
Optimization

Hasan Poonawala

Contents

1 Introduction 3
1.1 Problem Formulation . 3
1.2 Least Squares and Linear Programming . 3

1.2.1 Least Squares . 3
1.2.2 Linear Program . 3

1.3 Overview of Algorithms . 3

I Theory 5

2 Convex Functions 6
2.1 Basic Proporties . 6

2.1.1 Definition . 6
2.1.2 Extended-value extensions . 6
2.1.3 First-order conditions . 6
2.1.4 Second-order conditions . 6
2.1.5 Sublevel Sets . 6
2.1.6 Epigraph . 6
2.1.7 Indicator Function . 7

2.2 Operations that preserve convexity . 7
2.3 The Conjugate Function . 7

2.3.1 Definition . 7
2.3.2 Basic Properties . 7

2.4 Bregman Divergence . 9

3 Nonsmooth Functions 10
3.1 Sub-gradients . 10

3.1.1 Definition . 10
3.1.2 Relationship To Conjugate Function . 10

3.2 Proximal Operator . 10
Lemma 3 . 11
Corollary 5 Proximal operator is a contraction . 11
3.2.1 Projection to a Set . 12
3.2.2 Proximal Sub-differential . 12
Theorem 6 Proximal subdifferential, F. Clarke . 12
3.2.3 Resolvent . 12
3.2.4 Properties . 12

4 Duality 13
4.1 Lagrange Dual Function . 13

4.1.1 The Lagrangian . 13
4.1.2 Lagrange dual function . 13
4.1.3 Lower bound on optimal value . 13

1

CONTENTS CONTENTS

4.2 Lagrange dual problem . 13
4.2.1 Weak Duality . 13
4.2.2 Strong Duality . 14

4.3 Optimality Conditions . 14
4.3.1 Certificate of suboptimality and stopping criteria . 14
4.3.2 Complementary Slackness . 14
4.3.3 KKT Conditions . 15

II Algorithms 16

5 Unconstrained Minimization 17
5.1 Unconstrained minimization problems . 17

5.1.1 Examples . 17
5.1.2 Strong convexity and implications . 17

5.2 Descent Methods . 18
5.3 Gradient Descent Methods . 19
5.4 Steepest Descent . 21
5.5 Newton’s Method . 21
5.6 Self-concordance . 21
5.7 Sub-Gradient Method . 22

5.7.1 First-order Optimality Conditions . 22

6 Equality Constrained Minimization 23
6.1 Penalty Methods . 23
6.2 Dual Ascent . 23
6.3 Dual Decomposition . 24
6.4 Augmented Lagrangians . 24
6.5 ADMM . 24
6.6 Conjugate Gradient Method . 25

6.6.1 Goal . 25
6.6.2 Conjugate Vectors . 25

7 General Constrained Minimization 26
7.1 Introduction . 26
7.2 Proximal Point Algorithm . 26
7.3 Proximal Gradient Descent . 27

7.3.1 Iterative soft-thresholding algorithm (ISTA) . 27
7.3.2 Projected Gradient Descent . 27

7.4 Mirror Descent . 28
7.4.1 From Dual Spaces . 28
7.4.2 From PGD . 28

7.5 Primal-Dual Methods . 29
7.6 Proximal Flows . 30

Table of Contents 2

Chapter 1

Introduction

1.1 Problem Formulation

A general optimization problem over n-dimensional vector x is of the form

min
x

f0(x) (1.1)

s.t. fi(x) ≤ bi, i ∈ {1, . . . ,m} (1.2)

1.2 Least Squares and Linear Programming

1.2.1 Least Squares

min
x

f0(x) = ‖Ax− b‖22 =

k∑
i=1

(aTi x− b)2, (1.3)

where A ∈ Rk×n, and b ∈ Rk.
The solution is

x? = (ATA)−1AT b.

The complexity is O(n2k), with a known constant.

1.2.2 Linear Program

min
x

cTx (1.4)

s.t. aTi x ≤ bi, i ∈ {1, . . . ,m} (1.5)

The complexity in practice is order n2m (assuming m ≥ n) but with a constant that is less well charac-
terized than for least-squares.

1.3 Overview of Algorithms

• The optimization problem as stated (objective+constraints) is the primal problem.

• We may derive a dual problem which has a set of dual variables (one for each constraint). The solution
of the dual problem bounds that of the primal.

• At the heart of the matter is the fact that the sub-gradients (covectors) at a point possibly tells you
something about how taking a step in various directions (vectors) will change the objective (increase,
decrease, or constant).

3

1.3. OVERVIEW OF ALGORITHMS CHAPTER 1. INTRODUCTION

• Most primal approaches use the sub-gradients of the function to define a descent direction, and for a
small enough step size the function at the end of the step is smaller.

• The KKT Conditions (differentiable case) identify the optimal point by stipulating that at such an
optimal, you cannot find a descent direction for x, at least not one that will preserve constraints
(necessary always; sufficient sometimes, often for convex problems).

• The same idea behind the KKT conditions lead to most non-primal approaches.

– In some cases, the dual problem is easier to solve than the primal problem. Solving the dual
problem leads to a solution of the primal problem, because of the nature of duality.

– For constrained problems, descending is often the wrong choice from the current estimate. Dis-
tance to the feasible set is an important factor in updates, and proximal methods incorporate this
observation.

Table of Contents 4

Part I

Theory

5

Chapter 2

Convex Functions

2.1 Basic Proporties

2.1.1 Definition

A function f :Rn → R is convex if domf is a convex set and if for all x, y ∈ domf , and θ with 0 ≤ θ ≤ 1,
we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.1)

2.1.2 Extended-value extensions

Define

f̃(x) =

{
f(x), if x ∈ domf

∞, otherwise.
(2.2)

2.1.3 First-order conditions

Suppose f is differentiable. Then f is convex if and only if domf is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) (2.3)

holds for all x, y ∈ domf .

2.1.4 Second-order conditions

We now assume that f is twice differentiable. Then f is convex if and only if domf is convex and and its
Hessian is positive semidefinite: for all x ∈ domf ,

∇2f(x) � 0. (2.4)

2.1.5 Sublevel Sets

2.1.6 Epigraph

The epigraph of f is given by

epi f = {(x, y):x ∈ domf, f(x) ≤ t}. (2.5)

The link between convex sets and convex functions is via the epigraph. A function is convex if and only
if its epigraph is a convex set.

6

2.2. OPERATIONS THAT PRESERVE CONVEXITY CHAPTER 2. CONVEX FUNCTIONS

Redundant: We can convert a function f :Rn → R into a set in Rn using the epigraph epi-f .

epi− f = {(x, y): y ≥ f(x)} (2.6)

2.1.7 Indicator Function

We can convert a set S into a function using the indicator function IS(x) given by

IS(x) =

{
0, if x ∈ S
∞, otherwise.

(2.7)

2.2 Operations that preserve convexity

• Nonnegative weighted sums

• Composition with an affine mapping

• Pointwise maximum and supremum

• Composition of certain types of functions

• minimization (certain kind)

• perspective of a function g(x, t) = tf(x/t.

• conjugation

2.3 The Conjugate Function

2.3.1 Definition

Let f :Rn → R. The function f?:Rn → R, defined as

f?(y) = sup
x∈domf

(
yTx− f(x)

)
(2.8)

is called the conjugate function of f .

What it is. Consider the epigraph of f , which lies in Rn = Rn × R. Every dual vector y parametrizes
a hyperplane through the origin in the same space as the epigraph, given by (x, yTx). Then, f?(y) is the
largest vertical (signed) distance between this hyperplane and f(x). The solution to the equation f?(y) = 0
will therefore pick out the supporting hyperplanes to f that pass through the origin. Note that there are
many supporting hyperplanes to f that do not pass through the origin.

Examples:

• Affine function f(x) = ax+ b, f?(a) = −b, singleton domain

• Negative logarithm f(x) = − log x, f?(y) = − log(−y)− 1 for y < 0

• Exponential f(x) = ex, f?(y) = y log(y)− y for y > 0

• Negative entropy f(x) = x log x, f?(y) = ey−1 for y ∈ R
• Inverse f(x) = 1/x, f?(y) = −2

√
−y for y ≤ 0.

2.3.2 Basic Properties

Fenchel’s Inequality.

f(x) + f?(y) ≥ xT y (2.9)

Proof: f(x) + f?(y) = f(x) + sup
x′∈dom f

yTx′ − f(x′) ≥ f(x) + yTx− f(x) = yTx (2.10)

Table of Contents 7

2.3. THE CONJUGATE FUNCTION CHAPTER 2. CONVEX FUNCTIONS

Conjugate of the conjugate. If f is convex and closed, then (f?)? = f

Proposition 1 (Nicholar Harvey). Suppose that f is closed and convex. Then the following are equivalent:

y ∈ ∂f(x) (2.11)

x ∈ ∂f?(y) (2.12)

〈x, y〉 = f(x) + f?(y) (2.13)

Proof. If y ∈ ∂x, then

f(z) ≥ f(x) + 〈z − x, y〉 ∀z ∈ dom f (2.14)

=⇒ yTx− f(x) ≥ yT z − f(z) ∀z ∈ dom f (2.15)

=⇒ yTx− f(x) = f∗(y) (2.16)

=⇒ f(x) + f∗(y) = yTx (2.17)

Given this result,

f∗(z) ≥ zTx− f(x) ∀z ∈ dom f∗ (2.18)

= xT z − xT y + f∗(y) (xT y = f(x) + f?(y)) (2.19)

= xT (z − y) + f∗(y) (2.20)

=⇒ f∗(z) ≥ xT (z − y) + f∗(y) ∀z ∈ dom f∗ (2.21)

=⇒ x ∈ ∂f?(y) (2.22)

Again,

Conj. fn. f∗(y) ≥ yT z − f(z) ∀z ∈ dom f (2.23)

=⇒ xT y − f(x) ≥ yT z − f(z) (xT y = f(x) + f?(y)) (2.24)

=⇒ f(z) ≥ yT (z − x) + f(x) ∀z ∈ dom f (2.25)

=⇒ y ∈ ∂f(x) (2.26)

Differentiable functions. The conjugate of a differentiable function f is called the Legendre transform
of f . Suppose f is convex and differentiable, with domf = Rn. Any maximizer x? of yTx − f(x) satisfies
y = ∇f(x?). Therefore,

f?(y) = (x?)T∇f(x?)− f(x?). (2.27)

So, if we can solve the equation y = ∇f(z) for z, then we can compute f?(y).

Scaling and Composition with affine functions If g(x) = f(Ax+ b), with A non-singular, then

g?(y) = f?(A−T y)− bTA−T y (2.28)

with domg? = ATdomf?

Therefore, the Legendre transform is

f?(y) = zT∇f(z)− f(z); where y = ∇f(z) (2.29)

Sums of independent functions Independence means functions of disjoint sets of variables.

f?(w, z) = f?1 (w) + f?2 (z) (2.30)

Table of Contents 8

https://www.cs.ubc.ca/~nickhar/F18-531/Notes20.pdf

2.4. BREGMAN DIVERGENCE CHAPTER 2. CONVEX FUNCTIONS

2.4 Bregman Divergence

For a convex function f , its Bregman divergence is

Df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉 (2.31)

This divergence is the error in the first xorder approximation of f at x, defined by y.
In general, Df (x, y) is convex in x, but often not convex in y.
x

Lemma 2. Let f be closed, convex and differentiable. Fix any x, y ∈ dom f . Define x̂ = ∇f(x) and
ŷ = ∇f(y). Then

x = ∇f∗(x̂) (2.32)

Df (x, y) = Df∗(ŷ, x̂) (2.33)

Proof. Note that by definition, x̂ ∈ ∂f(x), ŷ ∈ ∂f (y) Since x̂ = z = ∇f(x), meaning z ∈ ∂f(x),

f(x) + f∗(z) = zTx (2.34)

=⇒ ∇f(x) +∇f∗(y) = ∇y(yTx) (2.35)

=⇒ ∇f∗(x̂) = x (2.36)

For the second claim:

Df∗(ŷ, x̂) = f∗(ŷ)− f∗(x̂)− 〈ŷ − x̂,∇f∗(x̂)〉 (2.37)

= 〈ŷ, y〉 − f(y)− 〈x̂, x〉+ f(x)− 〈ŷ − x̂, x〉 (2.38)

= f(x)− f(y)− 〈ŷ, x− y〉 (2.39)

= f(x)− f(y)− 〈∇f(y), x− y〉 (2.40)

= Df (x, y) (2.41)

The generalized Pythagoras Theorem is

Df (x, y) +Df (z, x)−Df (z, y) ≤ (∇f(x)−∇f(y))
T

(x− z) (2.42)

The Bregman projection is

Πf
C(y) = arg min

x∈C
Df (x, y) (2.43)

=⇒ 0 ∈ ∇f(y)−∇f(x) +NP
C (x) (2.44)

Properties:

• Linearity: Df1+λf2(x, y) = Df1(x, y) + λDf2(x, y)

• Unaffected by linearity: f2(x) = f1(x) + aTx+ b =⇒ Df1 = Df2 .

• Gradient: ∇xDf (x, y) = ∇f(x)−∇f(y)

Table of Contents 9

Chapter 3

Nonsmooth Functions

3.1 Sub-gradients

3.1.1 Definition

A sub-gradient of f at x is any vector g that satisfies

f(y) ≥ f(x) + gT (y − x) ∀y ∈ D

For f differentiable, g is the singleton set containing ∇f . For other types of functions, the subdifferential
∂f(x) is

∂f(x) = {g ∈ Rn: f(y) ≥ f(x) + gT (y − x)∀y ∈ D} (3.1)

Intuitively, g is a sub-gradient of f at x if it is the projection of a hyperplane that lies below the
epi-graph epi-f of f .

• For differentiable functions, only the tangent plane does so. Any other plane ‘enters’ epi-f .

• For a function that is the max of hyper-planes, the subgradients at a line where two planes meet is

For non-differentiable functions, the sub-gradient is set-valued at points of non-differentiability.

3.1.2 Relationship To Conjugate Function

The conjugate function is f?(y) = supx∈dom f y
Tx− f(x). The sub-differential y at x satisfies

f(z) ≥ f(x) + yT (z − x) ∀z ∈ dom f (3.2)

=⇒ f(z)− gT z ≥ f(x)− yTx (3.3)

=⇒ ∂f(x) = {y: f?(y) = yTx− f(x)} (3.4)

This derivation is by Thibaut Lienart

3.2 Proximal Operator

The proximal operator, also called proximal point mapping, proxf :Rn → Rn of f is defined by1

proxf (v) = arg min
x

(
f(x) +

1

2
‖x− v‖22

)
(3.5)

1Notes by Benjamin Recht

10

https://tlienart.github.io/pub/csml/cvxopt/ca2.html

3.2. PROXIMAL OPERATOR CHAPTER 3. NONSMOOTH FUNCTIONS

The function minimized on the righthand side is strongly convex and not everywhere infinite, so it has a
unique minimizer for every v ∈ Rn.

Examples:

• Quadratic function f(x) = 1
2x

TPx+ qTx+ r(P � 0). proxf (v) = (I + P)−1(v − q).
• l1 norm f(x) = ‖x‖1.

proxf (x) =


xi − 1 if xi ≥ 1

0 if |xi| ≤ 1

xi + 1 if xi ≤ −1

(Soft thresholding / Dead zoning)

Note that proxλf (v) = arg minx
(
f(x) + 1

2λ‖x− v‖
2
2

)
.

By the first order optimality conditions, we conclude that proxf (x) is the unique point satisfying

x− proxf (x) ∈ ∂f(proxf (x)) (3.6)

Equivalently, the proximal operator evaluates the subdifferential (From this source), though perhaps only
for convex functions:

z = proxγf (x) ⇐⇒ γ−1(x− z) ∈ ∂f(z).

These expressions arre a generalization of what we know for the projection operator to a set C (see Sec-
tion 3.2.1): x − projC(x) ∈ NP

S (projC(x)) . The generalization says that if you take a step from x to
proxf (x), the reverse of the direction you moved in is a sub-gradient of f , at the new point. This idea
may often allow you to derive a closed-form expression for the proximal operator, especially when δf is a
singleton. Alternatively, a least-squares problem may provide a solution.

Lemma 3. Let f be convex on X. Let x, y ∈ X, gx ∈ ∂f(x), gy ∈ ∂f(y), then

〈gx − gy, x− y〉 ≥ 0

Proof.

f(x)− f(y) ≥ 〈gx, x− y〉 (3.7)

f(y)− f(x) ≥ 〈gy, y − x〉 (3.8)

=⇒ 0 ≥ 〈gx − gy, y − x〉 (3.9)

=⇒ 0 ≤ 〈gx − gy, x− y〉 (3.10)

Lemma 4. Let Qν(x) = x− proxνf (x), then

i) ν−1Qν(x) ∈ ∂f(proxf (x))

ii) 〈proxνf (x)− proxνf (z), Qν(x)−Qν(z)〉 ≥ 0

iii) ‖proxνf (x)− proxνf (z)‖2 + ‖Qν(x)−Qν(z)‖2 ≤ ‖x− z‖2

iv) ‖x− z‖ = ‖proxνf (x)− proxνf (z)‖ if and only if x− z = proxνf (x)− proxνf (z)

Proof. Claim i) follows from FOC. Claim ii) follows from i) combined with Lemma 3. Claim iii) follows from
x = proxνf (x) +Qν(x) and expanding ‖x− z‖2 then using ii). Claim iv) follows from iii).

Corollary 5 (Proximal operator is a contraction).

‖proxνf (x)− proxνf (z)‖2 ≤ ‖x− z‖2

Table of Contents 11

http://www.control.lth.se/fileadmin/control/Education/EngineeringProgram/FRTN50/Lectures/subdiff_prox.pdf

3.2. PROXIMAL OPERATOR CHAPTER 3. NONSMOOTH FUNCTIONS

3.2.1 Projection to a Set

For any set S, and any x /∈ S we may define the projection operator

projS(x) = arg min
s∈S

d(x, s) (3.11)

Then, x − projS(x) is the projected normal vector that points from s = projS(x) to x. Let s ∈ ∂S.
Then

NP
S (s) = {x− projS(x):x /∈ s, a = projS(x)} (3.12)

The set NP
S (a) is the projected normal cone to S at a.

proxf (v) = projS(v) when f = IS .

3.2.2 Proximal Sub-differential

The proximal sub-differential ∂P f(x) of a function at x is a subset of domf . It is the projection of the
projected normal cone to the epigraph of f at (x, f(x)).

∂P f(x) = {ζ ∈ Rn: (ζ,−1) ∈ NP
epif (x, f(x))} (3.13)

As Clarke mentions,

Theorem 6 (F. Clarke [2],pg. 33). Let f be lower semi-continuous and x ∈ dom f . Then ζ ∈ ∂P f(x) if
and only if ∃σ > 0, η > 0 such that

f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2, ∀y ∈ B(x; η) (3.14)

A corollary: For a convex function, ∂f(x) = ∂P f(x)

3.2.3 Resolvent

From Thibault Lienart’s blog. Constrained minimization of f(x) is simply unconstrained minmization of
g(x) = f(x) + IC . The FOC then dictate that x† is a minimizer of the constrained problem if 0 ∈ ∂f(x†) +
NP
C (x†). When f(x) = 1

1‖x− v‖
2, then x† is exactly proxIC (v) = projC(v).

Going back to the FOC, when f(x) = 1
1‖x− v‖

2, then ∂f(x) = (x− v), so that the FOC becomes

0 ∈ x† − v +NP
C (x†) (3.15)

=⇒ v ∈ x† +NP
C (x†) (3.16)

=⇒ v ∈
(
id +NP

C

)
(x†) (3.17)

=⇒ x† =
(
id +NP

C

)−1
(v) (3.18)

=⇒ projC =
(
id +NP

C

)−1
(3.19)

This relationship is a special case of the resolvent of the subdifferential operator (due to FOC, or (3.6)):

proxλf = (I + λ∂f)
−1

(3.20)

3.2.4 Properties

1. If f is closed and convex, then proxf (x) exists and is unique for all x.

2. Separable sum: If f(x) =
∑
fi(xi) then

(
proxf (x)

)
i

= proxfi(xi)

3. Fixed point: x∗ minimizes f if and only if x∗ = proxf (x∗).

4. Conjugate (Moreau decomposition): proxtf∗(x) = x− tproxf/t(x/t)

Table of Contents 12

https://tlienart.github.io/pub/csml.html

Chapter 4

Duality

4.1 Lagrange Dual Function

4.1.1 The Lagrangian

Consider variable x ∈ Rn

min f0(x) (4.1)

s.t. fi(x) ≤ 0, i = 1, . . . ,m (4.2)

hi(x) = 0, i = 1, . . . , p (4.3)

Let the domain be D = (∩mi=0domfi)∩(∩mi=1domhi) We introduce variables λ and ν to form the Lagrangian
L(x, λ, ν):

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (4.4)

The variables λ and ν appear to be a weighted sum of functions in the Lagrangian. Their real purpose is to
serve as a weighted sum of gradients of the functions, which we see in the KKT conditions.

4.1.2 Lagrange dual function

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
(4.5)

4.1.3 Lower bound on optimal value

g(λ, ν) ≤ p?, where λ � 0. (4.6)

4.2 Lagrange dual problem

max g(λ, ν) (4.7)

subject to λ � 0 (4.8)

4.2.1 Weak Duality

Let d? be the optimum value of the Lagrange dual problem. Then d? ≤ p? always holds, and this is the best
lower bound on p?, even if the primal problem is not convex. This property is known as weak duality

13

4.3. OPTIMALITY CONDITIONS CHAPTER 4. DUALITY

4.2.2 Strong Duality

If the equality

d? = p? (4.9)

holds, then we say that strong duality holds.
If a problem is convex, we usually (but not always) have strong duality. Additional conditions that

establish strong duality are called constraint qualifications.
One simple constraint qualification is Slater’s condition: There exists an x ∈ relintD such that

fi(x) < 0, i = 1, . . . ,m, Ax = b (4.10)

If any inequality constraints are affine, they don’t need to hold with strict inequality.
The affine hull of a set is the set of linear combinations of elements of S. The relative interior of a set

is the interior relative to the affine hull of the set. For a line connecting two points in R3, the interior is of
course empty, but the relative interior is the open line segment between the points.

4.3 Optimality Conditions

4.3.1 Certificate of suboptimality and stopping criteria

A primal feasible point x and dual feasible pair (λ, ν) establish that

p? ∈ [g(λ, ν), f0(x)] (4.11)

The stopping criterion f0(x(k))− g(λ(k), ν(k)) ≤ εabs guarantees that the solution is εabs-suboptimal.
Alternatively,

g(λ(k), ν(k)),
f0(x(k))− g(λ(k), ν(k))

g(λ(k), ν(k))
≤ εrel (4.12)

holds or

f0(x(k)) < 0,
f0(x(k))− g(λ(k), ν(k))

−f0(x(k))
≤ εrel, (4.13)

then p? 6= 0 and the relative error

f0(x)− p?

|p?|
≤ εrel (4.14)

is guaranteed to be less than or equal to εrel

4.3.2 Complementary Slackness

Suppose that strong duality holds. Let x? be a primal optimal point and (λ?, ν?) be a dual optimal point.
Then

f0(x?) = g(λ?, ν?) (4.15)

= inf
x

(
f0(x) +

m∑
i=1

λ?i fi(x) +

p∑
i=1

ν?i hi(x)

)
(4.16)

≤ f0(x?) +

m∑
i=1

λ?i fi(x
?) +

p∑
i=1

ν?i hi(x
?) (4.17)

≤ f0(x?) (4.18)

We conclude that

λ?i fi(x
?) = 0, i = 1, . . . ,m (4.19)

Table of Contents 14

4.3. OPTIMALITY CONDITIONS CHAPTER 4. DUALITY

4.3.3 KKT Conditions

We assume the functions f0, f1, . . . , fm, h1, . . . , hp are differentiable.
The idea is that the gradient of the Lagrangian at x? must be zero

∇f0(x?) +

m∑
i=1

λ?i∇fi(x?) +

p∑
i=1

ν?i∇hi(x?) = 0 (4.20)

Nonconvex problems The constraints, non-negativity of λi, complementary slackness, and gradient of
Lgrangian together form the KKT conditions:

fi(x
?) ≤ 0, i ∈ 1, . . . ,m (4.21)

hi(x
?) = 0, i ∈ 1, . . . , p (4.22)

λ?i ≥ 0, i ∈ 1, . . . ,m (4.23)

λ?i fi(x
?) = 0, i ∈ 1, . . . ,m (4.24)

∇f0(x?) +

m∑
i=1

λ?i∇fi(x?) +

p∑
i=1

ν?i∇hi(x?) = 0 (4.25)

To summarize, for any optimization problem with differentiable objective and constraint functions for
which strong duality obtains, any pair of primal and dual optimal points must satisfy the KKT conditions.
That is, these conditions are necessary

Convex problems. For convex problems, the KKT conditions are also sufficient.
So, if a convex optimization problem satisfies Slater’s condition, so that it is strongly dual, then the KKT

conditions are necessary and sufficient conditions for optimality.
In effect, we may be able use the KKT conditions to design an algorithm to solve the original convex

optimization problem. Often, this algorithm is simpler than the one used to solve the original problem.

Table of Contents 15

Part II

Algorithms

16

Chapter 5

Unconstrained Minimization

5.1 Unconstrained minimization problems

The general problem is

min f(x) (5.1)

where f is twice continuously differentiable and convex. Assume that the problem is solvable: ∃x?, an
optimal point.

A necessary and sufficient condition for a point x? to optimal is

∇f(x?) = 0 (5.2)

Initial set Let x(0) ∈ dom f

S = {x ∈ dom f : f(x) ≤ f(x(0))} (5.3)

5.1.1 Examples

Quadratic minimization and least squares

min
1

2
xTPx+ qTx+ r (5.4)

The optimality condition (5.2) becomes Px? + q = 0, which is a set of linear equations.
The least squares problem min‖Ax− b‖22 yields optimality condition

ATAx? = AT b (5.5)

5.1.2 Strong convexity and implications

A function is strongly convex on S if there exists an m > 0 such that

∇2f(x) ≥ mI (5.6)

for all x ∈ S. Strong convexity has several interesting conseqeuences.
For one, we get a better lower bound on the function than plain convexity:

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x) (5.7)

17

5.2. DESCENT METHODS CHAPTER 5. UNCONSTRAINED MINIMIZATION

for some z on the line segment [x, y]. Then, for strongly convex functions,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 (5.8)

for all x and y in S.
For two, we may relate suboptimality of the current point to the notm of the gradient at the current

point. To do so, we calculate the minimizer of the RHS of (5.8) over all y, which is ỹ = x − 1
m∇f(x). the

LHS is larger than that minimum value, so

f(y) ≥ f(x)− 1

2m
‖∇f(x)‖22. (5.9)

This expression holds for all y, including the optimal, so that

p? ≥ f(x)− 1

2m
‖∇f(x)‖22 (5.10)

=⇒ f(x)− p? ≤ 1

2m
‖∇f(x)‖22 (5.11)

Therefore,

‖∇f(x)‖2 ≤ (2mε)
1
2 =⇒ f(x)− p? ≤ ε (5.12)

Through the Cauchy Shwartz inequality and (5.8) for y = x?, we can derive

‖x− x?‖2 ≤
2

m
‖∇f(x)‖22 (5.13)

Upper bound on ∇2f(x) Inequality (5.8) implies that the sublevel sets contained in S are bounded, so
that S is bounded. The maximum eigenvalue of ∇2f(x) is bounded on S, since ∇2f(x) is a continuous
function. Therefore, there exists a positive constant M such that

∇2f(x) �MI. (5.14)

We can then bound

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22 (5.15)

Analogous to (5.12), by minimizing over y we derive

5.2 Descent Methods

The algorithms in this chapter produce a minimzing sequence x(k), k = 1, . . . , where

x(k+1) = x(k) + t(k)∆x(k) (5.16)

and t(k) > 0.
All methods are descent methods where f(x(k+1)) < f(x(k)) except when x(k) is optimal. The search

direction in a descent method must satisfy

∇f(x(k))T∆x(k) < 0 (5.17)

General descent method:

1. Choose a starting point

2. Repeat until stopping criterion is satisfied

(a) Determine a descent direction

(b) Line search. Choose a step size t > 0

(c) Update. x← x+ t∆x

Line search is also called ray search.

Table of Contents 18

5.3. GRADIENT DESCENT METHODS CHAPTER 5. UNCONSTRAINED MINIMIZATION

Exact line search Solves a minimization problem along line to determine step size.

t = arg min
s≥0

f(x+ s∆x) (5.18)

Backtracking line search Depends on α, β with 0 < α < 0.5, 0 < β < 1. We know that f(x + t∆x) ≥
f(x) + t∇f(x)T∆x. We can also bound it locally using the function

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x (5.19)

for 0 < α < 1 Backtracking line search finds the boundary of the region where this bound holds, by starting
with t = 1 and reducing t by a factor β until

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x. (5.20)

Let t0 satisfy f(x+ t0∆x) = f(x) + αt0∇f(x)T∆x. The backtracking stops when t ≤ t0, which happens at
t = 1 if 1 ≤ t0 or at t ∈ (βt0, t0], where the update jumps from t′ > t0 to βt′ ≤ t0.

I suspect the reason that we restrict α to (0, 0.5) comes from using the upper bound in (5.15) on f(x+t∆x)
arising from condition ∇2f(x) �MI.

5.3 Gradient Descent Methods

1. Choose a starting point

2. Repeat until stopping criterion is satisfied

(a) ∆x = −∇f(x)

(b) Line search. Choose a step size t > 0 via exact or backtracking

(c) Update. x← x+ t∆x

Interpretation. As described by Ryan Tibshirani, we may view gradient descent as

xnew = arg min
z
f(xold) +∇f(xold)T (z − xold) +

1

2
‖xold − z‖2,

which is a second-order approximation to f(z) except that the Hessian is replaced with the identity func-
tion. As we’ll see later, in proximal operators, xnew = proxflin(x)(x

old), where flin(x) is the first order

approximation to f at xold

Analysis. Let f̃(t) be f(x− t∇f(x)). Since f is strongly convex, mI � ∇2f(x)MI, we can use the bound
in (5.15) to derive

f̃(t) ≤ f(x)− t‖∇f(x)‖22 +
Mt2

2
‖∇f(x)‖22 (5.21)

If we use exact line search, we would choose t that minimizes the RHS. This choice is t = 1/M , and then we
have

f(x+) = f̃(texact) ≤ f(x)− 1

2M
‖∇f(x)‖22 (5.22)

=⇒ f(texact)− p? ≤ f(x)− p? − 1

2M
‖∇f(x)‖22 (5.23)

Using the bound (5.11), we get

f(texact)− p? ≤
(

1− m

M

)
(f(x)− p?) (5.24)

Table of Contents 19

https://www.stat.cmu.edu/~ryantibs/convexopt-F15/scribes/05-grad-descent-scribed.pdf

5.3. GRADIENT DESCENT METHODS CHAPTER 5. UNCONSTRAINED MINIMIZATION

Repeated iterates would yield, with c = 1−m/M ,

f
(
x(k)

)
− p? ≤ ck

(
f
(
x(0)

)
− p?

)
(5.25)

What this means is that the number of iterations to reach a certain suboptimality ε depend on both ε and
the initial condition. This number is no more than

log
((
f
(
x(0)

)
− p?

)
/ε
)

log (1/c)
(5.26)

The denominator suggest that a high condition number m/M for f will take longer to converge than a small
one. Informally, bowls are quick to solve, canyons involve zig-zagging across the path towards the minimum.

Analysis of Backtracking We begin by noting that ∆x = −∇f(x), and that the minimum of the upper
bound of f(x) occurs at t = 1/M . For 0 ≤ t ≤ 1/M , this upper-bound itself is bounded by the linear
function f(x) + αt∇f(x)T∆x, when α < 0.5. So,

f̃(t) ≤ f(x)− tα‖∇f(x)‖22. (5.27)

So, backtracking line search on gradient descent will stop either when t = 1 or t ≥ βt0 = β/M Then, the
updated value will be

f(x+) ≤ f(x)− α‖∇f(x)‖22 or f(x+) ≤ f(x)− βα

M
‖∇f(x)‖22 (5.28)

or simply,

f(x+) ≤ f(x)−min{α, βα/M}‖∇f(x)‖22. (5.29)

We’re at the same place as the exact line search, where we add −p? to both sides. We get that

f
(
x(k)

)
− p? ≤ ck

(
f
(
x(0)

)
− p?

)
(5.30)

with

c = 1−min{2αm, 2βαm/M} (5.31)

Conclusions From the numerical examples shown (in CVXBOOK), and others, we can make the conclu-
sions summarized below.

• The gradient method often exhibits approximately linear convergence, i.e., the error f(x(k)) − p?

converges to zero approximately as a geometric series.

• The choice of backtracking parameters α, β has a noticeable but not dramatic effect on the convergence.
An exact line search sometimes improves the con- vergence of the gradient method, but the effect is
not large (and probably not worth the trouble of implementing the exact line search).

• The convergence rate depends greatly on the condition number of the Hessian, or the sublevel sets.
Convergence can be very slow, even for problems that are moderately well conditioned (say, with
condition number in the 100s). When the condition number is larger (say, 1000 or more) the gradient
method is so slow that it is useless in practice.

The main advantage of the gradient method is its simplicity. Its main disadvantage is that its convergence
rate depends so critically on the condition number of the Hessian or sublevel sets.

Table of Contents 20

5.4. STEEPEST DESCENT CHAPTER 5. UNCONSTRAINED MINIMIZATION

5.4 Steepest Descent

A first-order approximation f(x+ ∆x) ≈ f(x) +∇f(x)T∆x suggest choosing ∆x to make ∇f(x)T∆x small.
Due to the linearity in ∆x, we search over a norm-limited region for ∆x. A normalized descent direction
∆xnsd is chosen as

∆xnsd = arg min
‖v‖=1

∇f(x)T v. (5.32)

We consider the unnormalized steepest descent direction ∆xsd as

∆xsd = ‖∇f(x)‖∗∆xnsd (5.33)

where ‖·‖∗ denotes the dual norm. Consider γ, γ̃ such technicality

‖x‖ ≥ γ‖x‖2, ‖x‖∗ ≥ γ̃‖x‖2

Convergence Analysis. Again assume that f is strongly convex. We derive the same linear convergence
rate, with

c = 1− 2mαγ̃2 min{1, βγ2/M}. (5.34)

Euclidean norm Steepest descent becomes gradient descent when the norm is the 2-norm: ∆xsd =
−∇f(x).

Quadratic norm With norm given by P � 0, we have ∆xsd = −P−1∇f(x)

5.5 Newton’s Method

Newton’s method is like a steepest descent direction with P = ∇2f(x)T

1. Given a starting point x and tolerance ε > 0

2. Repeat until stopping criterion is satisfied

(a) Compute the Newton step and decrement

∆x+ nt = −∇2f−1(x)∇f(x); λ2 = ∇f(x)T∇2f(x)∇f(x)

(b) Stop if λ2 ≤ 2ε

(c) Line search. Choose a step size t > 0 by backtracking line search

(d) Update. x← x+ t∆xnt

While gradient descent had linear convergence, Newton’s method has quadratic convergence.

5.6 Self-concordance

The convergence rate of Newton’s methods involves constants that are hard to estimate. Self-concordant
functions allow a convergence analysis that does not depend on unknown constants.

Table of Contents 21

5.7. SUB-GRADIENT METHOD CHAPTER 5. UNCONSTRAINED MINIMIZATION

5.7 Sub-Gradient Method

From Ryan Tibshirani
Assume f(x) is convex and domf = Rn. The subgradient method is an iteration:

Initialize x(0) and repeat:

xk ← xk−1 − tkgk−1 where gk−1 ∈ ∂f(xk−1).

If f is Lipschitz, then subgradient method has a convergence rate O(1/ε2), which is considered slow. In their
notes, they consider the case of decomposable functions, and show how for such a function we can achieve a
convergence rate of O(1/ε).

The step sizes are either

1. Fixed tk = t, all k = 1, 2,

2. Diminishing step sizes: choose to meet conditions

∞∑
k=1

t2k <∞,
∞∑
k=1

tk = 0

Key difference from gradient descent is pre-specified step size, no adaptation.

5.7.1 First-order Optimality Conditions

x? ∈ arg min
x∈D

f(x) ⇐⇒ 0 ∈ ∂f(x?) (5.35)

Since the subgradient method is not a descent method, it is common to keep track of the best point found
so far, i.e., the one with smallest function value. Instead of depending on a strict decrease of the objective
function, the sub-gradient method is focused on strictly approaching the optimal set. Helps with constrained
optimization

Table of Contents 22

https://www.stat.cmu.edu/~ryantibs/convexopt-F15/scribes/08-prox-grad-scribed.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt-F15/scribes/08-prox-grad-scribed.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt-F15/scribes/08-prox-grad-scribed.pdf

Chapter 6

Equality Constrained Minimization

6.1 Penalty Methods

Consider the problem

min f0(x) (6.1)

subject to hi(x) = 0, i = 1, . . . ,m (6.2)

In quadratic penalty methods, this problem is converted into a sequence of unconstrained optimization
problems, each of the form

min f0(x) +
µ

2

m∑
i=1

hi(x)2 (6.3)

The sequence corresponds to a sequence {µ(k)} for k = 0, . . . ,∞, where µ(k) →∞.
The limit points of the sequence {x(k)} corresponding to {µ(k)} converges to an optimum
An issue is that when µk is high, the optimization problems may become ill-conditioned.
Non-smooth penalty functions, such as the L1 norm, may also be used.

6.2 Dual Ascent

Consider

min f(x)

subject to Ax = b

• Lagrangian: L(x, y) = f(x) + yT (Ax− b)
• Dual function: g(y) = infx L(x, y)

• Dual problem: maximize g(y) to get y∗

• Recover x∗ = arg minx L(x, y∗)

The dual ascent algorithm is one way to use the dual problem to solve the primal problem. A key idea
is that

∇g(y) = Ax+ − b, where x+ = arg min
x
L(x, y).

The algorithm becomes

xk+1 = arg min
x
L(x, yk)

yk+1 =yk + αk(Axk+1 − b)

The problem must satisfy some strong assumptions for all this to work. Most problems fail to satisfy
these assumptions, and dual ascent cannot be applied. The one case where dual ascent helps is when one
can decompose the state into subsystems, with the objective function mirroring this division.

23

6.3. DUAL DECOMPOSITION CHAPTER 6. EQUALITY CONSTRAINED MINIMIZATION

6.3 Dual Decomposition

When the objective is separable (f(x) =
∑N
i fi(x)), the update of dual ascent may be separated:

xk+1
i = arg min

xi

Li(xi, y
k)

yk+1 =yk + αk(Axk+1 − b)

While the first equation may be performed in parallel, the second requires a broadcast and a gather operation.
Note that we view Ax =

∑N
i Aixi.

6.4 Augmented Lagrangians

This method is also known as the method of multipliers. It is related to the quadratic penalty algorithm,
but it reduces the possibility of ill conditioning by introducing explicit Lagrange multiplier estimates into
the function to be minimized, which is known as the augmented Lagrangian function. The augmented
Lagrangian adds quadratic penalties to the Lagrangian.

Nocedal and Wright approach AL through quadratic penalty methods with added dual variables, Boyd
and Vanderberghe approach it through dual ascent with a quadratic penalty term added.

Define a new lagrangian

(6.4)Lρ(x, y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖22.

Applying the dual ascent approach leads to

xk+1 = arg min
x
Lρ(x, y

k)

yk+1 =yk + ρ(Axk+1 − b).

which is known as the method of multipliers for solving the original problem. Note that αk = ρ. The method
of multipliers converges under far more general conditions than dual ascent, including cases when f takes
on the value +∞ or is not strictly convex.

6.5 ADMM

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with the superior
convergence properties of the method of multipliers. One technicality to overcome is that the square term
in the MoM prevents the decomposition in dual ascent. The algorithm solves problems in the form

min f(x) + g(z)

subject to Ax+Bz = c

The ADMM algorithm is

xk+1 = arg min
x
Lρ(x, z

k, yk)

zk+1 = arg min
z
Lρ(x

k+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

The method of multipliers would have been

(xk+1, zk+1) = arg min
x,z

Lρ(x, z, y
k)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c),

where there is no alternation in solving for x and z. This alternation in ADMM is possible precisely because
f and g are separate functions of x and z respectively.

ADMM is most useful when f and g have proximal operators are easy to calculate, but f + g is not so.

Table of Contents 24

6.6. CONJUGATE GRADIENT METHODCHAPTER 6. EQUALITY CONSTRAINED MINIMIZATION

Case: A = I

When A = I, the x-update in ADMM boils down to the proximal operator. When f has structure, then this
proximal update is known in closed-form.

Bi-convex problems

ADMM can be applied to biconvex problems

min F (x, z)

subject to G(x, z) = 0

The ADMM algorithm is

xk+1 = arg min
x

(
F (x, zk) +

ρ

2
‖G(x, zk) + uk‖

)
zk+1 = arg min

z

(
F (xk+1, z) +

ρ

2
‖G(xk+1, z) + uk‖

)
uk+1 = uk + ρG(xk+1, zk+1).

6.6 Conjugate Gradient Method

6.6.1 Goal

Solve the equations Ax = b, where A = AT and A > 0. This equation arises, for example, from first order
optimality conditions involving quadratic objections.

6.6.2 Conjugate Vectors

Two vectors v and u are conjugate with respect to A if vTAu = 0.
n mutually conjugate vectors with respect to matrix A form a basis for Rn.

Table of Contents 25

Chapter 7

General Constrained Minimization

7.1 Introduction

The goal is to solve general problems of the form

min
x∈C

f(x).

Historical note. My early work on classifier-in-the-loop systems formulated training as a projected gradi-
ent descent algorithm. Back then I tried to read the blog by Thibaut Lienart to understand PGD, but failed.
It was the book on Nonsmooth Optimization and Control Theory by F. Clarke that helped me understand
these same terms.

7.2 Proximal Point Algorithm

Algorithm.
xk+1 ← proxλf (xk)

Majorization-minimization. We [1] first interpret the proximal gradient method as an example of a
majorization-minimization algorithm, a large class of algorithms that includes the gradient method, Newton’s
method, and the EM algorithm as special cases; A majorization-minimization algorithm for minimizing a
function ϕ:Rn → R consists of the iteration

xk+1 = arg min
x
f̂(x, xk),

where f̂(x, xk) is an upper bound for f that is tight at xk, meaning that f̂(x, xk) ≥ f(x) and f̂(x, x) = f(x).
The reason for the name should be clear: such algorithms involve iteratively majorizing (upper bounding)
the objective and then minimizing the majorization.

Backward vs Forward. Gradient descent may be viewed as a forward Euler discretization of the gra-
dient flow algorithm (Bach’s blog). The proximal point algorithm may then be viewed as the backward
discretization approach:

Forward Euler Disc.(GDA): xk+1 ← xk −∇f(xk) (7.1)

Backward Euler Disc (PPA): xk+1 ← xk −∇f(xk+1) (7.2)

26

https://tlienart.github.io/pub/csml.html
https://francisbach.com/gradient-flows/

7.3. PROXIMAL GRADIENT DESCENT CHAPTER 7. GENERAL CONSTRAINED MINIMIZATION

7.3 Proximal Gradient Descent

From slides by Shenlong Wang. Consider the problem

min
x
g(x) + h(x),

where g is convex, differentiable, and ∇g is Lipschitz. h is convex, but possible non-differentiable. The
non-differentiability of h precludes application of some gradient-based methods. Instead, if proxh is easy to
implement, we may solve this problem through the proximal gradient algorithm:

xk+1 = proxh
(
xk − αk∇g(xk)

)
(7.3)

This algorithm needs O(1/ε) iterations.

Interpretation

Gradient descent was shown to be similar to a proximal method involving a local gradient-based linear
approximation to f . When f(x) = g(x) + h(x), we may repeat this idea with g(x) being the differentiable
function, and some rearrangment:

x+ = arg min
z
g(x) +∇g(x)T (z − x) +

1

2α
‖x− z‖2 + h(x) (7.4)

= arg min
z

1

2α
‖z − (x− α∇g(x))‖2 + h(x) (7.5)

= proxαh (x− α∇g(x)) (7.6)

Why does this work?

Any minimizer z must satisfy z = proxαh (x), where x = z − αk∇g(z). Our iterates bounce between z and
x (reminds me of Amari’s description), and for some h(x), z = x.

Accelerated Proximal Gradient Method

This algorithm needs O(1/
√
ε) iterations.

xk+1 = proxh
(
yk − αk∇g(yk)

)
(7.7)

yk+1 = xk+1 +
t− 1

t+ 2

(
xk+1 − xk

)
(7.8)

7.3.1 Iterative soft-thresholding algorithm (ISTA)

The main idea is that the proximal mapping for the l1 norm is the soft-threshold (dead-zone) map.

7.3.2 Projected Gradient Descent

The FOC conditions lead to an iterative algorithm. The derivation is as follows:

u ∈ NP
C (x) (7.9)

=⇒ αu ∈ NP
C (x) (7.10)

=⇒ x+ αu ∈ x+NP
C (x) (7.11)

This observation leads to

x = projC (x+ αu) , for α ≥ 0, u ∈ NP
C (x) (7.12)

Finally, the minimizer x† satisfies 0 ∈ ∇f(x†) +NP
C (x†) =⇒ −∇f(x†) ∈ NP

C (x†). Therefore,

x† = projC
(
x† − α∇f(x†)

)
, for α ≥ 0 (7.13)

A simpler explanation is that PGD corresponds to the proximal gradient algorithm when h(x) = IC(x).

Table of Contents 27

http://www.cs.toronto.edu/~slwang/primal-dual.pdf

7.4. MIRROR DESCENT CHAPTER 7. GENERAL CONSTRAINED MINIMIZATION

Projected Sub-Gradient Descent

When f is non-differentiable, we replace ∇f(x) with a sub-gradient g ∈ ∂f(x).

xt+1 = projC (xt − αtg)

Approximate Projected Sub-Gradient Descent

This proof reveals that the method still works even when P is not the Euclidean projection operator. All
that matters is that P should satisfy P (u) ∈ C, and the inequality

d(P (u), z) ≤ d(u, z)

for all z ∈ C. note that you must project to set, unlike your earlier understanding of approximate

7.4 Mirror Descent

7.4.1 From Dual Spaces

The gradient descent algorithm converts an element of dual vector space (Rn)
∗

correctly and uniquely to the
vector space Rn simply by transposition: a row vector (dual space) becomes a column vector (vector space).
In this way, the gradient becomes a descent direction. The descent direction in the primal space defines the
update step.

When using the Euclidean metric to transform between dual and primal spaces, the update step in
the primal space may also be interpreted as a step in the dual space, since x ∈ Rn 7→ xT ∈ (Rn)

∗
. The

mirror descent algorithm uses a different transformation based on a mirror function Φ:Rn → R. Now,
∇Φ:Rn → (Rn)

∗
maps to the dual space, and its inverse turns out to be ∇Φ∗. We first transform xk to the

dual space, take an update step, and transform back to the primal space:

xk+1 ← ∇Φ∗
(
∇Φ(xk)− αk∇f(xk)

)
.

An additional Bregman projection step to the feasible region may be required (see writeup by Nicholas
Harvey): xk+1 ← ΠΦ

C(xk+1).

7.4.2 From PGD

As developed by Thibaut Lienart, we may reinterpret the projected gradient descent algorithm as follows:

xk+1 = arg min
x∈C
‖(xk − αk∇f(xk))− x‖22 (7.14)

= arg min
x∈C
‖(x− xk) + αk∇f(xk))‖22 (7.15)

Since the 2-norm is based on the inner product, we may rewrite the norm as

‖(xk − αk∇f(xk))− x‖22 = ‖x− xk‖22 + 2〈x− xk, αk∇f(xk)〉+ ‖αk∇f(xk))‖22 (7.16)

= ‖x− xk‖22 + 2αk〈x,∇f(xk)〉+M(xk) (7.17)

Now we may rewrite the PGD as

xk+1 = arg min
x∈C
‖(xk − αk∇f(xk))− x‖22 (7.18)

= arg min
x∈C

{
〈x,∇f(xk)〉+

1

αk

‖x− xk‖22
2

}
(7.19)

Naturally, we may generalize the distance function, leading to Generalized PGD, as

xk+1 = arg min
x∈C

{
〈x,∇f(xk)〉+

1

αk
d(x, xk)

}
(7.20)

Table of Contents 28

https://www.cs.ubc.ca/~nickhar/F18-531/Notes20.pdf
https://www.cs.ubc.ca/~nickhar/F18-531/Notes20.pdf
https://tlienart.github.io/pub/csml/cvxopt/ca2.html

7.5. PRIMAL-DUAL METHODS CHAPTER 7. GENERAL CONSTRAINED MINIMIZATION

One choice for the distance function d is the Bregman divergence Dϕ of some function ϕ that is µ-strongly
convex and differentiable (ϕ is the Mirror function):

Dϕ(x, y) = ϕ(x)− ϕ(y)− 〈x− y,∇ϕ(y)〉 (7.21)

In effect, we’re trying to minimize αk〈x,∇f(xk)〉+ϕ(x)−〈x,∇ϕ(xk)〉+ IC(x). The FOC would then imply
that xk+1 satisfies

0 ∈ αk∇f(xk) +∇ϕ(xk+1)−∇ϕ(xk) +NP
C (xk+1) (7.22)

=⇒ xk+1 =
(
∇ϕ+NP

C

)−1 (∇ϕ(xk)− αk∇f(xk)
)

(7.23)

Let γo(C) denote the set of proper and lsc convex functions on C. It may be shown that for such

functions, (∂f)
−1 ≡ ∂f∗. Therefore, from this page, we define φ = ϕ+ IC , and then(

∇ϕ+NP
C

)−1
= ∇φ∗,

so that the algorithm becomes

xk+1 = ∇φ∗
(
∇ϕ(xk)− αk∇f(xk)

)
(7.24)

Notes:

• The map ∇φ∗ is the Bregman projection to C.

• If if NP
C (x) ⊆ ϕ(x), then we should obtain the update xk+1 = ∇ϕ∗

(
∇ϕ(xk)− αk∇f(xk)

)
.

• Principles for choosing ϕ / Dϕ:

– fits the local curvature of f
– fits the geometry of the constraint set C
– makes sure the Bregman projection is inexpensive

7.5 Primal-Dual Methods

From slides by Shenlong Wang.

• Primal: minx∈X f(Kx) + g(x)

• Dual: maxy∈X∗ −f∗(y)− g∗(−K∗y)

• Primal-dual: minx∈X maxy∈X∗〈Kx, y〉+ g(x)− f∗(y)

The primal-dual form is useful when proxf is difficult, but proxf∗ and proxg are easier.
The saddle point x̂, ŷ should satisfy

0 ∈ Kx̂− ∂f∗(ŷ) (7.25)

0 ∈ K∗ŷ + ∂g(x̂) (7.26)

These conditions lead to an iterative algorithm, since they are telling us what the sub-gradients are. Choose
step size σ, θ and τ such that στL2 < 1, where L = |K‖, θ ∈ [0, 1]:

yk+1 = proxf∗
(
yk + σKxk

)
(7.27)

x̄k+1 = proxg
(
x̄k − τK∗yk+1

)
(7.28)

xk+1 = x̄k + θ
(
x̄k+1 − x̄k

)
(7.29)

Primal-dual method is equivalent to ADMM if K = I. But in the general case primal-dual is usually
faster, since solving the subproblems of ADMM is harder.

Table of Contents 29

https://tlienart.github.io/pub/csml/cvxopt/ca2.html
https://tlienart.github.io/pub/csml/cvxopt/ca2.html
http://www.cs.toronto.edu/~slwang/primal-dual.pdf

7.6. PROXIMAL FLOWS CHAPTER 7. GENERAL CONSTRAINED MINIMIZATION

7.6 Proximal Flows

Gradient flow. Proximal minimization can be interpreted as a discretized method for solving a differential
equation whose equilibrium points are the minimizers of a differentiable convex function f . The differential
equation

d

dt
x(t) = −∇f(x(t)) (7.30)

is called the gradient flow of f . The equilibrium points of the gradient flow are the zeros of∇f , the minimizers
of f .

Subgradient differential Inclusion The idea of the gradient flow can be generalized to cases where f is
non-differentiable via the subgradient differential inclusion

d

dt
x(t) ∈ −∂f(x(t)) (7.31)

Table of Contents 30

Bibliography

[1] Parikh, N., & Boyd, S. (2014). Proximal algorithms. Foundations and Trends in optimization, 1(3),
127-239.

[2] Clarke, F. H., Ledyaev, Y. S., Stern, R. J., & Wolenski, P. R. (2008). Nonsmooth analysis and control
theory (Vol. 178). Springer Science & Business Media.

31

	Introduction
	Problem Formulation
	Least Squares and Linear Programming
	Least Squares
	Linear Program

	Overview of Algorithms

	I Theory
	Convex Functions
	Basic Proporties
	Definition
	Extended-value extensions
	First-order conditions
	Second-order conditions
	Sublevel Sets
	Epigraph
	Indicator Function

	Operations that preserve convexity
	The Conjugate Function
	Definition
	Basic Properties

	Bregman Divergence

	Nonsmooth Functions
	Sub-gradients
	Definition
	Relationship To Conjugate Function

	Proximal Operator
	Lemma 3
	Corollary 5 Proximal operator is a contraction
	Projection to a Set
	Proximal Sub-differential
	Theorem 6 Proximal subdifferential, F. Clarke
	Resolvent
	Properties

	Duality
	Lagrange Dual Function
	The Lagrangian
	Lagrange dual function
	Lower bound on optimal value

	Lagrange dual problem
	Weak Duality
	Strong Duality

	Optimality Conditions
	Certificate of suboptimality and stopping criteria
	Complementary Slackness
	KKT Conditions

	II Algorithms
	Unconstrained Minimization
	Unconstrained minimization problems
	Examples
	Strong convexity and implications

	Descent Methods
	Gradient Descent Methods
	Steepest Descent
	Newton's Method
	Self-concordance
	Sub-Gradient Method
	First-order Optimality Conditions

	Equality Constrained Minimization
	Penalty Methods
	Dual Ascent
	Dual Decomposition
	Augmented Lagrangians
	ADMM
	Conjugate Gradient Method
	Goal
	Conjugate Vectors

	General Constrained Minimization
	Introduction
	Proximal Point Algorithm
	Proximal Gradient Descent
	Iterative soft-thresholding algorithm (ISTA)
	Projected Gradient Descent

	Mirror Descent
	From Dual Spaces
	From PGD

	Primal-Dual Methods
	Proximal Flows

