Example 6 (q(t) = sinωt). q̂(s) = L{sinωt} = ω
s2+ω2 . Therefore, the generating function

will be
1

s

ω

s−2 + ω2
=

sω

1 + (sω)2
.

To compute the series with coefficients {an} that this function generates, we use the equation

sω

1 + (sω)2
=
∞∑
n=0

ans
n (5)

=⇒ sω = (1 + (sω)2)
∞∑
n=0

ans
n (6)

=⇒ sω =
∞∑
n=0

ans
n + (sω)2

∞∑
n=0

ans
n (7)

=⇒ ωs =
∞∑
n=0

ans
n + ω2

∞∑
n=0

ans
n+2 (8)

=⇒ ωs = a0 + a1s+
∞∑
n=2

ans
n

︸ ︷︷ ︸
take out first two terms

+ω2

∞∑
n=0

ans
n+2 (9)

=⇒ ωs = a0 + a1s+
∞∑
n=2

ans
n

︸ ︷︷ ︸
separate out first two terms

+ω2

∞∑
n=0

an+2s
n+2 (10)

=⇒ ωs = a0 + a1s+
∑
n=0

∞an+2s
n+2

︸ ︷︷ ︸
can consistently rewrite numbering

+ω2

∞∑
n=0

ans
n+2 (11)

=⇒ 0 = a0 + (a1 − ω)s+
∞∑
n=0

(an+2 + ω2an)sn+2

︸ ︷︷ ︸
renumbering allows combination

(12)

Table of Contents 6
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We now invoke the following principle: if the equation above holds for multiple values of s
(which it does), the coefficients of sn must be zero. So,

a0 = 0 =⇒ a0 = 0 (13)

a1 − ω = 0 =⇒ a1 = ω (14)

an+2 + ω2an = 0 for n ≥ 2 =⇒ an+2 = −ω2an for n ≥ 2 (15)

The second equation is a recurrence relation. For example, a2 = −ω2a0 = 0, and a3 =
−ω2a1 = −ω3, and so on. Therefore, we can write the function dictated by this series.
Remember, this series corresponds to q(n)(0).

q(t) = q(0) + q(1)(0)t+
q(2)(0)

2!
t2 +

q(3)(0)

3!
t3 +

q(4)(0)

4!
t4 +

q(5)(0)

5!
t5 + · · · (16)

= a0 + a1t+
a2

2!
t2 +

a3

3!
t3 +

a4

4!
t4 +

a5

5!
t5 + · · · (17)

= 0 + ωt+ 0 · t2 +
−ω3

3!
t3 + 0 · t4 +

ω5

5!
t5 + · · · (18)

= ωt− (ωt)3

3!
+

(ωt)5

5!
− (ωt)7

7!
+ · · · (19)

= sin(ωt), the intended function. (20)

�

To summarize, we may think of the Laplace Transform of a time-domain function as a
compact representation of that function. In particular, it provides a way to construct all the
terms in the Maclaurin series that corresponds to q(t). The next section provides additional
properties that make this complex-domain representation useful for manipulating functions
of time.

2 Properties of the Laplace Transform

We look at the way the Laplace transform behaves when we modify its argument through:

• linear combinations

• differentiation

• multiplication by exponential e−at

• multiplication by time t

• introducing a time delay

• integration

These behaviors allow us to evaluate Laplace transforms of arbitrary functions of time using
Laplace transforms of simple functions.
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2.1 Linear Combinations

The Laplace transform is a linear operator,

L{α1q1(t) + α2q2(t)} = α1L{q1(t)}+ α2L{q2(t)}.

If we know that q̂1(s) = L{q1(t)} and q̂2(s) = L{q2(t)}, then we can immediately com-
pute q̂3(s) = L{q3(t)} when q3(t) = α1q1(t) + α2q2(t) without computing another Laplace
transform, and instead computing

q̂3(s) = α1q̂1(s) + α2q̂2(s).

2.2 Differentiation

Let q̂(s) = L{q(t)}. Then

L{q̇(t)} = sL{q(t)} − q(0) = sq̂(s)− q(0).

One way to derive this expression is using integration by parts∫ τ=b

τ=a

u(τ)
dv(τ)

dτ
dτ = [u(τ)v(τ)]τ=b

τ=a −
∫ τ=b

τ=a

du(τ)

dτ
v(τ)dτ

applied to the definition of a Laplace transform:

L{q̇(t)} =

∫ ∞
0

e−st
dq(t)

dt
dt

=
[
e−stq(t)

]∞
t=0
−
∫ ∞

0

(−se−st)q(t)dt

= (0− q(0)) + s

∫ ∞
0

e−stq(t)dt

= −q(0) + sL{q(t)}
= sq̂(s)− q(0)

For higher order derivatives,

L{q(n)(t)} = snq̂(s)− sn−1q(0)− sn−2q̇(0)− sn−3q̈(0)− · · · − sq(n−2)(0)− q(n−1)(0)

Table of Contents 8
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2.3 s-shift

L{e−atq(t)} = q̂(s+ a)

For example,

L{cos(ωt)} =
s

s2 + ω2
,

so that

L
{
e−at cos(ωt)

}
=

s+ a

(s+ a)2 + ω2
.

2.4 Multiplication by time

If L{q(t)} = q̂(s), then

L{tq(t)} = − d

ds
q̂(s).

For example,

L{te−at} = − d

ds

(
L{e−at}

)
= − d

ds

(
1

s+ a

)
=

1

(s+ a)2

We could arrive at the same result by using the s-shift property:

L{t} =
1

s2

=⇒ L{te−at} =
1

(s+ a)2

2.5 Time delay

If L{q(t)} = q̂(s), then the Laplace transform of q(t− τ), which is q(t) delayed by τ seconds,
is

L{q(t− τ)} = e−sτ q̂(s).

Table of Contents 9
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2.6 Integration

If L{q(t)} = q̂(s), then

L
{∫ t

0

q(s)ds

}
=

1

s
q̂(s).

For example,

L
{∫ t

0

cos(ωτ)dτ

}
=

1

s
L{cos(ωt)} =

1

s

s

s2 + ω2
=

1

s2 + ω2
.

Check:
∫ t

0
cos(ωτ)dτ = 1

ω
sin(ωt), so that

L
{∫ t

0

cos(ωτ)dτ

}
=

1

ω
L{sin(ωt)} =

1

ω

ω

s2 + ω2
=

1

s2 + ω2
.

3 Solving Linear ODEs

The value of Laplace transforms also shows up when trying to solve linear ordinary differential
equations. Suppose we have the differential equation

ẏ(t) + ay(t) = u(t), (21)

where y(t0) = y0 and a is a real number.

Our goal is to obtain a solution y(t) of (21) defined on some time interval [t0, tfinal].

3.1 Homogenous and Particular Solutions

One approach is to search for a homogenous solution yH(t) and then a particular solution
yP (t) (see supplementary slides), so that the solution y(t) is

y(t) = yH(t) + yP (t).

The homogenous solution yH(t) is the solution to the linear ODE obtained by setting u(t) ≡ 0
in (21). We then form a polynomial known as the characteristic equations whose roots dictate
what yH(t) is.

Then, we use the form of yH(t) and u(t) to predict yP (t), and try and find a solution using
the method of undetermined coefficients.

Table of Contents 10
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3.2 Direct Solution Using Convolution

Consider the derivative of the expression eaty(t) expression:

d

dt

(
eaty(t)

)
=

(
d

dt
eat
)
y(t) + eat

(
d

dt
y(t)

)
= aeaty(t) + eatẏ(t)

= eatẏ(t) + aeaty(t)

= eat(ẏ(t) + ay(t))

Now, consider solving the equation

d

dt

(
eaty(t)

)
= eatu(t)

=⇒ eat(ẏ(t) + ay(t)) = eatu(t)

=⇒ ẏ(t) + ay(t) = u(t),

because eat 6= 0 for any t.

So, we see that to solve (21), we need to solve

d

dt

(
eaty(t)

)
= eatu(t)

=⇒ eaty(t) = y(0) +

∫ t

0

eaτu(τ)dτ

=⇒ y(t) = e−aty(0) +

∫ t

0

ea(τ−t)u(τ)dτ

= yH(t) + yP (t)!

Problem: Computing z(t) =
∫ t

0
ea(τ−t)u(τ)dτ .

This computation is of the form
∫ t

0
g(t− τ)h(τ)dτ , which is known as the convolution of two

functions g(t) and h(t), that is, z̄(t) = (g ∗ h)(t). This convolution is usually tedious and
difficult to carry out.

Solution: One advantage of Laplace transforms is that the convolution of two functions of
time is ‘identical’ to the algebraic product of their two Laplace transforms!

3.3 Laplace Transforms For Solving ODEs

To compute z(t) =
∫ t

0
g(t− τ)h(τ)dτ , we solve the following expression:

L−1 {L{g(t)}L{h(t)}} .

Table of Contents 11
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Space of time-
domain functions

h(t)g(t)

z(t)

∗
ĥ(s)ĝ(s)

ẑ(s)

×

Space of s-
domain functions

L{·}

L−1{·}

hard easy

Figure 1: It is easier to implement the convolution operation involving two time-domain
functions by computing the algebraic multiplication of their Laplace transforms, and then
taking the inverse of the result.

In words, we convert the time-domain functions to s-domain functions, multiply these two
s-domain functions, and then convert the result back into the time-domain. Figure 1 depicts
this process.

Example 7 (Solving (21)). We will solve (21) for the case where u(t) ≡ 1 and y(0) = y0 = 0.
A direct solution is

y(t) = e−aty(0) +

∫ t

0

ea(τ−t)u(τ)dτ (22)

= 0 +

∫ t

0

ea(τ−t)1dτ (23)

= e−at
∫ t

0

eaτdτ (24)

= e−at
[

1

a
eat
]∞
t=0

(25)

=
1

a
− e−at

a
(26)

To use Laplace transforms, first transform the ODE:

Table of Contents 12



ME 340 Intro. to Mech. Systems 3 SOLVING LINEAR ODES

ẏ(t) + ay(t) = u(t)

=⇒ L{ẏ(t) + ay(t)} = L{u(t)}
=⇒ L{ẏ(t)}+ L{ay(t)} = L{u(t)}
=⇒ L{ẏ(t)}+ L{ay(t)} = L{u(t)}
=⇒ sŷ(s)− y(0) + aŷ(s) = û(s)

=⇒ ŷ(s) =
1

s+ a
y0 +

1

s+ a
û(s),

where ŷ(s) = L{y(t)} and û(s) = L{u(t)}. We have that y0 = 0, and u(t) ≡ 1 =⇒ û(s) = 1
s
.

Therefore,

ŷ(s) =
1

s+ a
× 1

s

=
1

a

(
1

s
− 1

s+ a

)

Taking the Laplace inverse of both sides,

L−1{ŷ(s)} = L−1

{
1

a

(
1

s
− 1

s+ a

)}
=

1

a
L−1

{
1

s

}
− 1

a
L−1

{
1

s+ a

}
=

1

a
− e−at

a

�

At present, the Laplace transform method seems longer. Let’s change the control to u(t) =
t =⇒ û(s) = 1/s2. Then,

ŷ(s) =
1

s2(s+ a)
=

1

a2

(
a

s2
− 1

s
+

1

s+ a

)
so that we get

y(t) = L−1

{
1

a2

(
a

s2
− 1

s
+

1

s+ a

)}
=

1

a2

(
at− 1 + e−at

)
.

A direct solution is

y(t) = e−aty(0) +

∫ t

0

ea(τ−t)u(τ)dτ

= e−aty(0) +

∫ t

0

τea(τ−t)dτ

Table of Contents 13
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4 Review of Complex Numbers

Let j2 = −1, or equivalently, j =
√
−1.

Re{s}

Im{s}

z = a+ jb

a

b

|z|
=

r

6 z = θ

We represent a complex number z ∈ C in
two ways.

The first is z = a+jb, where a and b are real
numbers. We refer to a and b as the real and
imaginary part of z respectively. We denote
these parts of z as Re{z} (= a) and Im{z}
(= b).

The second is z = rejθ, where r and θ are
real numbers. The numbers r and θ are the
magnitude and argument of z respectively.

Note that ejθ = cos(θ) + j sin(θ), so that

Re{z} = a = r cos θ, Im{z} = b = r sin θ.

To any complex number z = a+ jb = rejθ, we can associate the following quantities:

• a magnitude |z| =
√
a2 + b2 = r,

• an argument

6 z = θ =


tan−1 b

a
if a > 0

π + tan−1 b
a

if a < 0

π/2 if a = 0 and b > 0

−π/2 if a = 0 and b < 0

.

• a complex conjugate z̄ = a− jb, and

Just as for real numbers, we can define the operations of addition and multiplication, which
depend on the same operations that are defined for real numbers.

Addition. For two numbers z1 = a1 + jb1

and z2 = a2 + jb2, we define the sum

z1 + z2 = (a1 + a2) + j(b1 + b2).

Re{s}

Im{s}

z1

a1

b1

z2

a1

b1

z1 + z2

a1 + a2

b1 + b2

Table of Contents 14
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Multiplication. For two numbers z1 = a1 +
jb1 and z2 = a2 + jb2, we define the product

z1z2 = (a1 + jb1)(a2 + jb2) (27)

= (a1a2 − b1b2) + j(a1b2 + a2b1). (28)

Alternatively, if z1 = r1e
jθ1 and z2 = r2e

jθ2 ,
then

z1z2 = r1r2e
j(θ1+θ2)

Re{s}

Im{s}

1

z1 = r1e
jθ1

z2 = r2e
jθ2

z1z2

θ1

θ1 θ2

Inversion. If z = a+ jb = rejθ, then

z−1 =
1

z
=

1

a+ jb
(29)

=
1

(a+ jb)

a− jb
a− jb

(30)

=
a− jb
a2 + b2

(31)

=
a

a2 + b2
− j b

a2 + b2
. (32)

Alternatively,

z−1 =
1

r
e−jθ.

Re{s}

Im{s}

1

z1 = r1e
jθ1

r1

z2 = 1
z1

1
r1

θ1

−θ1

Division. For two numbers z1 = a1 + jb1 and z2 = a2 + jb2, we define division as multipli-
cation by z−1

2

z1

z2

=
z1z̄2

z2z̄2

=
(a1a2 + b1b2)− j(a1b2 + a2b1)

a2
2 + b2

2

.

Alternatively, if z1 = r1e
jθ1 and z2 = r2e

jθ2 , then

z1

z2

=
r1

r2

ej(θ1−θ2)

Definition 2 (Roots Of Complex Polynomials). Let α(s) be a polynomial in the complex
variable s, with complex coefficients. If α(p) = 0 for p ∈ C, then p is a root of α(s)

Definition 3 (Multiplicity). Let p be a root of α(s),

lim
s→p

α(s)

(s− p)n
6= 0, and

lim
s→p

α(s)

(s− p)n−1
= 0,
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then p is a root of α(s) with multiplicity n.

Example 8. Let α(s) = (s− 2)(s− 1)2s4. By our definition above, p1 = 2 is a root of α(s)
with multiplicity 1, p2 = 1 is a root with multiplicity 2, and p3 = 0 is a root with multiplicity
4. �

5 Partial Fraction Expansion

The expression ŷ(s) for the solution of linear time-invariant (LTI) ODEs, in the s-domain,
is the ratio of polynomials in s.

In other words,

ŷ(s) =
N(s)

D(s)
.

When we want to compute y(t), we need to compute

y(t) = L−1 {ŷ(s)} = L−1

{
N(s)

D(s)

}
. (33)

We use some related ideas to simplify this computation:

• L−1{1/(s− a)} equals eat, when a is real

• any polynomial ans
n+an−1s

n−1+· · ·+a0 can be rewritten as an(s−p1)(s−p2) · · · (s−pn),
where p1, . . . , pn are complex numbers

• For polynomials with real coefficients, if one complex number is a root, its conjugate
is always a root.

Loosely speaking, a partial fraction expansion (PFE) of ŷ(s) will be of the form

ŷ(s) = k0 +
k1

s− p1

+
k2

s− p2

+ . . .

for complex numbers k0, k1, etc. and where D(s) = (s − p1)(s − p2) · · · (s − pn). Then,
y(t) = L−1{ŷ(s)} is simply

y(t) = k0δ(t) + k1e
−p1t + k2e

−p2t + . . . .

The expression above doesn’t always apply, and we go over the different cases below. In
general,

ŷ(s) =
Nm(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
, (34)
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wherem is the order of polynomialN(s), n is the order of polynomialD(s), zi for i = 1, . . . ,m
are complex numbers, and pi for i = 1, . . . , n are complex numbers.

Some terminology:

1. If n = m, then N(s)/D(s) is exactly proper.

2. If n > m, then N(s)/D(s) is strictly proper.

3. The complex numbers zi are the roots of N(s) and are called zeros.

4. The complex numbers pi are the roots of D(s) and are called poles.

The partial fraction expansion of ŷ(s) depends on the values of n, m, Nm, zi, and pi.

5.1 Case 1: All roots of D(s) are distinct

The PFE of N(s)/D(s) is exactly

ŷ(s) = k0 +
k1

s− p1

+
k2

s− p2

+ · · ·+ kn
s− pn

, (35)

where k0, k1, . . . , kn ∈ C. Furthermore,

k0 =

{
Nm if n = m

0 if n > m.

Example 9. Find the PFE and inverse Laplace transform of

ŷ(s) =
4(s+ 2)

(s+ 1)(s+ 5)
.

Solution:

ŷ(s) = k0 +
k1

s+ 1
+

k2

s+ 5
(36)

=
k1

s+ 1
+

k2

s+ 5
(n = 2,m = 1, n > m) (37)

4(s+ 2)

(s+ 1)(s+ 5)
=

k1

s+ 1
+

k2

s+ 5
(38)

Consider multiplying (38) by s+ 1:

4(s+ 2)

(s+ 5)
= k1 +

k2(s+ 1)

s+ 5
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When we set s = −1, we get

4(s+ 2)

(s+ 5)

∣∣∣∣
s=−1

= k1 + 0 =⇒ k1 = 1

Consider multiplying (38) by s+ 5:

4(s+ 2)

(s+ 1)
= k1

s+ 5

s+ 1
+ k2

When we set s = −5, we get

4(s+ 2)

(s+ 1)

∣∣∣∣
s=−5

= 0 + k2. =⇒ k2 = 3

So,

ŷ(s) =
1

s+ 1
+

3

s+ 5
(39)

=⇒ y(t) = L−1

(
1

s+ 1

)
+ L−1

(
3

s+ 5

)
(40)

= L−1

(
1

s+ 1

)
+ 3L−1

(
1

s+ 5

)
(41)

= e−t + 3e−5t (42)

�

From the previous example, we can identify a general method for distinct roots. If

ŷ(s) = k0 +
k1

s− p1

+
k2

s− p2

+ · · ·+ kn
s− pn

, (43)

then

ki = [ŷ(s)(s− pi)]|s=pi .

Example 10. Find the PFE and inverse Laplace transform of

ŷ(s) =
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ 2− j)(s+ j + 2)
.

Solution:
We get

ŷ(s) = k0 +
k1

s+ 4
+

k2

s+ 2− j
+

k2

s+ j + 2
(44)

= 3 +
k1

s+ 4
+

k2

s+ 2− j
+

k2

s+ j + 2
(45)
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To calculate k1:

k1 = ŷ(s)(s+ 4)|s=−4 (46)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ 2− j)(s+ j + 2)
(s+ 4)

∣∣∣∣
s=−4

(47)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 2− j)(s+ j + 2)

∣∣∣∣
s=−4

(48)

=
3(−4 + 1)(−4 + 2)(−4 + 3)

(−4 + 2− j)(−4 + j + 2)
(49)

=
3(−3)(−2)(−1)

(−2− j)(j − 2)
(50)

=
−18

5
(51)

To calculate k2:

k2 = ŷ(s)(s+ 2− j)|s=−2+j (52)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ 2− j)(s+ j + 2)
(s+ 2− j)

∣∣∣∣
s=−2+j

(53)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ j + 2)

∣∣∣∣
s=−2+j

(54)

=
3(−2 + j + 1)(−2 + j + 2)(−2 + j + 3)

(−2 + j + 4)(−2 + j + j + 2)
(55)

=
3(−1 + j)(j)(1 + j)

(2 + j)(2j)
(56)

=
−3

2 + j
(57)

=
−3(2− j)

5
(by inversion, Section 4) (58)
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To calculate k3:

k2 = ŷ(s)(s+ 2 + j)|s=−2−j (59)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ 2− j)(s+ j + 2)
(s+ 2 + j)

∣∣∣∣
s=−2−j

(60)

=
3(s+ 1)(s+ 2)(s+ 3)

(s+ 4)(s+ 2− j)

∣∣∣∣
s=−2−j

(61)

=
3(−2− j + 1)(−2− j + 2)(−2− j + 3)

(−2− j + 4)(−2− j + 2− j)
(62)

=
3(−1− j)(−j)(1− j)

(2− j)(−2j)
(63)

=
−3

2− j
(64)

=
−3(2 + j)

5
(by inversion, Section 4) (65)

ŷ(s) = k0 +
k1

s+ 4
+

k2

s+ 2− j
+

k2

s+ j + 2
(66)

= 3 +
−18

5(s+ 4)
+
−3(2− j)

5(s+ 2− j)
+
−3(2 + j)

5(s+ j + 2)
(67)

= 3 +
−18

5(s+ 4)
+
−3

5

(
4s+ 10

(s+ 2)2 + 12

)
(68)

We combine the last two terms because we will be able to take the inverse Laplace transform
of the result. Instead of slogging through the algebra, we can use complex number algebra
to handle this step. Notice that if z = 2− j, the last two terms are

last two terms =
−3

5

(
z

s+ z
+

z̄

s+ z̄

)
(69)

=
−3

5

(
z(s+ z̄) + z̄(s+ z)

(s+ z)(s+ z̄)

)
(70)

=
−3

5

(z + z̄)s+ 2zz̄

(s2 + (z̄ + z)s+ zz̄)
(71)

Now, z + z̄ = 2Re{z} = 2 · 2, and zz̄ = |z|2 = 22 + 12 = 5. Therefore, we get

last two terms =
−3

5

(
4s+ 10

s2 + 4s+ 5

)
.
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This looks a little nicer, in part because

L−1

{
(s+ a)

(s+ a)2 + b2

}
= e−at cos bt, and

L−1

{
c

(s+ a)2 + b2

}
=
c

b
e−at sin bt.

and we will be able to apply this rule. The first step is to simplify the denominator, by
completing squares:

s2 + 4s+ 5→ s2 + 4s+ 4 + 1→ (s+ 2)2 + 12.

This step also tells us how to modify the numerator:

4s+ 10→ 4(s+ 2− 2) + 10→ 4(s+ 2) + 10− 8→ 4(s+ 2) + 2.

We now get the last two terms into the form

last two terms =
−3

5

(
4(s+ 2) + 2

(s+ 2)2 + 12

)
.

We are now ready to take the inverse of

ŷ(s) = 3 +
−18

5(s+ 4)
+
−3

5

(
4(s+ 2) + 2

(s+ 2)2 + 12

)
. (72)

L−1{ŷ(s)} = L−1

{
3 +

−18

5(s+ 4)
+
−3

5

(
4(s+ 2) + 2

(s+ 2)2 + 12

)}
(73)

= L−1 {3}+ L−1

{
−3.6

(s+ 4)

}
+ L−1

{
−3

5

(
4(s+ 2) + 2

(s+ 2)2 + 12

)}
(74)

= 3δ(t)− 3.6e−4t + L−1

{
−3

5

(
4(s+ 2)

(s+ 2)2 + 12

)}
+ L−1

{
−3

5

(
2

(s+ 2)2 + 12

)}
(75)

= 3δ(t)− 3.6e−4t + L−1

{(
−2.4(s+ 2)

(s+ 2)2 + 12

)}
+ L−1

{
−1.2

(
1

(s+ 2)2 + 12

)}
(76)

= 3δ(t)− 3.6e−4t − 2.4e−2t cos t− 1.2e−2t sin t, (77)

Which is the solution to Example 10. �
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5.2 Case 2: Roots of D(s) are repeated

ŷ(s) =
Nm(s− z1)(s− z2) · · · (s− zm)

(s− p1)l1(s− p2)l2 · · · (s− pq)lq
, (78)

where n = l1 + l2 + · · · lq. The PFE in this case is

(79)ŷ(s) = k0 +
k1

(s− p1)l1
+

k2

(s− p1)l1−1
+ · · ·+ kl1

(s− p1)
+

kl1+1

(s− p2)l2

+ · · ·+
kn−lq

(s− pq)lq
+

kn−lq+1

(s− pq)lq−1
+ · · ·+ kn

s− pq
.

where k0, k1, . . . , kn ∈ C. Again,

k0 =

{
Nm if n = m

0 if n > m.

Example 11. Find the PFE and inverse Laplace transform of

ŷ(s) =
1

(s+ 2)(s+ 1)2
.

Solution: The roots are: p1 = −2 with multiplicity 1, and p2 = −1 with multiplicity 2.
Therefore.

ŷ(s) = k0 +
k1

s+ 2
+

k2

s+ 1
+

k3

(s+ 1)2
(80)

=
k1

s+ 2
+

k2

s+ 1
+

k2

(s+ 1)2
(n = 3,m = 0, n > m) (81)

Since p1 has multiplicity 1, we can obtain k1 using the same rule as for distinct roots:

k1 = ŷ(s)(s+ 2)|s=−2 (82)

=
1

(s+ 2)(s+ 1)2
(s+ 2)

∣∣∣∣
s=−2

(83)

=
1

(s+ 1)2

∣∣∣∣
s=−2

(84)

=
1

(−2 + 1)2
(85)

= 1 (86)

(87)
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This rule works for distinct roots pi because we know all other terms have to go to zero when
evaluating at s = pi. When we have a root pj with multiplicity greater than 1, multiplying
by (s− pj) won’t work. Let’s see why:

1

(s+ 2)(s+ 1)2
=

k1

s+ 2
+

k2

s+ 1
+

k3

(s+ 1)2
(88)

=⇒ 1

(s+ 2)(s+ 1)2
(s+ 1) =

k1

s+ 2
(s+ 1) +

k2

s+ 1
(s+ 1) +

k3

(s+ 1)2
(s+ 1) (89)

=⇒ 1

(s+ 2)(s+ 1)
=
k1(s+ 1)

s+ 2
+ k2 +

k3

(s+ 1)
(90)

We can’t plug in s = −1, so that the following equation suggested by Equation (81) is
incorrect:

Incorrect: k2 = ŷ(s)(s+ 1)|s=−1 .

As you might guess, the only thing that makes sense is multiplying by (s − pj)l, where l is
the multiplicity of root pj. In our example:

1

(s+ 2)(s+ 1)2
=

k1

s+ 2
+

k2

s+ 1
+

k3

(s+ 1)2
(91)

=⇒ 1

(s+ 2)(s+ 1)2
(s+ 1)2 =

k1

s+ 2
(s+ 1)2 +

k2

s+ 1
(s+ 1)2 +

k3

(s+ 1)2
(s+ 1)2 (92)

=⇒ 1

(s+ 2)
=

(s+ 1)2

s+ 2
+ k2(s+ 1) + k3 (93)

If s = −1, the only terms remaining are k3 and the left hand side which is ŷ(s)(s + 1)2. It
turns out that we could have used the same pattern as in the case of distinct roots only for
the term containing the (s− pj)l, which here is k3:

Correct: k3 = ŷ(s)(s+ 1)2
∣∣
s=−1

. =
1

s+ 2

∣∣∣∣
s=−1

=
1

−1 + 2
= 1

In other words, we can use the following more general rule: If the PFE of ŷ(s) contains the
term ki/(s− pj)l, then

ki = ŷ(s)(s− pj)l
∣∣
s=pj

, only when l is the multiplicity of pole pj.

This rule includes the case of poles with multiplicity 1.

What about terms of the form ki/(s − pj)l
′
, where l′ is less than the multiplicity l of pj?

First, note that we would expect l−1 such terms, as defined in the PFE (79) for the repeated
root case. We use the following approach:

1. Multiply the expression involving the PFE by (s − pj)l, where l is the multiplicity of
pole pj.
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2. Differentiate the expression with respect to s, a total of l−1 times, using the expression
after each time you differentiate to calculate one of the l − 1 coefficients by plugging
in s = pj.

So, in our still running example:

1

(s+ 2)(s+ 1)2
=

k1

s+ 2
+

k2

s+ 1
+

k3

(s+ 1)2
(94)

=⇒ 1

(s+ 2)
=

(s+ 1)2

s+ 2
+ k2(s+ 1) + k3 ( Multiplying by (s+ 1)2 ) (95)

Notice that when we substitute in s = −1, on the right hand side only the coefficient in front
of the term without (s+ 1) remains. How do we make that coefficient be k2? The easy way
is to differentiate. This does two things: 1) k3 disappears 2) the terms with higher powers
of (s+ 1) will still contain (s+ 1), and so we don’t have to explicitly evaluate the derivative:

d

ds

(
1

(s+ 2)
=

(s+ 1)2

s+ 2
+ k2(s+ 1) + k3

)
(96)

=⇒ −1

(s+ 2)2
=

d

ds

(
(s+ 1)2

s+ 2

)
+ k2 + 0 (97)

Again, we don’t worry about the first term on the RHS for now because it evaluates to 0
when we plug in s = −1. So, let’s plug in s = −1

−1

(−1 + 2)2
= 0 + k2 =⇒ k2 = −1.

So, we have now completed the PFE.

ŷ(s) =
1

s+ 2
− 1

s+ 1
+

1

(s+ 1)2
(98)

Let’s take the inverse Laplace transform:

y(t) = L−1 {ŷ(s)} (99)

= L−1

{
1

s+ 2
− 1

s+ 1
+

1

(s+ 1)2

}
(100)

= L−1

{
1

s+ 2

}
− L−1

{
1

s+ 1

}
+ L−1

{
1

(s+ 1)2

}
(101)

= e−2t − e−t + te−t (by the s-shift and multiplication-by-time rules), (102)
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which is the solution to Example 11 �

5.3 Summary of Partial Fraction Expansions

If there are m roots, no matter what their multiplicities are, we will be able to obtain m
coefficients in the PFE by direct calculation. The PFE contains the term ki/(s− pj)l where
l is the multiplicity of pj, and

ki = ŷ(s)(s− pj)l
∣∣
s=pj

.

For the terms of the form ki/(s− pj)l
′
, where l′ is less than the multiplicity of pj, we do the

following:

1. Multiply the expression involving the PFE of ŷ(s) by (s−pj)l, where l is the multiplicity
of pole pj.

2. Differentiate the expression with respect to s, a total of l−1 times, using the expression
after each time you differentiate to calculate one of the l − 1 coefficients by plugging
in s = pj.

Example 12. Find the PFE and inverse Laplace transform of

ŷ(s) =
3(s+ 2)(s+ 1)

(s+ 5)3
.

Solution steps:

1. Calculate the poles

2. Write down the form of the PFE, containing unknown coefficients

3. Use n and m to calculate k0

4. Calculate coefficients for term corresponding to highest multiplicity of pole directly

5. Calculate the remaining coefficient corresponding to repeated roots using differentia-
tion

6. Express ŷ(s) using the calculated coefficients

7. Calculate y(t) using the inverse Laplace transform

The roots are: p1 = −5 with multiplicity 3. Therefore

ŷ(s) = k0 +
k1

(s+ 5)3
+

k2

(s+ 5)2
+

k3

(s+ 5)
. (103)
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Since n = 3 and n = 2, k0 = 0. Therefore,

ŷ(s) =
k1

(s+ 5)3
+

k2

(s+ 5)2
+

k3

(s+ 5)
. (104)

We can calculate k1 directly:

k1 = ŷ(s)(s+ 5)3
∣∣
s=−5

(105)

=
3(s+ 2)(s+ 1)

(s+ 5)3
(s+ 5)3

∣∣∣∣
s=−5

(106)

= 3(s+ 2)(s+ 1)|s=−5 (107)

= 3(s+ 2)(s+ 1)|s=−5 (108)

= 3(−5 + 2)(−5 + 1) (109)

= 36 (110)

To get k2 and k3, first multiply the PFE by (s+ 5)3

3(s+ 2)(s+ 1) = k1 + k2(s+ 5) + k3(s+ 5)2.

Differentiate with respect to s

3(s+ 2) + 3(s+ 1) = 0 + k2 + k32(s+ 5) (111)

Set s = −5, to get

3(−5 + 2) + 3(−5 + 1) = k2 + 0k3 =⇒ k2 = −21.

Differentiate (122) with respect to s

3 + 3 = 0 + 0 + 2k3 (112)

We ‘plug in’ s = −5 into (123) gives k3 = 3.

So,

ŷ(s) =
36

(s+ 5)3
− 21

(s+ 5)2
+

3

(s+ 5)
, and (113)

y(t) = L−1 {ŷ(s)} (114)

= L−1

{
36

(s+ 5)3
− 21

(s+ 5)2
+

3

(s+ 5)

}
(115)

= L−1

{
36

(s+ 5)3

}
− L−1

{
21

(s+ 5)2

}
+ L−1

{
3

(s+ 5)

}
(116)

= 18t2e−5t − 21te−5t + 3e−5t, (using the multiplication-by-tn rule), (117)

�
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Example 13. Find the PFE and inverse Laplace transform of

ŷ(s) =
3(s+ 2)(s+ 1)

(s+ 5)3
.

Solution:

ŷ(s) = k0 +
k1

(s+ 5)3
+

k2

(s+ 5)2
+

k3

(s+ 5)
. (118)

n = 3, n = 2. k0 = 0.

ŷ(s) =
k1

(s+ 5)3
+

k2

(s+ 5)2
+

k3

(s+ 5)
. (119)

k1 = ŷ(s)(s+ 5)3
∣∣
s=−5

(120)

= 36 (121)

k2 :

3(s+ 2)(s+ 1) = k1 + k2(s+ 5) + k3(s+ 5)2.

3(s+ 2) + 3(s+ 1) = 0 + k2 + k32(s+ 5) (122)

3(−5 + 2) + 3(−5 + 1) = k2 + 0k3 =⇒ k2 = −21.

k3:

3 + 3 = 0 + 0 + 2k3 (123)

=⇒ k3 = 3.

ŷ(s) =
36

(s+ 5)3
− 21

(s+ 5)2
+

3

(s+ 5)
, and (124)

y(t) = L−1

{
36

(s+ 5)3
− 21

(s+ 5)2
+

3

(s+ 5)

}
(125)

= 18t2e−5t − 21te−5t + 3e−5t, (126)

�
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