ME 340 Fall 2020 Solving Differential Equations

Hasan A. Poonawala
Department of Mechanical Engineering
University of Kentucky
Email: hasan.poonawala@uky.edu
Web: https://www.engr.uky.edu/~hap

Solutions to ODEs

Goal

Learn how to solve a linear ODE

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots a_{2} \ddot{y}(t)+a_{1} \dot{y}(t)+a_{0} y(t)=f(t)
$$

given appropriate initial conditions $y(0), \dot{y}(0) \ldots, y^{n-1}(0)$.

Solution

A function $y(t)$ that will satisfy the constraints given by the linear ODE and the initial conditions.

Solutions to ODEs

Goal

Learn how to solve a linear ODE

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots a_{2} \ddot{y}(t)+a_{1} \dot{y}(t)+a_{0} y(t)=f(t)
$$

given appropriate initial conditions $y(0), \dot{y}(0) \ldots, y^{n-1}(0)$.

Solution

A function $y(t)$ that will satisfy the constraints given by the linear ODE and the initial conditions.

Approaches

1. Guess time-based functions
2. Invert frequency-based functions

Time-based Approaches

Solutions have two components

The solution $y(t)$ has two parts:

$$
y(t)=y_{H}(t)+y_{P}(t),
$$

where $y_{H}(t)$ is the homogenous solution, and $y_{P}(t)$ is the particular solution.

Time-based Approaches

Solutions have two components

The solution $y(t)$ has two parts:

$$
y(t)=y_{H}(t)+y_{P}(t)
$$

where $y_{H}(t)$ is the homogenous solution, and $y_{P}(t)$ is the particular solution.

Basic idea

- $y_{H}(t)$ is the solution of

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots a_{2} \ddot{y}(t)+a_{1} \dot{y}(t)+a_{0} y(t)=0,
$$

the unforced equation.

- use $y_{H}(t)$ to solve for $y_{P}(t)$, through the method of undetermined coefficients.

Homogenous Solutions

Assume $y(t)=k e^{\lambda t}$. From calculus,

$$
\frac{d}{d t} e^{\lambda t}=\lambda e^{\lambda t}
$$

Applying this to

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots a_{2} \ddot{y}(t)+a_{1} \dot{y}(t)+a_{0} y(t)=0,
$$

we get

$$
a_{n} \lambda^{n} y(t)+a_{n-1} \lambda^{n-1} y(t)+\cdots a_{2} \lambda^{2} y(t)+a_{1} \lambda y(t)+a_{0} y(t)=0,
$$

or,

$$
\left(a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{2} \lambda^{2}+a_{1} \lambda+a_{0}\right) y(t)=0
$$

Homogenous Solutions

Since $y(t)=k e^{\lambda t}, y(t) \neq 0$ for any t.
To solve $y(t)$, we must solve for λ in

$$
a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0 .
$$

Homogenous Solutions

Since $y(t)=k e^{\lambda t}, y(t) \neq 0$ for any t.
To solve $y(t)$, we must solve for λ in

$$
a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0
$$

Characteristic equation

Homogenous Solutions

Since $y(t)=k e^{\lambda t}, y(t) \neq 0$ for any t.
To solve $y(t)$, we must solve for λ in

$$
a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0
$$

Characteristic equation

The characteristic equation is a polynomial (algebraic) equation with real coefficients.

Its solutions are possibly complex numbers, that is, $\lambda_{i} \in \mathbb{C}$, for $i \in\{1,2, \ldots n\}$.

Each such complex number is a called a root of the characteristic equation, and each root adds a term to the solution $y_{H}(t)$ (next slide).

Roots of Characteristic Equation

$$
a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots a_{2} \lambda^{2}+a_{1} \lambda+a_{0}=0
$$

Characteristic equation

Distinct roots $\lambda_{1} \neq \lambda_{2} \neq \cdots \neq \lambda_{n}$.

$$
y_{H}(t)=k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t}+\cdots+k_{n} e^{\lambda_{n} t}
$$

Repeated roots $\lambda_{1}=\lambda_{2}=\lambda_{3}, \lambda_{4} \neq \cdots \neq \lambda_{n}$.

$$
\begin{aligned}
y_{H}(t) & =k_{1} e^{\lambda_{1} t}+k_{2} t e^{\lambda_{2} t}+k_{3} t^{2} e^{\lambda_{2} t}+k_{4} e^{\lambda_{4} t}+\cdots+k_{n} e^{\lambda_{n} t} \\
& =\left(k_{1}+k_{2} t+k_{3} t^{2}\right) e^{\lambda_{1} t}+k_{4} e^{\lambda_{4} t}+\cdots+k_{n} e^{\lambda_{n} t}
\end{aligned}
$$

Complex roots $\lambda_{1}=\alpha+i \beta, \lambda_{2}=\alpha-i \beta, \lambda_{3}, \lambda_{4}, \ldots, \lambda_{n}$.

$$
\begin{aligned}
y_{H}(t) & =k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t}+\cdots+k_{n} e^{\lambda_{n} t} \\
& =k_{1} e^{(\alpha+i \beta) t}+k_{2} e^{(\alpha-i \beta) t}+\cdots+k_{n} e^{\lambda_{n} t} \\
& =e^{\alpha t}\left(k_{a} \cos (\beta t)+k_{b} \sin (\beta t)\right)+\cdots+k_{n} e^{\lambda_{n} t}
\end{aligned}
$$

Particular Solution

We found the form of $y_{H}(t)$, which is one part of the solution $y(t)$ to the ODE

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots+a_{0} y(t)=f(t)
$$

We use the form of the forcing function $f(t)$, and of $y_{H}(t)$, to predict a candidate particular solution $y_{P}(t)$.

$$
\text { form of } f(t) \text { and } y_{H}(t) \Longrightarrow \text { form of } y_{P}(t)
$$

Particular Solution

We found the form of $y_{H}(t)$, which is one part of the solution $y(t)$ to the ODE

$$
a_{n} y^{n}(t)+a_{n-1} y^{n-1}(t)+\cdots+a_{0} y(t)=f(t)
$$

We use the form of the forcing function $f(t)$, and of $y_{H}(t)$, to predict a candidate particular solution $y_{P}(t)$.

$$
\text { form of } f(t) \text { and } y_{H}(t) \Longrightarrow \text { form of } y_{P}(t)
$$

Candidate Particular Solution

Forcing $f(t)$	Candidate $y_{P}(t)$
α	A
$\alpha t+\beta$	$A t+B$
$e^{\alpha t}$	$A e^{\alpha t}$
$\cos \omega t$	$A \cos \omega t+B \sin \omega t$
$\sin \omega t$	$A \cos \omega t+B \sin \omega t$

Another rule

If candidate $y_{P}(t)$ contains a term that is present in $y_{H}(t)$, multiple that term by t.

Example
if $y_{H}(t)=k_{1} e^{-t}+k_{2} e^{-2 t}$, and $f(t)=e^{-t}$, use candidate

$$
y_{P}(t)=A t e^{-t}
$$

If candidate $y_{H}(t)=k_{1} e^{-t}+k_{2} t e^{-t}$, due to repeated roots, use ME $340 \ln$ trep (otillech sAtanins e^{-t}.

Are we there yet?

- Find homogenous solution $y_{H}(t)$, where we ignore $f(t)$.
- Use $f(t)$ and $y_{H}(t)$ to choose candidate $y_{P}(t)$.
- These functions have unknown coefficients k_{i}. So, we're not there yet.

Are we there yet?

- Find homogenous solution $y_{H}(t)$, where we ignore $f(t)$.
- Use $f(t)$ and $y_{H}(t)$ to choose candidate $y_{P}(t)$.
- These functions have unknown coefficients k_{i}. So, we're not there yet.

Final Step

1. Apply initial conditions to our candidate solution $y(t)=y_{H}(t)+y_{P}(t)$, obtain equations in coefficients k_{i}
2. Solve for k_{i}
3. If we get valid solutions, we're done
4. Otherwise, our candidates were bad.

Example

Solve

$$
\ddot{y}(t)+2 \dot{y}(t)+5 y(t)=\cos 2 t, \quad y(0)=0, \quad \dot{y}(0)=0 .
$$

