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1 Introduction

Most systems in the world are nonlinear. Many nonlinear systems, however, can be approx-
imated by linear systems.

We refer to this process of approximating a nonlinear system by a linear system as
linearization.

Example 1 (Simple Pendulum). The sim-
ple pendulum is a mass m suspended by
a rigid massless string of length L from a Fixgd object
point, moving under the effect of gravity g. T / J hinge

This system can be described by the angle /
0, with time t as the independent variable. /

The rotational version of Newton’s laws pro- L ," :
vide the EoM: / : l
i} / 0 g
mL*0 + mgLsinf = 7(t), (1) *

where 7(t) is an input torque applied at the
hinge. 0

It may be hard to solve (1) given an initial conditon 6(0) and #(0), and an input 7(¢).
However, a careful combination of engineering judgement and mathematical tools will allow
us to understand the behavior of the simple pendulum in some cases.

In previous material, we saw that it is possible to analyze linear systems. Through transfer
functions, we can say a great deal about how linear systems respond to inputs. Therefore,
we will analyze a nonlinear system like the one in (1) by approximating it using a linear
system. The main idea is to linearize the system around an equilibrium. This concept
is related to relative displacements, and uses the Taylor Expansion of an analytic function.

Table of Contents 2



ME 340 Intro. to Mech. Systems 2 TAYLOR SERIES EXPANSION

2 Taylor Series Expansion

The linearization process uses the Taylor expansion of a function f(z) about a point z.. For
this process to work well, the function f(z) must be differentiable arbitrarily many times.
We distinguish between two cases:

1. Single variable f:R — R

2. Multi-variable f:R™ — R

2.1 Single Variable Function

The Taylor expansion of f about a point z, is

(=)t 5 @) ma) g s @) @)

If © — . is small, then (z — z.)* for k > 2 will be smaller, and so the approximation f(z) of

f(x) is .
fl@)~ flze) + fla)| (),

T=X¢

which is exactly the linear (aka first-order) approximation of f about z..

To see why this is a linear approximation, let’s think in terms of deviations of z from x,
and corresponding deviations of f(z) from f(z.). Let dx = 2 — x, be the local deviation
(perturbation) from z.. Further, if we define y = f(z), y. = f(z.), and dy = y — y., then,

@)~ fa)m Si@| o), o

oy = f'(x)d,

which is a linear relationship between dy and dx.

What would this linearization look like?
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&V

]

Figure 1: Approximation of a function f(x) at z. through linearization.
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Example 2 (Small Angle Approximation). Find the Taylor-series exapansion and first-order
approximation of sinz about z, = 0.

Solution:

sinz = sinz, + ; %(sin x) . (z — 2)"
d 1 d? 1 d3
=sin(0) + a(sin ) » (x—0)+ B %(Sm x) . (z—0)*+ 3 @(Sin x) » (z—0)?
1 da* . .1 d 5
+ @(Slﬂl‘) . (x—0)"+ o @(Slnx) » (x —0)° +
B (—sin0) 5 (—cos0) 5 (sin0) , (cos0)
=0+ (cos0)x + 5 x° + i x” + m x” + = x” +
A A
TR
(4)
Therefore, the first order approximation of sin z about x, = 0 is sinx =~ . O

2.2 Multivariable Function

Let  be an n-dimensional real vector z € R".

€

o)
Tr =

Tn

Let f:R" +— R be a real-valued function of x. Then, the first order approximation of f(z)
at r. € R"

—f@&+§%(@ (1 — 220) (5)
+ ai@f(x) . (g — X9e) + -+ + ainf(x) . (Tp, — Tpe)

Example 3. Let f:R?> — R, a function of three variables, be f(xy, 79, 23) = z23. The
linearization of this function about a point z, = (1., T2, Z3.) would be

of of

f(7) = f(@1e, 72¢) + 8_x1 (21 — T1e) + = (g — Toe)+ —— (w3 — x3.) (6)

T=Te
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Most of the work is in correctly evaluating the terms in blue. We can ignore writing the
term for x3 (in red in (6)) from the beginning, since f(x) does not depend on x3, meaning

g—xfg = 0. In other words, you would be fine starting with

of af

f(x) = f(21e, T2e) + 8_111 x::pe<$1 — T1e) + 3_@ . (g — 2¢), (7)
provided you state that this expression comes from 88_;”3 = 0.
We can derive
of _ Oxx3) _ of 2
= = _— = 8
8951 al'l 2 — 81‘1 o 2e ( )
of _ d(ax3) of
= =2 a_ = 21T,
ax2 ax2 T1Ty — ax2 . T1eTo (9)
Therefore,
) 0
F0) = o) + g @mn) g (@) (10)
= 21025, + 25, (1 — T1e) + 2210700 (T2 — T2e) (11)

Suppose now that you needed to rewrite this equation in terms of dz, where dx = xr — x.. As
we see, it’s easy to achieve this, since the only terms containing = are already in the form
T — X

flz) ~ xleazge + x%e(.’m — T1e) + 2%1eT0e (T2 — Toe) (12)

= 2125, + 25,001 + 271,792,075 (13)

Finally, compare where we started and where we ended:

0 0
f(l') ~ f(‘rlm I’Q(%) + a_:;jfl e (Il - xlff) + a_lj; o (.172 - IEQ(;) <14)
f(6x, 2,) = 21,05, + 23,071 + 22120075 (15)

Example 4 (Example 3 with derivative). In Example 3, we had three dependent variables
X1, Tg, and x3. Suppose that x1 = ¢, and x5 = ¢. Since x, will correspond to an equilibrium
in our problems, we always know that x,, = ¢. = 0. Of course, x1. could have non-zero
values. With this information, we see that the linearization becomes

even though we never calculated what . is! O
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3 Linearizing ODEs

How do we linearize a nonlinear differential equation?

In general, we are interested in behavior close to equilibria, and therefore we linearize ODEs
at their equilibria. Therefore,

e Find all unforced equilibria (when u(t) = 0).
e Linearize the ODE be linearizing each term in the resulting ODE.

e For each equilibrium, rewrite the linearized equation in terms of deviations (relative
displacements) from that equilibrium.

Example 5. Consider the input-output ODE

J+y -y’ =u
Step 1: Find unforced equilibria:
y +ye - yg =0 (16)
<~
—0
:>ye(1_y3) =0 (17)
— y. € {—1,0,1} (18)

Step 2: Rewrite ODE by linearizing nonlinear terms.

y+y—y’=u (19)
. d
= §+y— (yi”r d—(y3) (y—ye)> =u (20)
y Y="Ye
. 3 2 _
= j+y- (y + 397, (v - ye)> =u (21)
= y+y— (v +3y0(y—y)) =u (22)

Step 3: Rewrite the equation using the perturbed variable dy = y — y., for each equilibria:

d
709 +ue) + (0 +ye) — (y2 + 3y2oy) = u(t) (23)
d
—> — 0y + 6y — 3y20y + (ye — ) = u(t) (24)
dt e Je,
=0
— %dy + (1 —3y2)dy + 0 = u(t) (25)
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So, we get
Ye=—1: 09(t) —20y =0 (26)
Ye=0: 0y(t)+0oy=20 (27)
ye=1: oy(t) — 20y =0 (28)

Example 6. Consider the pendulum which is governed by the equation

mi*0(t) +mglsin(t) = 7(t).

Find all unforced equilibria, and linearize about each equilibrium.

Assume that m =1 kg, [ = 1m, and g = 9 m/s?. Determine the stability of each linearized

ODE. U

Step 1: Find equilibria

ml%6(t) + mgl sin 6(t) = 7(t)
— ml%0(t) + mglsinO(t) = 0 (unforced)
= 0+ mglsinf, =0 0t) =6, = 0(t)=0

— 0. = {0, £m, £2m,... }
Since 6 4 27 is the same as 0, we can assume that the set of equilibria contains just two
elements: 0, = {0, 7}.
Step 2: Linearize ODE at equilibrium 6,
mi?0(t) + mglsin 0(t) = 7(t)

— mi*0(t) + mgl (sin O + i(Sin 0)

(0 — 06)> = 7(t) (first-order approx of sin)
6=0.

de
— ml?6(t) + mgl (sinf. + cosf],_, (0 —0c)) =7(t) (%(sin 0) = cos 9)
— mil?*0(t) + mgl cos 0,6 — 6.) = 7(1) (mglsing, = 0)
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Step 3: Evaluate at equilibria, using perturbed coordinates 660 = 0 — 0,.:

o (69 +6.) + mglcos6.(060 + 6. — 6.) = 7(t) (29)
= ml256(t) + mgl cos 0,60 = 7(t) (30)
0. =0: mi*60(t) + mgl - 1-66 = 7(t) (31)
0. = mi*60(t) + mgl - (—1) - 60 = 7(t) (32)
Stability 6, = 0: If u(t) = 7(t), y(t) = 60(t). For 6, = 0,
(ml*s® +mgl)j(s) = a(s) (33)
= Gls) = m12521+ mgl T8 j— 32 (34)
Poles are +73 = Lyapunov stable, but not asymptotically stable.
Stability 0, = m: If u(t) = 7(t), y(t) = 60(t). For 0, = ,
(ml*s* —mgl)j(s) = a(s) (35)
— Gls) = ml2521— mgl T s i 32 (36)
Poles are £3 = unstable.
Example 7. Consider the nonlinear EoM
G1+ Go2q2 +cosqr +q =0 (37)
Go+ 102+ 5 = u (38)

Find all equilibria ¢, = [qle qge}T.
Find the linearized ODEs at these equilibria.

Solution: Since the system is second-order in both ¢; and ¢o, an equilibrium configuration
g. corresponds to equilibrium state z, = [(he qoe O 0}
Step 1: Find equilibria. Set ¢(t) = ¢. = ¢(t) = 0 and u(t) = 0.

04+0-g2¢ +cos0+qe =0 = q1c = —1 (39)
04 Greqze +0° =0 = qoe =0 (40)

The unique equilibrium is ¢, = [—1 O}T.
Step 2: Linearize ODEs

g1 + Gaga + cosgy +q1 =0 (41)
G2+ g + 45 = u (42)
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. . J . . a .
4242 = (J2Q2’q:qe,q:0 + a—.(qwz) (G2 — Goe) + a—(qwz) (g2 — qae)
72 4=4e,4=0 72 4=0e,4=0 (43)

=0- G2e + q2‘q:qe (q2 - 0) + C]2e|q:qe,q:0 (q2 - qu)
=0+ ¢2G2 + 0(q2 — q2¢)

=04+0-¢+0
=0
cosqr = coSqul,_, 4o+ 5 Cos @ (@1 — que) (44)
gl 4=qe,q=0
= cos 0+ (=singi)|,_, -0 (¢1 — Grc)
:]-_O(ql_QIe):]-
+ 2 (@ - a10) + () (@ — @)
d192 = q1e42e = \41G2 d1 — q1e = \q192 q2 — 42¢
aql q=qe,G=0 an q=0qe,G=0 (45>
=0+ @2l g, (@1 — q1e) + @1l =g -0 (T2 — G2¢)
=0+ @e(¢1 — q1e) + G1e(@2 — G2¢)
=040 (g1 —qre) + (1) - (¢2 — q2¢) = —(q2 — G2¢)
Bodl (@) (G — o) (46)
=000 O 4=e,g=0
=0+ 26o|,_, 40 (d2—0)
=0
Putting it all together, we get
i+04+1+q =0 (47)
Go+ —(q2 — q2e) + 0= (48)

Step 3: Let 01 = ¢1 — q1e = q1— 1 and dgo = q2 — @2 = @o. Substituting for ¢ in the linearized
ODE, we get

661 +0+1+ (6 —1)=0 (49)
0Ga + —(0q2 + Gae — q2e) + 0 =, (50)
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or
0G1 + g1 =0 (51)
0Ga — 0q2 = u, (52)
0

Example 8. Consider the EoM
G +401¢2—q+1=0 (53)
Go + 10q; — %sin(wqg) = 34u (54)

Find the unforced equilibria (g, goc)

Find the linearized ODEs at these unforced equilibria
Let y = q1 — qie- Find G(s) = g(s)/u(s)

Find the impulse response of G(s)

AR

Find the steady-state forced response y () to input u(t) = cost.

Solution:

L. (qie, g2e) = (0, 1)

2.
g1 + 4641 — 8¢y = 0 (55)
0g2 + 106, — 36qs = 34u (56)
5 34
G p—
(5) s34+ 7824+ 125+ 10
4.
yi(t) = 2e7" — 2e ' cost + 8e 'sint
5.
Yss(t) = o4 cos (¢t — tan~'(187/51))
” V130
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