ME 340 Fall 2020 Solving Differential Equations

Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

Solutions to ODEs

Goal

Learn how to solve a linear ODE

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = f(t),$$

given appropriate initial conditions y(0), $\dot{y}(0)$..., $y^{n-1}(0)$.

Solution

A function y(t) that will satisfy the constraints given by the linear ODE and the initial conditions.

Solutions to ODEs

Goal

Learn how to solve a linear ODE

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = f(t),$$

given appropriate initial conditions y(0), $\dot{y}(0)$..., $y^{n-1}(0)$.

Solution

A function y(t) that will satisfy the constraints given by the linear ODE and the initial conditions.

Approaches

- 1. Guess time-based functions
- 2. Invert frequency-based functions

Time-based Approaches

Solutions have two components

The solution y(t) has two parts:

$$y(t)=y_H(t)+y_P(t),$$

where $y_H(t)$ is the homogenous solution, and $y_P(t)$ is the particular solution.

Time-based Approaches

Solutions have two components

The solution y(t) has two parts:

$$y(t)=y_H(t)+y_P(t),$$

where $y_H(t)$ is the homogenous solution, and $y_P(t)$ is the particular solution.

Basic idea

> $y_H(t)$ is the solution of

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots + a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = 0,$$

the unforced equation.

use y_H(t) to solve for y_P(t), through the method of undetermined coefficients.

Assume $y(t) = ke^{\lambda t}$. From calculus,

$$\frac{d}{dt}e^{\lambda t}=\lambda e^{\lambda t}.$$

Applying this to

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = 0,$$

we get

$$a_n\lambda^n y(t) + a_{n-1}\lambda^{n-1}y(t) + \cdots + a_2\lambda^2 y(t) + a_1\lambda y(t) + a_0y(t) = 0,$$

or,

$$\left(a_n\lambda^n+a_{n-1}\lambda^{n-1}+\cdots a_2\lambda^2+a_1\lambda+a_0\right)y(t)=0.$$

Since $y(t) = ke^{\lambda t}$, $y(t) \neq 0$ for any t.

To solve y(t), we must solve for λ in

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_2\lambda^2 + a_1\lambda + a_0 = 0.$$

Since $y(t) = ke^{\lambda t}$, $y(t) \neq 0$ for any t.

To solve y(t), we must solve for λ in

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_2\lambda^2 + a_1\lambda + a_0 = 0.$$

Characteristic equation

Since $y(t) = ke^{\lambda t}$, $y(t) \neq 0$ for any t.

To solve y(t), we must solve for λ in

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_2\lambda^2 + a_1\lambda + a_0 = 0.$$

Characteristic equation

The characteristic equation is a polynomial (algebraic) equation with real coefficients.

Its solutions are possibly complex numbers, that is, $\lambda_i \in \mathbb{C}$, for $i \in \{1, 2, ..., n\}$.

Each such complex number is a called a root of the characteristic equation, and each root adds a term to the solution $y_H(t)$ (next slide).

Roots of Characteristic Equation

$$a_n\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_2\lambda^2 + a_1\lambda + a_0 = 0.$$

Characteristic equation

Distinct roots $\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$.

$$y_H(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} + \dots + k_n e^{\lambda_n t}$$

Repeated roots $\lambda_1 = \lambda_2 = \lambda_3, \lambda_4 \neq \cdots \neq \lambda_n$.

$$y_{H}(t) = k_{1}e^{\lambda_{1}t} + k_{2}te^{\lambda_{2}t} + k_{3}t^{2}e^{\lambda_{2}t} + k_{4}e^{\lambda_{4}t} + \dots + k_{n}e^{\lambda_{n}t}$$

= $(k_{1} + k_{2}t + k_{3}t^{2})e^{\lambda_{1}t} + k_{4}e^{\lambda_{4}t} + \dots + k_{n}e^{\lambda_{n}t}$

Complex roots $\lambda_1 = \alpha + i\beta$, $\lambda_2 = \alpha - i\beta$, λ_3 , λ_4 , ..., λ_n .

$$y_{H}(t) = k_{1}e^{\lambda_{1}t} + k_{2}e^{\lambda_{2}t} + \dots + k_{n}e^{\lambda_{n}t}$$
$$= k_{1}e^{(\alpha+i\beta)t} + k_{2}e^{(\alpha-i\beta)t} + \dots + k_{n}e^{\lambda_{n}t}$$
$$= e^{\alpha t}(k_{a}\cos(\beta t) + k_{b}\sin(\beta t)) + \dots + k_{n}e^{\lambda_{n}t}$$

Particular Solution

We found the <u>form</u> of $y_H(t)$, which is one part of the solution y(t) to the ODE

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots + a_0 y(t) = f(t).$$

We use the form of the forcing function f(t), and of $y_H(t)$, to predict a candidate particular solution $y_P(t)$.

form of f(t) and $y_H(t) \implies$ form of $y_P(t)$

Particular Solution

We found the <u>form</u> of $y_H(t)$, which is one part of the solution y(t) to the ODE

$$a_n y^n(t) + a_{n-1} y^{n-1}(t) + \cdots + a_0 y(t) = f(t).$$

We use the form of the forcing function f(t), and of $y_H(t)$, to predict a candidate particular solution $y_P(t)$.

form of f(t) and $y_H(t) \implies$ form of $y_P(t)$

Candidate Particular Solution

Forcing $f(t)$	Candidate $y_P(t)$
α	A
$\alpha t + \beta$	At + B
$e^{lpha t}$	${\cal A} e^{lpha t}$
$\cos \omega t$	$A\cos\omega t + B\sin\omega t$
$\sin \omega t$	$A\cos\omega t + B\sin\omega t$

Another rule

If candidate $y_P(t)$ contains a term that is present in $y_H(t)$, multiple that term by t.

Example

if
$$y_H(t) = k_1 e^{-t} + k_2 e^{-2t}$$
, and $f(t) = e^{-t}$, use candidate

$$y_P(t) = A \ t \ e^{-t}.$$

If candidate $y_H(t) = k_1 e^{-t} + k_2 t e^{-t}$, due to repeated roots, use ME 340 Intro (at))ect: At the e^{-t} .

Are we there yet?

- Find homogenous solution $y_H(t)$, where we ignore f(t).
- Use f(t) and $y_H(t)$ to choose candidate $y_P(t)$.
- These functions have unknown coefficients k_i. So, we're not there yet.

Are we there yet?

- Find homogenous solution $y_H(t)$, where we ignore f(t).
- Use f(t) and $y_H(t)$ to choose candidate $y_P(t)$.
- These functions have unknown coefficients k_i. So, we're not there yet.

Final Step

- 1. Apply initial conditions to our candidate solution $y(t) = y_H(t) + y_P(t)$, obtain equations in coefficients k_i
- 2. Solve for k_i
- 3. If we get valid solutions, we're done
- 4. Otherwise, our candidates were bad.

Solve

$$\ddot{y}(t) + 2\dot{y}(t) + 5y(t) = \cos 2t, \quad y(0) = 0, \quad \dot{y}(0) = 0.$$