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Solutions to ODEs

Goal

Learn how to solve a linear ODE

any
n(t) + an−1y

n−1(t) + · · · a2ÿ(t) + a1ẏ(t) + a0y(t) = f (t),

given appropriate initial conditions y(0), ẏ(0) . . . , yn−1(0).

Solution

A function y(t) that will satisfy the constraints given by the linear
ODE and the initial conditions.

Approaches

1. Guess time-based functions

2. Invert frequency-based functions
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given appropriate initial conditions y(0), ẏ(0) . . . , yn−1(0).
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Time-based Approaches
Solutions have two components

The solution y(t) has two parts:

y(t) = yH(t) + yP(t),

where yH(t) is the homogenous solution, and yP(t) is the
particular solution.

Basic idea

I yH(t) is the solution of

any
n(t) + an−1y

n−1(t) + · · · a2ÿ(t) + a1ẏ(t) + a0y(t) = 0,

the unforced equation.

I use yH(t) to solve for yP(t), through the method of
undetermined coefficients.
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Homogenous Solutions

Assume y(t) = keλt . From calculus,

d

dt
eλt = λeλt .

Applying this to

any
n(t) + an−1y

n−1(t) + · · · a2ÿ(t) + a1ẏ(t) + a0y(t) = 0,

we get

anλ
ny(t) + an−1λ

n−1y(t) + · · · a2λ2y(t) + a1λy(t) + a0y(t) = 0,

or,

(
anλ

n + an−1λ
n−1 + · · · a2λ2 + a1λ+ a0

)
y(t) = 0.
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Homogenous Solutions

Since y(t) = keλt , y(t) 6= 0 for any t.

To solve y(t), we must solve for λ in

anλ
n + an−1λ

n−1 + · · · a2λ2 + a1λ+ a0 = 0.

The characteristic equation is a polynomial (algebraic) equation
with real coefficients.

Its solutions are possibly complex numbers, that is, λi ∈ C, for
i ∈ {1, 2, . . . n}.

Each such complex number is a called a root of the characteristic
equation, and each root adds a term to the solution yH(t) (next
slide).
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Roots of Characteristic Equation

anλ
n + an−1λ

n−1 + · · · a2λ2 + a1λ+ a0 = 0.

Characteristic equation

Distinct roots λ1 6= λ2 6= · · · 6= λn.

yH(t) = k1e
λ1t + k2e

λ2t + · · ·+ kne
λnt

Repeated roots λ1 = λ2 = λ3, λ4 6= · · · 6= λn.

yH(t) = k1e
λ1t + k2te

λ2t + k3t
2eλ2t + k4e

λ4t + · · ·+ kne
λnt

= (k1 + k2t + k3t
2)eλ1t + k4e

λ4t + · · ·+ kne
λnt

Complex roots λ1 = α + iβ, λ2 = α− iβ, λ3, λ4, . . . , λn.

yH(t) = k1e
λ1t + k2e

λ2t + · · ·+ kne
λnt

= k1e
(α+iβ)t + k2e

(α−iβ)t + · · ·+ kne
λnt

= eαt(ka cos(βt) + kb sin(βt)) + · · ·+ kne
λnt
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Particular Solution

We found the form of yH(t), which is one part of the solution
y(t) to the ODE

any
n(t) + an−1y

n−1(t) + · · ·+ a0y(t) = f (t).

We use the form of the forcing function f (t), and of yH(t), to
predict a candidate particular solution yP(t).

form of f (t) and yH(t) =⇒ form of yP(t)
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Candidate Particular Solution

Forcing f (t) Candidate yP(t)

α A
αt + β At + B
eαt Aeαt

cosωt A cosωt + B sinωt
sinωt A cosωt + B sinωt

Another rule

If candidate yP(t) contains a term that is present in yH(t),
multiple that term by t.

Example

if yH(t) = k1e
−t + k2e

−2t , and f (t) = e−t , use candidate

yP(t) = A t e−t .

If candidate yH(t) = k1e
−t + k2te

−t , due to repeated roots, use
yP(t) = A t2 e−t .ME 340 Intro. to Mech. Systems



Are we there yet?

I Find homogenous solution yH(t), where we ignore f (t).

I Use f (t) and yH(t) to choose candidate yP(t).

I These functions have unknown coefficients ki .
So, we’re not there yet.

Final Step

1. Apply initial conditions to our candidate solution
y(t) = yH(t) + yP(t), obtain equations in coefficients ki

2. Solve for ki

3. If we get valid solutions, we’re done

4. Otherwise, our candidates were bad.
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Example

Solve

ÿ(t) + 2ẏ(t) + 5y(t) = cos 2t, y(0) = 0, ẏ(0) = 0.
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