Probability

Hasan Poonawala

1 Sigma Algebra

Definition 1 (Sigma Algebra). A σ -algebra (aka σ -field) on a set X is a collection Σ of subsets of X that

- 1. $X \in \Sigma$: includes X itself,
- 2. $A \in \Sigma \implies A^c \in \Sigma$: is closed under complement, and
- 3. $A_1, A_2 \in \Sigma \implies A_1 \cup A_2 \in \Sigma$: is closed under countable unions.

Example 1. The power set of a countable set X forms a σ -algebra over X.

Example 2. If $X = \{a, b, c, d\}$, one possible σ -algebra on X is $\Sigma = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$

Example 3. If $\{A_1, A_2, ...\}$ is a countable partition of X then the collection of all unions of sets in the partition (including the empty set) is a σ -algebra.

Example 4 (Borel σ -algebra of X). Set of all results of countable union, countable intersection, and relative complement applied to the open sets of a topological space X.

2 Measure & Probability Spaces

Definition 2 (Measurable Space). A measurable space is a set X to which we can assign a σ -algebra.

Example 5 (Real numbers). The real numbers \mathbb{R} with the Borel σ -algebra forms a measurable space.

The space (X, Σ) is measurable because the properties of the σ -algebra Σ will enable us to map elements of Σ to $\mathbb{R}_{\geq 0} \cup \{\infty\}$ so that disjoint union in Σ is equivalent to addition in \mathbb{R} .

Definition 3. Measure A measure μ is a mapping from a σ -algebra to \mathbb{R} if

- For all $E \in \Sigma$, $\mu(E) \ge 0$
- $\mu(\emptyset) = 0$
- for pair-wise disjoint sets $E_k \in \Sigma$, $\mu(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} \mu(E_k)$

Example 6 (Discrete Measure).

Example 7 (Borel Measure).

Definition 4. Probability Measure A measure μ is a probability measure on X if

$$\mu(X) = 1.$$

Definition 5 (Measure Space). A measure space (X, Σ, μ) is a measurable space (X, Σ) equipped with a measure $\mu: X \to \mathbb{R}$.

Definition 6 (Probability Space). A probability space (Ω, \mathcal{F}, P) is a set of outcomes Ω on which one defines the set of outcomes \mathcal{F} which is a σ -algebra, and equips the resulting measurable space (Ω, \mathcal{F}) with a probability measure P.

3 Random Variable

Definition 7 (Measurable Function). A function $f \in \Sigma_1 \to \Sigma_2$ is measurable if Σ_1 and Σ_2 are σ -algebras defined over appropriate spaces, and the preimage of elements in Σ_2 are members of Σ_1 .

Definition 8 (Random Variable). A random variable X is a measurable function from a probability space (Ω, \mathcal{F}, P) to a measurable space (E, \mathcal{E}) .

So, why do we need the second measurable space if we already have a probability (measure) space?

We don't.

We need the first probability space when our measurable space of interest doesn't come with an explicit probability measure.

Remark 1. Almost all elementary probability problems are asking you to construct the pre-image of an event so that you can apply known probabilities.

Example 8. When asked for the probability of the the sum of face-up numbers on two die equaling six. The set of outcomes we are interested in are the set of non-negative integers \mathbb{N} . Since this set is countable \mathbb{N} , we can define a σ -algebra for it and get a measurable space.

How do we assign the probability measure over this set? We use the probability measure for rolls of two die, by defining a measurable mapping from that set of outcomes to the set \mathbb{N} .

Remark 2. This mapping from the rolls of two die to \mathbb{N} is called the random variable corresponding to the sum of the face-up numbers on two die. While not obvious, what this means is the set of outcomes under that mapping is the random variable. For this set of outcomes to possess a meaningful probability, it must belong to some measurable space.

Definition 9 (Random Variable In Words). A random variable is a measurable space of events equipped with a probability measure given directly or through a different probability space combined with a measurable mapping to the events of interest.

References

[1] Author; Title; Publisher.