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ME 340 Intro. to Mech. Systems 2 DERIVING TRANSFER FUNCTIONS

1 Introduction

Consider a dynamical system with input-output ODE

(1)
any

(n)(t) + an−1y
(n−1)(t) + · · ·+ a2ÿ(t) + a1ẏ(t) + a0y(t)

= bmu
(m)(t) + bm−1u

(m−1)(t) + · · ·+ b2ü(t) + b1u̇(t) + b0u(t).

We can view this dynamical system as an object that converts one function of time (the
input) into another function of time (the output):

Dynamical System
input u(t) output y(t)

Figure 1: A dynamical system converts a function of time (input u(t)) into another function
of time (output y(t)).

Calculating the output function due to a given input function is the same as solving the ODE.
We have seen how to use Laplace transforms, and their inverse, to calculate the solution to
the differential equation given initial conditions y(n−1)(t0), y

(n−2)(t0), . . . , y(t0), and some
input u(t).

Given a dynamical system, we would like to not have to compute the solution of (1) for
all possible initial conditions and inputs. Is there a way to predict how the solutions will
behave, without exhaustively simulating every possible situation? Transfer functions allow
us to perform such a prediction.

2 Deriving Transfer Functions

Definition 1. The transfer function from input to output is obtained from the Laplace
transform of the input-output differential equation when all initial conditions are zero.

Let’s apply this definition. Due to the linearity of the Laplace transform, we see that we will
have to calculate terms of the form anL{y(n)(t)}, which we know equals

L{y(n)(t)} = snŷ(s)− sn−1y(0)− sn−2ẏ(0)− sn−3ÿ(0)− · · · − sy(n−2)(0)− y(n−1)(0)

= snŷ(s)− ICTy,

where ICTy refers to terms depending on the initial conditions of y.
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ME 340 Intro. to Mech. Systems 2 DERIVING TRANSFER FUNCTIONS

Therefore, the Laplace transform applied to (1) gets us

(2)
ans

nŷ(s) + an−1s
n−1ŷ(s) + · · ·+ a2s

2ŷ(s) + a1ŷ(s) + a0ŷ(s)− ICTy

= bms
mû(s) + bm−1s

m−1û(s) + · · ·+ b2s
2û(s) + b1sû(s) + b0û(s)− ICTu.

Define

α(s) = ans
n + an−1s

n−1 + · · ·+ a2s
2 + a1s+ a0

β(s) = bms
m + bm−1s

m−1 + · · ·+ b2s
2 + b1s+ b0.

We then rewrite (2) as

ŷ(s) =
β(s)

α(s)
û(s)− 1

α(s)
ICTu +

1

α(s)
ICTy. (3)

= G(s)û(s)− 1

α(s)
ICTu︸ ︷︷ ︸

Forced response

+
1

α(s)
ICTy︸ ︷︷ ︸

Free response

. (4)

The quantity G(s) = β(s)/α(s) is known as the transfer function of the dynamical system.
The first two terms correspond to the forced response, and the last term to the free
response.

We can redraw Figure 1 as

G(s)
û(s) ŷ(s)

Figure 2: A dynamical system converts input û(s) into output ŷ(s).

If ICTu = 0 and ICTy = 0, then ŷ(s) = G(s)û(s). The main idea is that studying G(s)
by itself may tell us what we need to know about response y(t) = L−1{G(s)û(s)} for some
types of inputs û(s). In other words, G(s) can tell us useful things about all possible
forced responses that a set of inputs may produce, without having to explicitly
solve the ODE for each one.

Note that if u(t) = δ(t), then û(s) = 1, so that ŷ(s) = G(s). Therefore, G(s) is often also
called the impulse response function of the dynamical system.

To summarize, given a linear time-invariant ODE

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a2ÿ(t) + a1ẏ(t) + a0y(t)

= bmu
(m)(t) + bm−1u

(m−1)(t) + · · ·+ b2ü(t) + b1u̇(t) + b0u(t). ,
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its transfer function G(s) is

G(s) =
bms

m + bm−1s
m−1 + · · ·+ b2s

2 + b1 + b0
ansn + an−1sn−1 + · · ·+ a2s2 + a1 + a0

=
β(s)

α(s)
. (5)

This transfer function, for linear time invariant (LTI) systems, is a rational function of
the complex variable s. In other words, it is the ratio of two polynomials in s with real
coefficients.

3 Classification of Transfer Functions

Definition 2 (Order Of A Transfer Function). The order of a rational transfer function
G(s) is the degree of the polynomial in the denominator of G(s). For example, the order of
G(s) in (5) is n.

Definition 3. If n = m, then G(s) is exactly proper.

Definition 4. If n > m, then G(s) is strictly proper.

Definition 5. The relative degree of G(s) is n−m.

Definition 6. The poles of G(s) are the roots of α(s).

Definition 7. The zeros of G(s) are the roots of β(s).

4 Poles and Zeros

Consider the transfer function G(s) in (5). The polynomial β(s) has degree m, and the
polynomial α(s) has degree n, which is also the degree of G(s). We define the poles and
zeros of G(s) as follows

Definition 8 (Pole of a Transfer Function). A complex number p ∈ C is a pole of G(s) =
β(s)/α(s) if α(p) = 0.

Definition 9 (Zero of a Transfer Function). A complex number z ∈ C is a zero of G(s) =
β(s)/α(s) if β(z) = 0.

We can express a transfer function as the ratio of two polynomials:

G(s) =
β(s)

α(s)
=
Nm(s− z1)(s− z2) · · · (s− zm)

(s− p1)(s− p2) · · · (s− pn)
, (6)

where pi and zi are respectively the poles and zeros of G(s).
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4.1 Pole-Zero Maps

The poles and zeros are complex numbers, and we can plot their location in the complex
plane. Such a plot is known as a pole-zero map.

There are five zones or regions of the complex plane that have special significance. These
are the Imaginary Axis (IA), the Open Left Half Plane (OLHP), the Open Right Half Plane
(ORHP), the Closed Left Half Plane (CLHP), and the Closed Right Half Plane (CRHP).
See Table 1 for definitions, and Figure 3 for a diagram.

Region Abbr. Definition Notes
Imaginary Axis IA Re(s) = 0

Open Left Half Plane OLHP Re(s) < 0
Open Right Half Plane ORHP Re(s) > 0
Closed Left Half Plane CLHP Re(s) ≤ 0 OLHP ∪ IA

Closed Right Half Plane CRHP Re(s) ≥ 0 ORHP ∪ IA

Table 1: Regions of the complex plane.

ORHPOLHP

IA

Re{s}

Im{s}

Figure 3: The OLHP (light green region), ORHP (light red region), and Imaginary Axis (blue
line). These three sets have NO common points. The IA separates the OLHP and ORHP,
acting as a boundary to both sets. The CLOSED left half plane is the OLHP together with
its boundary which is the IA. Similarly, the closed RIGHT half plane is the ORHP together
with the IA.

The words open and closed have precise mathematical meanings from set topology. The
imaginary axis is a (vertical) line that forms the boundary of both right and left halves of the
complex plane. A closed set contains its boundary. Therefore, the closed right half plane
contains all points to the right of the imaginary axis and also the points on the imaginary
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axis. Similarly, the closed left half plane contains all points to the left of the imaginary
axis and also the points on the imaginary axis.

An open set is one that does not contain its boundary. The open left half plane contains
all points to the left of the imaginary axis, and does not contain any points on the imaginary
axis. A corresponding description holds for the ORHP.

All these statements lead to some equations involving sets as variables:

1. ORHP, OLHP, and IA are distinct sets:

(a) ORHP ∩ OLHP = ∅
(b) ORHP ∩ IA = ∅
(c) OLHP ∩ IA = ∅

2. Together, they form C:
C = ORHP ∪ OLHP ∪ IA

3. The imaginary axis is part of both closed regions:

(a) CLRP ∩ CHRP = IA
(b) IA ⊂ CRHP
(c) IA ⊂ CLHP

4. An open region combined with the IA forms a closed region:

(a) CHRP = IA ∪ ORHP, also ORHP = CRHP - IA

(b) CLRP = IA ∪ OLHP, also OLHP = CLHP - IA

Example 1. Consider the transfer function

G(s) =
5(s+ 1)(s− 5)

(s+ 3)(s− 4− 4j)(s− 4 + 4j)(s2 + 4)
. (7)

Its pole-zero map is:
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Re{s}

Im{s}

×
-3

× 4 + 4 j

× 4 - 4 j

× 2 j

× - 2 j

◦
-1

◦
5

◦-zero

×-pole

Let’s describe the regions these poles and zeros belong to:

1. The poles ±2j are on the imaginary axis. Therefore, they are also belong to the CLHP
and CRHP. However, they are NOT in either the ORHP or the OLHP.

2. The poles 4± 4j are in the ORHP, which automatically make them part of the CRHP
(but not the IA).

3. Likewise, the zero 5 is in the ORHP and CRHP (but not IA).

4. The zero −1 and pole −3 are in the OLHP, and therefore also in the CLHP, but they
are not on the IA.

5 System Responses

Recall that the response ŷ(s) of a system G(s) to an input û(s) is G(s)û(s).

As mentioned in Section 2, we may be able to characterize the response y(t) generated by a
type of input û(s) by looking at G(s), instead of solving for y(t) = L−1 {G(s)û(s)}.

This section describes some of these characteristics.
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6 Stability Of A System

Let G(s) be the transfer function of a linear time invariant (LTI) system (1).

m

Fixed object
hinge

g
L

Figure 4: Pendulum in downward equilibrium
position.

Typically, the case where y(t) = 0 is an equi-
librium. For example, consider the simple
pendulum at its downward position, with
zero velocity. A quick sidewards tap on
the mass is known as providing an impulse.
We’re sure that the pendulum moves away
from the downward position in response to
the tap. But what will happen in the long
run? Here, we’re asking for the impulse re-
sponse of the simple pendulum.

For any input or initial conditions, there are
three possible behaviors of the impulse re-
sponse yi(t) = L−1 {G(s)}:

1. yi(t) is unbounded (|yi(t)| → ∞)

2. yi(t) is bounded (We can find 0 < M <∞ such that |yi(t)| ≤M for all t)

3. limt→∞ y(t) = 0

We can use these three behaviors to define three notions of stability:

Definition 10 (Unstable). G(s) is unstable (US) if its impulse response is unbounded.

Definition 11 (Lyapunov Stable). G(s) is Lyapunov stable (LS) if its impulse response is
bounded.

Definition 12 (Asymptotically Stable). G(s) is asymptotically stable (AS) if its impulse
response satisfies limt→∞ yi(t) = 0.

Note: An asymptotically stable TF is Lyapunov stable. An unstable system is not LS,
and therefore not AS either.

Remark: Why are we interested in yi(t) → 0 instead of yi(t) → a, where a 6= 0? The
answer is that we assume we are interested in equilibria, and for a linear system, 0 is its
equilibrium.
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6.1 Stability and Poles of the Transfer Function

Let’s apply the notion of multiplicity of roots, first mentioned in Laplace transforms, to the
multiplicity of poles.

Definition 13 (Multiplicity). Let G(s) = β(s)/α(s). If α(p) = 0,

lim
s→p

α(s)

(s− p)n
6= 0, and

lim
s→p

α(s)

(s− p)n−1
= 0,

then p is a pole of G(s) with multiplicity n.

Example 2. Let

G(s) =
1

(s− 2)(s− 1)2s3
.

Now, α(s) = (s − 2)(s − 1)2s3. By our definition above, p1 = 2 is a pole of G(s) with
multiplicity 1, p2 = 1 is a pole with multiplicity 2, and p3 = 0 is a pole with multiplicity 3.

Fact: G(s) is AS if and only if all its poles are in the open left half plane (OLHP).

Fact: G(s) is LS if all its poles either

• are in the OLHP, or

• are on the imaginary axis (IA) with multiplicity one.

Fact: G(s) is US if has a pole

• in the open right half plane (OHRP), or

• on the imaginary axis (IA) with multiplicity greater than 1.

These facts above are one example of the statement made in Section 2 where studying G(s)
tells us something about the responses of a system to a given set of inputs.

Example 3. Consider a system with transfer function G(s) given by

G(s) =
s

s2 + 5s+ 6
. (8)

Classify the stability properties of this sytem.
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Solution: The denominator polynomial is s2 + 5s+ 6. The poles of G(s) are therefore the
solutions (or, roots) of the equation s2 + 5s+ 6 = 0, which turn out to be p1 = −2, p2 = −3
(we could also have said p1 = −3, p2 = −2). The real part of both these roots are in the
OLHP, therefore G(s) is asymptotically stable. Since G(s) is asymptotically stable (AS), it
is also Lyapunov stable (LS).

Example 4. Consider a system with transfer function G(s) given by

G(s) =
s

s2 − 6s+ 5
. (9)

Classify the stability properties of this sytem.

Solution: The denominator polynomial is s2 − 6s+ 5. The poles of G(s) are therefore the
solutions (or, roots) of the equation s2 − 6s + 5 = 0, which turn out to be the complex
conjugate pair p1,2 = 3± j2. The real part of both these roots are strictly positive, the poles
are in the ORHP, therefore G(s) is unstable (US).

6.2 Initial and Final Value Theorems

In some case, we may only want to know the value of y(t) at specific times of interest, and
solving for y(t) using the inverse Laplace transform is involved. For example, consider a
system that is stable, but not asymptotically stable. Then, y(t) remains bounded, and if
it approaches a constant value, we’d like to know what that value is. We may be able to
calculate this value without ever solving for y(t). The Final Value Theorem helps us do this.

6.2.1 Final Value Theorem

Let y(t) have the Laplace transform ŷ(s) (which could be a response of the form G(s)û(s)).
If the poles of ŷ(s) are in the OLHP with the possible exception of a single pole at zero.
Then,

lim
t→∞

y(t) = lim
s→0

sŷ(s). (10)

Proof: Use the Laplace transform of ẏ along with the Laplace transform of the derivative.

6.2.2 Initial Value Theorem

A similar result let’s us know what the initial value is, but there are no conditions on the
poles of G(s)

y(0) = lim
t→0

y(t) = lim
s→∞

sŷ(s). (11)
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Example 5. Consider the response ystep(t) of a second order system

G(s) =
ω2
n

s2 + 2ξωns+ ω2
n

to a step input ûstep(s) = 1/s. to a step input:

ŷstep =
ω2
n

s(s2 + 2ξωns+ ω2
n)
,

where ξ > 0 Find the initial and final value of the response.

Solution:
Initial Value:

ystep(0) = lim
s→∞

sŷ(s) (12)

= lim
s→∞

s
ω2
n

s(s2 + 2ξωns+ ω2
n)

(13)

= lim
s→∞

ω2
n

s2 + 2ξωns+ ω2
n

(14)

= 0 (15)

Final Value: Since ξ > 0, two poles of

ŷstep =
ω2
n

s(s2 + 2ξωns+ ω2
n)
,

are in the open left half plane, and one on the imaginary axis. Therefore, we may use the
FVT to calcluate ystep(∞).

ystep(∞) = lim
s→0

sŷ(s) (16)

= lim
s→0

s
ω2
n

s(s2 + 2ξωns+ ω2
n)

(17)

= lim
s→0

ω2
n

s2 + 2ξωns+ ω2
n

(18)

= 1 (19)

Together, we learn that the system G(s) will have an output in response to a step input that
starts from zero, and reaches 1, meaning that the ouput eventually matches the input. This
property is very useful for reference-tracking systems, like in servo motors.

Example 6. If we have a mass-spring-damper at equilibrium, where

G(s) =
1

ms2 + cs+ k
,
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and apply a step input force f(t) on the mass, the response of the position of the mass y = q
is

ŷ(s) =
1

(ms2 + cs+ k)

1

s
=⇒ ystep(∞) =

1

k
(20)

We’ve just shown that a stiffer spring (higher k) reduces the distance (smaller 1/k) by which
a constant force (step input f(t)) moves the resting position (0→ 1

k
).
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