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1 Introduction

The state variable equations are generally in the form

q̇(t) = f(q, u, t) (1)

y(t) = g(q, u, t) (2)

where

• q is an n-dimensional vector of state variables,

• u is an p-dimensional vector of input variables,

• y is a m-dimensional vector of output variables,

• t is time, the independent variable of integration, and

• f and g are vector-valued functions of dimension n and p respectively.

This form has several advantages, especially for numerical computation, which is why we
learn to derive them from physics-based ODE models.

When the functions f and g are linear functions of the state q and input u, and independent
of time, the state-variable equations represent a linear time-invariant (LTI) system, for which
there are many advanced methods of analysis and design.

For the (LTI) system, we get ODEs

q̇1 = a11q1 + a12q2 + · · · a1nqn + b11u1 + b12u2 + · · · b1pup
q̇2 = a21q1 + a22q2 + · · · a2nqn + b21u1 + b22u2 + · · · b2pup

...

q̇n = an1q1 + an2q2 + · · · annqn + bn1u1 + bn2u2 + · · · bnpup,

and output equations

y1 = c11q1 + c12q2 + · · · c1nqn + d11u1 + d12u2 + · · · d1pup
y2 = c21q1 + c22q2 + · · · c2nqn + d21u1 + d22u2 + · · · d2pup

...

ym = cm1q1 + cm2q2 + · · · cmnqn + dm1u1,+dm2u2 + · · · dmpup

where the coefficients aij, bij, cij, and dij are constants.

The state vector q consists of the n state variables q1, q2, . . . , qn as follows:

(3)q =


q1
q2
...
qn

 .
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Similarly, the state velocity vector q̇, initial condition q(0), input u and output y are

q̇ =


q̇1
q̇2
...
q̇n

 , q(0) =


q1(0)
q2(0)

...
qn(0)

 , u =


u1
u2
...
um

 , y =


ẏ1
ẏ2
...
ẏn

 .

We can collect the coefficients aij, bij, cij, and dij into matrices as

An×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , Bn×p =


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 · · · bnp



Cm×n =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cm1 cm2 · · · cmn

 , Dm×p =


d11 d12 · · · d1p
d21 d22 · · · d2p
...

...
. . .

...
dm1 dm2 · · · dmp


and then rewrite the state-variable equations, also known as the state-space equations, as

q̇ = Aq +Bu (4)

y = Cx+Du (5)

Problem 1 (Textbook Example 3.14). Write the state-variable equations for the problem
in Example 3.7 with output given by fs1 .

k1

c2

k2

A

q2(t)q1(t)

fa(t)
m

c1

Solution (includes solution to Example 3.7):

We draw the free-body diagrams:
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fa

k1(q1 − q2)

c1q̇1

q1

m
k1(q1 − q2)

k2q2

c2q̇2

q2

m2 = 0

Applying Newton’s second law, we get

m q̈1 = fa − k1(q1 − q2)− c1q̇1, and (6)

0 = k1(q1 − q2)− c2q̇2 − k2q2. (7)

How do we choose the state? We explored two concepts:

1. The state should allow the output to be predicted/computed

2. The state may allow prediction of the positions and/or velocities of all objects in an
inertial reference frame.

So, since fs1 = k1(q1 − q2), we could again consider a state qR = q1 − q2, and vR = q̇R. We
can write the equations

q̇R = vR (8)

v̇R = q̈1 − q̈2 (9)

=
1

m1

(fa − k1qR − c1q̇1)− q̈2 (10)

Why won’t this work? Ans: because of the q̈2 term.
Idea: differentiate (7) to get an expression for q̈2 in terms of v1, v2. The expression would be

v̇2 =
1

c2
(k1vR − k2v2) .

Then, we would need to add v2 as a state. We don’t need to add v1 as a state, because
v1 = v2 + vR .

We finally get

q̇R = vR (11)

v̇R =
1

m
(fa − k1qR − c1(v2 + vR))− 1

c2
(k1vR − k2v2) (12)

v̇2 =
1

c2
(k1vR − k2v2) (13)

y = k1qR (14)
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To get to the matrix form, we expand the terms:

q̇R = vR (15)

v̇R = −k1
m

qR −
c1
m

vR −
c1
m

v2 +
1

m
fa (16)

v̇2 =
k1
c2

vR −
k2
c2

v2 (17)

y = k1qR (18)

An intermediate step that might make things easier:

q̇R = 0 qr + vR + 0 v2 + 0 fa (19)

v̇R = −k1
m

qR −
c1
m

vR −
c1
m

v2 +
1

m
fa (20)

v̇2 = 0 qR +
k1
c2

vR −
k2
c2

v2 + 0 fa (21)

y = k1 qR + 0 vR + 0 v2 + 0 fa (22)

With state vector x =
[
qR vR v2

]T
, we may write

ẋ =

 0 1 0
−k1
m
− c1
m
− c1
m

0 k1
c2

k2
c2

x+

 0
1
m

0

 fa (23)

y =
[
k1 0 0

]
x (24)

Instead, consider the textbook solution, which uses the state x =
[
q1 v1 q2

]T
The state-

variable (or state-space) equations are :

q̇1 = v1 (25)

v̇1 =
1

m
(fa − k1(q1 − q2)− c1v1) (26)

q̇2 =
k1
c2

(q1 − q2)−
k2
c2
q2 (27)

y = k1(q1 − q2) (28)

An intermediate step that might make things easier:

q̇1 = 0 q1 + v1 + 0 q1 + 0 fa (29)

v̇1 = −k1
m

q1 −
c1
m

v1 +
k1
m
q2 +

1

m
fa (30)

q̇2 =
k1
c2

q1 + 0 v1 −
(k1 + k2)

c2
q2 + 0 fa (31)

y = k1q1 + 0 v1 − k1 q2 + 0 fa (32)

Table of Contents 5



ME 340 Intro. to Mech. Systems2 SOLVING LINEAR STATE-VARIABLE EQUATIONS

With state vector, we may write

ẋ =

 0 1 0
−k1
m
− c1
m

k1
m

k1
c2

0 −k1+k2
c2

x+

 0
1
m

0

 fa (33)

y =
[
k1 0 −k1

]
x (34)

2 Solving Linear State-Variable Equations

Suppose that we are given the state-variable equations

ẋ(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

where x(t) is the state, y(t) is the output, u(t) is the input, and t represents time.

Suppose we know the initial condition (IC) x(t0), and input u(t) for t ∈ [t0, tf ]. We want to
understand how the output y(t) will behave over the time interval [t0, tf ]. To do so, we may
either

• Explicitly solve for x(t), because y(t) = Cx(t) +Du(t)

• Use A, B, C, and D to predict the behavior of solutions x(t) given ICs and input.

We saw that transfer functions allow us to do something similar for Input-Output Differential
Equations.

2.1 Explicit Solution

In earlier calculus classes, you may have seen methods to solve linear ODEs by computing
homogenous and particular solutions. In the notes on Laplace transforms, we solve first-
order input-output differential equations in y(t) using this method. This section shows the
relationship between that method and the linear state-variable equations given by matrices
A, B, C, and D.

Matrix Exponential. Given a matrix A, we define the matrix eAt as the infinite sequence

eAt = I +
1

1
At+

1

2!
A2t2 +

1

3!
A3t3 +

1

4!
A4t4 + · · · (3)
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This definition implies that eA(t1+t2) = eAt1eAt2 .

Let’s calculate the derivative of eAt:

d

dt
eAt =

d

dt

(
I +

1

1
At+

1

2!
A2t2 +

1

3!
A3t3 +

1

4!
A4t4 + · · ·

)
=

d

dt
(I) +

d

dt

(
1

1
At

)
+
d

dt

(
1

2!
A2t2

)
+
d

dt

(
1

3!
A3t3

)
+
d

dt

(
1

4!
A4t4

)
+ · · ·

= 0 + A+
1

2!
A2(2t) +

1

3!
A3(3t2) +

1

4!
A4(4t3) + · · ·

= 0 + A+
1

1
A2t+

1

2!
A3t2 +

1

3!
A4t3 + · · ·

= A

(
I +

1

1
At+

1

2!
A2t2 +

1

3!
A3t3 + · · ·

)
= AeAt

Suppose we define z(t) = eAtv, where v = e−At0z(t0), Then,

ż(t) =
d

dt

(
eAtv

)
=

d

dt

(
eAt
)
v

=
(
AeAt

)
v = A

(
eAtv

)
= Az(t)

In other words, x(t) = eA(t−t0)x(t0) is the solution to the differential equation

ẋ(t) = Ax(t)

with initial condition x(t0).

Suppose we have the differential equation

ẋ(t) = Ax(t) +Bu(t).

Multiply on the left by e−At and rearrange to get

e−Atẋ(t)− Ae−Atx(t) = e−AtBu(t)

But,
d

dt

(
e−Atx(t)

)
= e−Atẋ(t)− Ae−Atx(t),

so that we may write
d

dt

(
e−Atx(t)

)
= e−AtBu(t).
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Integrate this equation on both sides:

∫ t

t0

d

dt

(
e−Aτx(τ)

)
dτ =

∫ t

t0

e−AτBu(τ)dτ

=⇒ e−Atx(t)− e−At0x(t0) =

∫ t

t0

e−AτBu(τ)dτ

Now, multiply both sides by eAt:

eAte−Atx(t)− eAte−At0x(t0) = eAt
∫ t

t0

e−AτBu(τ)dτ

=⇒ x(t)− eA(t−t0)x(t0) =

∫ t

t0

eA(t−τ)Bu(τ)dτ

=⇒ x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ

=⇒ y(t) = CeA(t−t0)x(t0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t)

= free response + forced response

The forced response is
∫ t
t0
CeA(t−τ)Bu(τ)dτ+Du(t), which may be difficult to calculate. The

first term in the forced response is exactly a convolution operation between the function
CeAt and Bu(t).

2.2 Laplace Transform

Again, if the goal is to explicitly calculate y(t), we may prefer to work in the s-domain,
which implies we work with Laplace transforms.

ẋ(t) = Ax(t) +Bu(t) (4)

y(t) = Cx(t) +Du(t) (5)

sx̂(s)− x(t0) = Ax̂+Bû(s) (6)

=⇒ (sI − A)x̂(s) = x(t0) +Bû(s) (7)

x̂(s) = (sI − A)−1x(t0) + (sI − A)−1Bû(s) (8)

ŷ(s) = Cx̂(s) +Dû(s) (9)

=⇒ ŷ(s) = C(sI − A)−1x(t0) + C(sI − A)−1Bû(s) +Dû(s) (10)
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To find the Laplace transform, set x(t0) = 0 to obtain

ŷ(s) = C(sI − A)−1Bû(s) +Dû(s) (11)

=⇒ ŷ(s) =
(
C(sI − A)−1B +D

)
û(s) = G(s)û(s) (12)

=⇒ G(s) = C(sI − A)−1B +D (13)

The remainder of this subsection shows that the explicit time-domain solution would be the
same as if we used the s-domain and the inverse Laplace transform to calculate y(t).

Fact. Let A be an n× n matrix. Then,

L
{
eAt
}

= (sI − A)−1eAt0 =⇒ L−1
{

(sI − A)−1
}

= eA(t−t0)

To derive this fact, apply the Differentiation rule:

L
{
eAt
}

= L
{
eAt
}

(Always true)

=⇒ sL
{
eAt
}
− eAt0 = L

{
d

dt

(
eAt
)}

(Differentiation rule)

=⇒ sL
{
eAt
}
− eAt0 = L

{(
AeAt

)}
(derived earlier)

=⇒ sL
{
eAt
}
− eAt0 = AL

{
eAt
}

(Linearity of LT)

=⇒ (sI − A)L
{
eAt
}

= eAt0 (Rearrange terms)

=⇒ L
{
eAt
}

= (sI − A)−1eAt0 (Matrix inversion)

So, we can take the inverse Laplace transform of (10) to obtain

L−1 {ŷ(s)} = L−1
{
C(sI − A)−1x(t0) + C(sI − A)−1Bû(s) +Dû(s)

}
y(t) = L−1

{
C(sI − A)−1x(t0)

}
+ L−1

{
C(sI − A)−1Bû(s)

}
+ L−1 {Dû(s)}

y(t) = CeA(t−t0)x(t0) +
(
L−1

{
C(sI − A)−1

}
∗ L−1 {Bû(s)}

)
(t) +DL−1 {û(s)}

(Convolution of functions of t is product of Laplace transforms of those functions)

y(t) = CeA(t−t0)x(t0) +
(
CeAt ∗Bu(t)

)
(t) +Du(t)

y(t) = CeAtx(0) +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t)

3 Matrix Computations

To calculate the transfer function, we must compute (sI − A)−1, where M−1 is the inverse
of a square matrix M .

To calculate the inverse of M , we need to calculate the determinant of M .

Table of Contents 9
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3.1 Determinant

The determinant of M , and n× n matrix, is always a scalar number.

Let Mi,j be the (i, j)th element of M .

Let Sn be the set of n! possible permutations of an ordered set of n numbers.

The determinant of a n× n square matrix M is given by

detM =
∑
σ∈Sn

(−1)NσΠn
iMi,σ(i)

where Nσ is the number of pairwise exchanges of elements of σ required to reach the order
(1, 2, . . . , n).

Example 1 (Determinant of a Scalar). Let

M =
[
a
]

.

Calculate detM .

Solution:

S1 = {(1)} = {σ1}. Nσ1 = 0, because we don’t need to switch any elements to get to the
permutation (1). detM has only one term:

detM = (−1)Nσ1Π1
iMi,σ1(i) (1)

= (−1)0M1,σ1(1) (2)

= 1 ·M1,1 (3)

= a (4)

�

Example 2 (Determinant M ∈ R2×2). Let

M =

[
a b
c d

]
.

Calculate detM .

Table of Contents 10
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Solution: Since M is a 2×2 matrix, we will need to work with S2, which has 2! = 2 elements:
S2 = {(1, 2), (2, 1)} = {σ1, σ2}.

detM is the sum of two terms:

(5)detM = (−1)Nσ1Π2
iMi,σ1(i) + (−1)Nσ2Π2

iMi,σ2(i)

Consider the first term corresponding to σ1 = (1, 2). Nσ1 = 0, because we don’t need to
permute any entries to reach the permutation (1, 2). Since σ1 = (1, 2), we have

σ1(1) = 1, σ1(2) = 2.

We need to evaluate (−1)Nσ1Π2
iMi,σ1(i):

(−1)Nσ1Π2
iMi,σ1(i) = (−1)Nσ1M1,σ1(1)M2,σ1(2) (6)

= (−1)0M1,1M2,2 (7)

= ab (8)

For σ2 = {(2, 1)}: Nσ2 = 1, because we must switch the 1 and 2 to obtain the permutation
(1, 2). We have

σ2(1) = 2, σ2(2) = 1.

(−1)Nσ2Π2
iMi,σ2(i) = (−1)Nσ2M1,σ2(1)M2,σ2(2) (9)

= (−1)1M1,2M2,1 (10)

= −bc (11)

Therefore, detM = ad− bc

�

Example 3 (Determinant M ∈ R3×3). Let

M =

a b c
d e f
g h i


.

Calculate detM .

Solution: M ∈ R3×3. Therefore, the permutations we consider belong to S3. There are 3! = 6
such permutations. They are:

S3 = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} = {σ1, σ2, σ3, σ4, σ5, σ6}

�
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detM is the sum of six terms:

(12)
detM = (−1)Nσ1Π3

iMi,σ1(i) + (−1)Nσ2Π3
iMi,σ2(i) + (−1)Nσ3Π3

iMi,σ3(i)

+ (−1)Nσ4Π3
iMi,σ4(i) + (−1)Nσ5Π3

iMi,σ5(i) + (−1)Nσ6Π3
iMi,σ6(i)

Consider the first term corresponding to σ1 = (1, 2, 3). Nσ1 = 0, because we don’t need to
permute any entries to reach the permutation (1, 2, 3). Since σ1 = (1, 2, 3), we have

σ1(1) = 1, σ1(2) = 2, σ1(3) = 3.

We need to evaluate (−1)Nσ1Π3
iMi,σ1(i):

(−1)Nσ1Π3
iMi,σ1(i) = (−1)0M1,σ1(1)M2,σ1(2)M3,σ1(3) (13)

= M1,1M2,2M3,3 (14)

= aei (15)

So, the first term in detM is +aei.

We repeat this process for the second term in detM corresponding to σ2 = (1, 3, 2). Nσ2 = 1,
because we need to exchange the last two elements of σ2 to get the permutation (1, 2, 3).
Since σ2 = (1, 3, 2), we have

σ2(1) = 1, σ2(2) = 3, σ2(3) = 2.

(−1)Nσ2Π3
iMi,σ2(i) = (−1)1M1,σ2(1)M2,σ2(2)M3,σ2(3) (16)

= −M1,1M2,3M3,2 (17)

= −afh (18)

Continuing this process, we get

detM = aei− afh+ dhc− dib+ gbf − gce.

3.2 Matrix Inverse

sad Let M be an n× n matrix.

The inverse of M , denoted M−1, is a matrix whose (i, j)th element M−1
i,j is given by

M−1
i,j = (−1)(i+j)

detM[i,j]

detM
,

where M[i,j] is an (n− 1)× (n− 1) matrix obtained by deleting the ith column and jth row
of M .

Table of Contents 12
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Example 4 (Inverse M ∈ R2×2). Let

M =

[
a b
c d

]
.

Calculate M−1. �

Solution:

detM = ad− bc.

By deleting the ith column and jth row of M , we get

M[1,1] = d (19)

M[1,2] = b (20)

M[2,1] = c (21)

M[2,2] = a (22)

The (i, j)th entry of M−1 is then

M−1
1,1 = (−1)(1+1)detM[1,1]

detM
=

d

ad− bc
(23)

M−1
1,2 = (−1)(1+2)detM[1,2]

detM
=

−b
ad− bc

(24)

M−1
2,1 = (−1)(2+1)detM[2,1]

detM
=

−c
ad− bc

(25)

M−1
2,2 = (−1)(2+2)detM[2,2]

detM
=

a

ad− bc
(26)

Therefore,

M−1 =
1

ad− bc

[
d −b
−c a

]
.

Example 5 (Free response of LTI System A,B,C, D).

A =

[
−1 1
0 −2

]
, C =

[
1 0

]
, B = 0, D = 0 (27)

Let

x(0) =

[
0
1

]
.

Find the free response using Laplace transforms.
Note: L

{
eAt
}

= (sI − A)−1eAt0 �
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Solution:

The free response ŷfree(s) is

ŷfree(s) = C(sI − A)−1x(t0)

Let’s first construct M = (sI − A) :

M = (sI − A) = s

[
1 0
0 1

]
−
[
−1 1
0 −2

]
=

[
s 0
0 s

]
−
[
−1 1
0 −2

]
=

[
(s+ 1) −1

0 (s+ 2)

]

Calculate the determinant:

detM = (s+ 1)(s+ 2)− (−1) · (0) (28)

= (s+ 1)(s+ 2) (29)

We’ve derived the expression for the inverse of a 2× 2 matrix, so that

M−1 = (sI − A)−1 =
1

(s+ 1)(s+ 2)

[
(s+ 2) 1

0 (s+ 1)

]
(30)

=

[ 1
s+1

1
(s+1)(s+2)

0 1
s+2

]
(31)

ŷfree(s) = C(sI − A)−1x(t0)

=
[
1 0

] [ 1
s+1

1
(s+1)(s+2)

0 1
s+2

] [
0
1

]
=

1

(s+ 1)(s+ 2)

=
1

s+ 1
− 1

s+ 2

=⇒ yfree(t) = L−1
{

1

s+ 1

}
− L−1

{
1

s+ 2

}
= e−t − e−2t
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