
Reinforcement Learning

Hasan Poonawala

Contents

1 Introduction 3
1.1 MDP Trajectories . 3
1.2 Valuation Functions . 3
1.3 Solving MDPs . 3
1.4 The Reinforcement Learning Problem . 4
1.5 Classification of RL Algorithms . 5

2 Dynamic Programming 8
2.1 Policy Evaluation . 8
2.2 Policy Improvement . 8

2.2.1 Policy Gradients . 8
2.3 Policy Iteration . 8
2.4 Value Iteration . 9
2.5 PI vs VI . 9
2.6 Generalized policy iteration . 9

3 Monte Carlo Methods 10
3.1 Policy evaluation using Monte Carlo Rollouts . 10
3.2 REINFORCE . 10

3.2.1 REINFORCE With Baselines . 11
3.3 Off-Policy Gradients With Importance Sampling . 11

3.3.1 Optimal Importance Sampling . 11
3.3.2 Normalized Importance Sampling . 11

4 Temporal Difference Learning 12
4.1 Bootstrapping . 12
4.2 Bootstrapping The Value Function: TD(0) . 12

4.2.1 Fitted Value Iteration . 12
4.3 Boot-Strapping the Q Function: SARSA and Q-Learning . 13

4.3.1 Q-Learning . 13
4.3.2 Fitted Q-Iteration . 13
4.3.3 Deep Q-Learning . 14

4.4 Actor-Critic . 14

5 Eligibility Traces 16
5.1 Forward View . 16
5.2 Backward View . 16
5.3 Parameter λ . 17

6 Options 18

1

CONTENTS CONTENTS

7 Continuous States And Actions 19
7.1 TRPO . 19

7.1.1 Results from [Kakade and Langford, 2002] . 20
7.1.2 Monotonic Improvement Guarantee for General Stochastic Policies 20
7.1.3 Algorithm 1 . 21
7.1.4 TRPO Algorithm . 21

7.2 PPO . 21
7.3 ACKTR . 23
7.4 DDPG [Lillicrap et al., 2015] . 23
7.5 Guided Policy Search . 24

8 Fundamental performance limits 26
8.1 Episodic RL State-of-the-Art . 26
8.2 Discounted RL . 26
8.3 Ergodic RL . 26

9 Observations on RL 27

Table of Contents 2

1 INTRODUCTION

1 Introduction

1.1 MDP Trajectories

Agent chooses actions so as to maximize expected cumulative reward over a time horizon. Observations can
be vectors or other structures. Actions can be multi-dimensional. Rewards are scalar but can be arbitrarily
uninformative. Agent has partial knowledge about its environment.
The value of a policy π started in state i is

(1)V π(i) = Eπ
[
r0 + γr1 + γ2r2 + · · · |s0 = i

]
Optimal policy π∗ = arg maxπ V

π

Optimal value V ∗(i) = maxπ V
π(i)

In MDPs there always exists a deterministic stationary policy (that simultaneously maximizes the value of
every state).
Due to the Markov assumption:

(2)∀s ∈ S, V π(s) = R(s, π(s)) +
∑
s′∈S

P (s′|s, π(s))V π(s′)

(3)∀s ∈ S, ∀a ∈ A,Qπ(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, π(s))Qπ(s′, π(s′))

Optimality:

(4)∀s ∈ S, V ∗(s) = max
a∈A

[
R(s, a) +

∑
s′∈S

P (s′|s, a)V ∗(s′)

]

(5)∀s ∈ S,∀a ∈ A,Q∗(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a) max
b∈A

Q∗(s′, b)

1.2 Valuation Functions

The different functions are

• Q-function Qπ(st, at) =
∑T
t′=t Eπθ [r(st′ , at′)|st, at]

• Value V π(st) = Eat∼πθ(at|st) [Qπ(st, at)]

• Advantage Aπ(st, at) = Qπ(st, at)− V π(st)

• Fitted value V πφ (st)

1.3 Solving MDPs

Given an exact model (i.e., reward function, transition probabilities), and a fixed policy π, we can use Value
Iteration (Policy Evaluation).
The proof that value iteration works is based on showing that the update map – inherent to the value
iteration algorithm – is contracting.
Later on, this contraction property allows proof of the convergence of Q-Learning, which is a stochastic
approximation of Value Iteration for Q (as opposed to that for V).
We use the notation from link
We take a sequence of actions {At} and assign the expected reward J due to this sequence when starting in
state x:

(6)J(x, {At}) = E

[∞∑
t

γtR(Xt, At)|X0 = x

]

Table of Contents 3

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

1.4 The Reinforcement Learning Problem 1 INTRODUCTION

A policy At = π(Xt) induces a value for each state V π(Xt) given by

(7)V π(x) = E

[∞∑
t

γtR (Xt, π(Xt)) |X0 = x

]

By picking π, we decide the topology of the MDP. The value V π defines a different topology. This mismatch
is what drives learning.
The best value forms the optimal value function V ∗.

(8)V ∗(x) = max
At

J(x, {At})

The Markov property allows us to combine (6) and (8) as

(9)V ∗(x) = max
a∈A

∑
y∈S

P (y|x, a)[r(x, a, y) + γV ∗(y)]

which makes
(10)Q∗(x, a) =

∑
y∈S

P (y|x, a)[r(x, a, y) + γV ∗(y)]

But since V ∗(x) = maxa∈AQ
∗(x, a), we have

(11)Q∗(x, a) =
∑
y∈S

P (y|x, a)[r(x, a, y) + γmax
b∈A

Q∗(y, b)]

We want to find the function Q∗ that satisfies (11). We use fixed point iterations to do so. If we have
an equation z∗ = H(z∗), then z∗ is a fixed point of the map H. We can iterate by zk+1 = Hzk. Will
limk→∞ zk+1 = z∗?
One case where this happens is when H is a contractive map. Start with two points x and y in a space X,
and we map both points by H to get H(x) and H(y). H is contractive if

(12)norm(H(x)−H(y)) < norm(x− y)

If H is contractive the iterates from any z0 will uniquely converge to such a point.
So, for Q-Value Iterations, the space X is a vector of size |S|×|A|, map H and norm turn out to be the RHS
of (11) and the infinity-norm respectively.

1.4 The Reinforcement Learning Problem

Reinforcement learning is concerned with finding policies for MDPs wherein the reward function and the
transition probabilities are unknown.
Without a model, have to observe real traces. An agent sees trajectories of the form

s1a1r1s2a2r2 . . . siairi+1si+1 . . .

where the term between ellipses is a unit of ‘experience’. It tells us the two things we need to know about
executing a in s: resulting reward and transition.
Features of RL:

• Temporal Differences (or updating a guess on the basis of another guess)

• Eligibility traces

• Off-policy learning

• Function approximation for RL

• Hierarchical RL (options)

• Going beyond MDPs/POMDPs towards AI

Table of Contents 4

1.5 Classification of RL Algorithms 1 INTRODUCTION

Note: Learning from delayed reward distinguishes RL from other ML.
The objective function most often used in RL is

(13)J(θ) = Eτ∼pθ(τ) [r(τ)]

where τ is a trajectory and r(τ) is the reward of this trajectory. Typically, r(τ) =
∑T
t=1 r(st, at). We

approximate J(θ) from N policy rollouts as

(14)J(θ) =
1

N

∑
i

∑
t

r(sit, ait)

The parameters θ define the policy πθ(at|st). The model and this policy together dictate pθ(τ) as

(15)pθ(τ) = p(s1)ΠT
t=1πθ(at|st)p(st+1|st, at)

The reinforcement learning goal is to estimate

(16)θ∗ = arg max
θ
Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]

We modify this by using the state-action marginal p(st, at) as

(17)θ∗ = arg max
θ

T∑
t=1

E(st,at)∼p(st,at) [r(st, at)]

For the infinite horizon case we will obtain which depends on the stationary distribution p(s, a).

(18)θ∗ = arg max
θ
E(s,a)∼p(s,a) [r(s, a)]

Note: The policy induces a local topology between states, the value function corresponding to that policy
dictates a global topology. Is this mismatch what drives learning? Sort of.
Broadly, there are two ways to find θ:

• Gradients on J(θ)

• Dynamic programming on (s, a)

1.5 Classification of RL Algorithms

There are three broad classes of RL problems:

• Episodic

• Discounted/Infinite horizon

• Ergodic

There are two types of learning methods

• Off-policy: where policy is computed from previously collected data. Eg. Q-Learning

• On-policy: where on-line data is collected. Eg. SARSA

Two approaches: Direct and Indirect methods.

• Indirect methods learn model from experience and solve it as known MDP.
Indirect model: frequentist estimate of transition probabilities. Model converges asymptotically pro-
vided all state-action pairs are visited infinitely often in the limit; hence certainty equivalent policy
converges asymptotically to the optimal policy.

• Direct methods don’t bother with a model.
Direct method: Q-learning.

Table of Contents 5

1.5 Classification of RL Algorithms 1 INTRODUCTION

(19)θ∗ = arg max
θ
Eτ∼pθ(τ)

[
T∑
t=1

r(st, at)

]

• Policy gradients: directly differentiate the above objective

• Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)

• Actor-critic: estimate value function or Q-function of the current policy, use it to improve policy

• Model-based RL: estimate the transition model, and then

– Use it for planning (no explicit policy)
– Use it to improve a policy
– Something else

Value functions

(20)Qπ(st, at) =

T∑
t′=t

Eπθ [r(st′ , at′ |st, at)]

(21)V π(st) =

T∑
t′=t

Eπθ [r(st′ , at′)|st)]

= Eat∼π(at|st)[Q
π(st, at)]

Then, J(θ) = Es1∼p(s1)[V
π(s1)].

Idea 1: If we have policy π, and know Qπ(s, a), we can improve π.
Set πnew(ai|s) = 1 if i = arg maxQπ(s, ai).
SoftQL says πnew(a|s) ∝ expQπ(s, ai)

Idea 2: Compute gradients to increase probability of good actions a.
If Qπ(s, a) > V π(s), then a is better than average.
Modify π(a|s) to increase probability of a when this situation occurs.

Model-Based RL

1. Just use the model to plan (no policy)

• Trajectory optimization/optimal control (primarily in continuous spaces) – essentially backprop-
agation to optimize over actions

• Discrete planning in discrete action spaces – e.g., Monte Carlo tree search

2. Backpropagate gradients into the policy

• Requires some tricks to make it work

3. Use the model to learn a value function

• Dynamic programming
• Generate simulated experience for model-free learner

Comparison Comparison: stability and ease of use

• Value function fitting

– At best, minimizes error of fit (“Bellman error”)
Not the same as expected reward

– At worst, doesn’t optimize anything
Many popular deep RL value fitting algorithms are not guaranteed to converge to anything in the
nonlinear case

Table of Contents 6

1.5 Classification of RL Algorithms 1 INTRODUCTION

• Model-based RL

– Model minimizes error of fit
This will converge

– No guarantee that better model = better policy

• Policy gradient

– The only one that actually performs gradient descent (ascent) on the true objective

Table of Contents 7

2 DYNAMIC PROGRAMMING

2 Dynamic Programming

Applies to known transition models.

2.1 Policy Evaluation

Policy evaluation computes the value functions for a policy π using the Bellman equations. For example,

Repeat: V π(s)← Ea∼π(a|s)
[
Es′∼p(s′|s,a) [r(s, a) + γV π(s′)]

]
(22)

Or: V π(s)←
∑
a

π(a|s)
∑
s′

p(s′|s, a) [r(s, a, s′) + γV π(s′)] (23)

2.2 Policy Improvement

For all s ∈ S, if for policies π′ and π we have that Qπ(s, π′(s)) ≥ V π(s), then π′ cannot be worse than π.
This relative improvement is captured by the advantage function, and the policy improvement step is trying
to maximize the value by changing the policy to the maximum of the advantage of each state.

2.2.1 Policy Gradients

Instead of a global improvement step, for parametrized policy, we can use a local gradient update. This
gradient can be practically calculated through the policy gradient theorem. Recall that

J(θ) = Eτ∼pθ(τ) [r(τ)] =

∫
pθ(τ)r(τ)dτ, where

r(τ) =

T∑
t=1

r(st, at), and

pθ(τ) = p(s1)ΠT
t=1πθ(at|st)p(st+1|st, at)

=⇒ log pθ(τ) = log p(s1) +

T∑
t=1

log πθ(at|st)

Use identity: πθ(τ)∇θ log πθ(τ) = ∇θπθ(τ). We get

(24)

∇θJ(θ) =

∫
∇θpθ(τ)r(τ)dτ

=

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ

= Epθ(τ)[∇θ log pθ(τ)r(τ)]

= Epθ(τ)

[(
T∑
t=1

∇θ log πθ(ait|sit)

)
r(τ)

]

For N trajectories, ∇θJ(θ) is

(25)∇θJ(θ) =
1

N

N∑
i

(
T∑
t=1

∇θ log πθ(ait|sit)

)(
T∑
t=1

r(sit, ait)

)

2.3 Policy Iteration

1. Evaluate V π as V π(s)← Es′∼π [r(s, π(s), s′) + γV π(s′)]

2. Improve π as πnew(ai|s) = 1 if i = arg maxAπ(s, ai).

Alternative evaluation: Aπ(s, a) = r(s, a) + γE [V π(s′)]− V π(s)

Table of Contents 8

2.4 Value Iteration 2 DYNAMIC PROGRAMMING

2.4 Value Iteration

1. Set Q(s, a)← Es′∼π [r(s, a, s′) + γV (s′)]

2. Set V (s) = maxaQ(s, a). (No max in PI)

Which is equivalent to a combining policy evaluation (expectation) and improvement (max) into a single
step:

Vk+1(s)←= max
a

∑
s′

P (s′|s, a) (R(s, a, s′) + γVk(s′)) (26)

Policy comes from arg maxaQ(s, a)

2.5 PI vs VI

In policy iteration, you represent value V π and policy π. Then, estimate V π and use it to improve the policy
greedily.
In value iteration, you only represent the value V (s), which implicitly defines a policy. The evaluation and
improvement occurs in a single step using VI. One way to describe it is that it’s a single-time-step policy
iteration.
In Sutton’s description, PI can be efficient because the value doesn’t change much, speeding up policy
evaluation. But also, PI is inefficient because of protracted policy evaluation iterations. This inefficiency
motivates VI.

2.6 Generalized policy iteration

Value and policy functions interact until they are optimal and thus consistent with other.

Table of Contents 9

3 MONTE CARLO METHODS

3 Monte Carlo Methods

Applies to unknown transition models, but complete episodic experience.

3.1 Policy evaluation using Monte Carlo Rollouts

Monte Carlo plays out the whole episode until the end to calculate the total rewards. Each state may be
visited many times either in the same episode, or over multiple episodes. Due to the Markov property, every
visit provides an estimate of the return. So MC policy evaluation uses the average return over rollouts to
update the value of each state.
Suppose you want to find V π(s) for some fixed state s
Start at state s and execute the policy for a long trajectory and compute the empirical discounted return
Do this several times and average the returns across trajectories
How many trajectories?
Unbiased estimate whose variance improves with n
Use generative model to generate depth ‘n’ tree with ‘m’ samples for each action in each state generated
[Kearns, Mansour & Ng]
Near-optimal action at root state in time independent of the size of state space (but, exponential in horizon!)

3.2 REINFORCE

The REINFORCE algorithm uses Monte Carlo simulation to evaluate returns, and policy gradient to improve
the policy.

∇θJ(θ) =
1

N

N∑
i

(
T∑
t=1

∇θ log πθ(ait|sit)

)
(G) , where (27)

G =

T∑
t=1

r(sit, ait) (28)

The usual way some depict this update is

θt+1 ← θt + αG∇θ log πθ(at|st) (29)

One issue with REINFORCE is that it is non-causal, because the policy at later states seem to influence the
rewards at earlier states. We introduce causality by redefining the sum of rewards. In effect, we get

∇θJ(θ) =
1

N

N∑
i

T∑
t=1

∇θ log πθ(ait|sit)

 T∑
j=t

r(sij , aij)

 (30)

=
1

N

N∑
i

T∑
t=1

∇θ log πθ(ait|sit) (Git) , where (31)

Git =

T∑
j=t

r(sij , aij) (32)

or

θt+1 ← θt + αGt∇θ log πθ(at|st) (33)

Gaussian policy. For example, if πθ(at|st) = N (f(st),Σ), we get

(34)log πθ(at|st) = −1

2
‖f(st)− at‖2Σ + const

(35)∇θ log πθ(at|st) = −Σ−1 (f(st)− at)
∂f

∂θ

Table of Contents 10

3.3 Off-Policy Gradients With Importance Sampling 3 MONTE CARLO METHODS

3.2.1 REINFORCE With Baselines

A good baseline is essentially a value function: a prediction of expected rewards in a state s. We use
this baseline to reduce the variance of REINFORCE, but we introduce bias. Note that despite learning a
value function, the REINFORCE remains a Monte Carlo method. Essentially, there is no bootstrapping or
critic-like behavior for this estimate. See: Medium article, Daniel Takeshi blog, David Silver Video, John
Schulman Video.
The update is now

θt+1 ← θt + α(Gt − bt(st))∇θ log πθ(at|st) (36)

Possible baselines:

1. Whitened returns: use the average returns over the time steps, and then normalize the difference by
the deviation of these returns. Note that this normalization breaks everything about how baselines
were derived, but it seems to be widely used.

2. Self-critic with Sampled baselines: at each state in the trajectory, sample rollouts from there to get a
baseline. This process is expensive since we increase the simulated experience by some factor.

3.3 Off-Policy Gradients With Importance Sampling

We can estimate the gradient update with respect to a different set of parameters θ compared to the
parameters θold that generated the info. The trick is to use importance sampling.

Ex∼p(x)[f(x)] =

∫
p(x)f(x)dx

=

∫
q(x)

q(x)
p(x)f(x)dx

=

∫
q(x)

p(x)

q(x)
f(x)dx

Ex∼p(x)[f(x)] = Ex∼q(x)

[
p(x)

q(x)
f(x)

]
So, even if x is drawn from q(x), we can estimate what would happen had samples been drawn from p(x). If
we have data generated from πθold , and we want to know the advantage relative to V πθold of using another
policy πθ that we haven’t tried implemented yet:

Ex∼πθ(x) [Aπθold] = Ex∼πθold (x)

[
πθ(x)

πθold(x)
Aπθold

]
(37)

Note that we actually need to calculate expectations with respect to state distributions, but it turns out that
the ratio of state distributions under different policies can be replaced by a product of the ratios of policy
distributions. See this webpage for details.

3.3.1 Optimal Importance Sampling

(From Jonathan Hui’s blog)
For the estimation to have the minimum variance, the sampling distribution q should be

q(x) ∝ p(x)f(x).

Intuitively, it means if we want to reduce the variance of our estimation, we want to sample data
points with higher rewards.

3.3.2 Normalized Importance Sampling

Using an empirical normalization factor trades of more bias for less variance.

Table of Contents 11

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://www.youtube.com/watch?v=KHZVXao4qXs&feature=youtu.be&t=1h6m33s
https://www.youtube.com/watch?v=oPGVsoBonLM
https://www.youtube.com/watch?v=oPGVsoBonLM
http://incompleteideas.net/book/first/ebook/node55.html
https://medium.com/@jonathan_hui/rl-importance-sampling-ebfb28b4a8c6

4 TEMPORAL DIFFERENCE LEARNING

4 Temporal Difference Learning

To improve the policy π, we need to evaluate it, by either computing Qπ, or it’s policy-averaged value V π.
Monte Carlo methods wait until the end of an episode to then assign values to V π or Qπ using returns.
Temporal Difference methods try to learn from incomplete episodes, down to one-step bootstrap.

4.1 Bootstrapping

Suppose we’re estimating P (s) which is the expected sum of discounted rewards. We maintain estimates as
Pt(s) at time t for each state s. A simple one-step look-ahead update rule is to say Pt+1 ← Pt+α(yt+1−Pt)
which pulls the current estimate towards the rewards yt+1 it is seeing, and horizon is one step. We can
implement the one-step look-ahead immediately.
Instead of a one-step return yt+1, we might update it with some quantity Yt that is an expected sum or
whatever over a longer period? We would have to wait for that time period to conclude before we could do
anything.
The TD trick essentially says we can expand terms to see that Yt(st) = γYt+1(st+1) + yt+1(st), and then we
replace Yt+1(st+1) by Pt(st+1).

(38)Pt+1(st)← Pt(st) + α (yt+1 + γYt − Pt(st))
= Pt(st) + α (yt+1 + γPt(st+1)− Pt(st))

In effect, the target for the Monte Carlo update is Pt(s), whereas the target for the TD update is a Bellman-
inspired update like yt+1 + γP (st+1).

4.2 Bootstrapping The Value Function: TD(0)

For each state, we update it as

V (s)← V (s) + α [rt + γV (s′)− V (s)] (39)

From Sutton’s page:

Under batch updating, TD(0) converges deterministically to a single answer independent
of the step-size parameter, α, as long as α is chosen to be sufficiently small. The constant-
α MC method also converges deterministically under the same conditions, but to a different
answer. Understanding these two answers will help us understand the difference between the two
methods. Under normal updating the methods do not move all the way to their respective batch
answers, but in some sense they take steps in these directions. Before trying to understand the
two answers in general, for all possible tasks, we first look at a few examples.

Batch Monte Carlo methods always find the estimates that minimize mean-squared error
on the training set, whereas batch TD(0) always finds the estimates that would be exactly
correct for the maximum-likelihood model of the Markov process. In general, the maximum-
likelihood estimate of a parameter is the parameter value whose probability of generating the
data is greatest. In this case, the maximum-likelihood estimate is the model of the Markov process
formed in the obvious way from the observed episodes: the estimated transition probability from
i to j is the fraction of observed transitions from i that went to j, and the associated expected
reward is the average of the rewards observed on those transitions. Given this model, we can
compute the estimate of the value function that would be exactly correct if the model were exactly
correct. This is called the certainty-equivalence estimate because it is equivalent to assuming that
the estimate of the underlying process was known with certainty rather than being approximated.
In general, batch TD(0) converges to the certainty-equivalence estimate.

4.2.1 Fitted Value Iteration

1. Set yi ← maxai (r(si, ai) + γE[Vφ(s′i)])

2. Set φ← arg minφ
∑
i‖Vφ(si)− yi‖2

Table of Contents 12

4.3 Boot-Strapping the Q Function: SARSA and Q-Learning4 TEMPORAL DIFFERENCE LEARNING

4.3 Boot-Strapping the Q Function: SARSA and Q-Learning

The idea here is to pull the Q-value to something that would satisfy the Bellman equation. We do this by
considering a unit of (possibly predicted) experience s, a, r, s′, and considering an additional action a′. The
predicted case involves predicting what r and s′ would be, instead of experiencing what they would be after
taking a in s.
Using this information, we would like to update our Q function:

Qnew(s, a)← r(s, a)︸ ︷︷ ︸
observed

or from a

model

+γ

modeled︷︸︸︷
Q (s′, a′)︸ ︷︷ ︸

What values

for s′ , a′ ?

s will always be the result of taking a in s (experienced or predicted). To choose a′, we may either do:

1. SARSA: a′ = π(s′), which is on-policy evaluation.

2. Q-Learning: a′ = arg maxaQ(s′, a), which is off-policy evaluation.

4.3.1 Q-Learning

Q-learning is stochastic approximation of (finite state and action space) Q-value iteration. Some also refer
to the online-version of FQI as QL, however there are some implementation differences.
If Q-value iteration is Qk+1 = T (Qk), then stochastic approximation version (online) is Qk+1 = (1−α)Qk +
α[T (Qk) + ηk] were η)k is zero-mean noise.
Q-Learning is the first provably convergent direct adaptive optimal control algorithm.

• Great impact on the field of modern Reinforcement Learning

• smaller representation than models

• automatically focuses attention to where it is needed, i.e., no sweeps through state space

• though does not solve the exploration versus exploitation dilemma

• epsilon-greedy, optimistic initialization, etc . . .

However, Q-Learning requires visiting all state-action pairs, which makes the guaranteed properties applica-
ble to finite state-action systems. Q-Learning is unstable and diverges in the continuous state/action case.
With additional tricks, it sometimes works (DQN, RAINBOW, Double DQN).

4.3.2 Fitted Q-Iteration

If we don’t have a model of the MDP transitions, can’t get E[V (s′)] in any of the value-function-iteration steps
above. By contrast, we can estimate the Q-function from samples,/ Moreover, E[V (s′i)] ≈ maxa′i Q(s′i, a

′
i).

So, collect data, then iterate:

1. Set yi ← maxai
(
r(si, ai) + γmaxa′i Qφ(s′i, a

′
i)
)

2. Set φ← arg minφ
∑
i‖Qφ(si, ai)− yi‖2

Pros and Cons:

+ works even for off-policy samples (unlike actor-critic)

+ only one network, no high-variance policy gradient

- no convergence guarantees for non-linear function approximation (more on this later)

Since the Q function defines a canonical policy, we essentially have a policy evaluation, policy improvement
loop that forms the Fitted Q-Iteration.

Table of Contents 13

4.4 Actor-Critic 4 TEMPORAL DIFFERENCE LEARNING

Online Fitted Q-Iteration: FQI has an obvious online version, which avoids keeping a history of transi-
tions. Note that the literature seems to not favor on-line Q-Learning. Even the discrete case is not guaranteed
to work.

1. take some action ai, observe (si, ai, s
′
i, ri)

2. Set yi ← maxai (r(si, ai) + γmaxaQφ(s′i, a))

3. φ← φ− α∂Qφ∂φ (si, ai)(Qφ(si, ai)− yi)

Another way to describe Fitted Q-Iteration:

1. Sample M Transitions, add to buffer B
2. Save Target Network Parameters φ′ ← φ

3. Sample mini-batch (si, ai, ri, s
′
i) from B

4. Not-quite-gradient φ← φ+ α
∑
i
∂Qφ
∂φ (si, ai) (Qφ(si, ai)− [r(si, ai) + γmaxa′ Qφ′(s

′
i, a
′)])

The idea is that we fit to convergence of φ before resampling.

4.3.3 Deep Q-Learning

DQN says: replay buffer, use a fixed Qφ′ over multiple updates to φ.

1. Save Target Network Parameters φ′ ← φ

2. Sample M Transitions, add to buffer B
3. Sample mini-batch (si, ai, ri, s

′
i) from B

4. Not-quite-gradient φ← φ+ α
∑
i
∂Qφ
∂φ (si, ai) (Qφ(si, ai)− [r(si, ai) + γmaxa′ Qφ′(s

′
i, a
′)])

Unlike FQI, here we update φ′ slowly, with new experience gained before convergence of the Q function
regression.

4.4 Actor-Critic

Actor-critic: Generalized policy iteration where the evaluation uses a TD value iteration step (not MC)
and the improvement uses policy gradients.
Instead of Monte Carlo returns, one can use some other estimate of return r(τ) starting from sit at time t of
trajectory i. One candidate is to use r(τ) ≈ Qπ(sit, ait), the action-value estimate to predict future returns
when computing the gradient. This action-value function is the critic, and it is updated using bootstrapping
(Target for x in state is reward in state plus x in successor state).

(40)∇θJ(θ) =
1

N

N∑
i

T∑
t=1

∇θ log πθ(ait|sit)Q̂π(sit, ait)

Consider a baseline, the average of total rewards

(41)b =
1

N

N∑
r(τ)

It turns out that
(42)E [∇θ log πθ(τ)b] = 0

Therefore,

(43)∇θJ(θ) =
1

N

N∑
i

T∑
t=1

∇θ log πθ(ait|sit)Aπ(sit, ait)

Table of Contents 14

4.4 Actor-Critic 4 TEMPORAL DIFFERENCE LEARNING

Qπ(st, at) =

T∑
t′=t

Eπθ [r(st′ , at′)|st, at] (44)

V π(st) = Eat∼πθ(at|st) [Qπ(st, at)] (45)

Aπ(st, at) = Qπ(st, at)− V π(st) (46)

(47)Qπ(st, at) = r(st, at) + Est+1∼p(st+1|st,at) [V π(st+1)]

where the last term is approximately V π(st+1), so that

(48)Aπ(st, at) ≈ r(st, at) + V π(st+1)− V π(st)

So, baselines lead us to use advantage as an estimate of reward-to-go in policy gradient. Then, advantage
can be expressed using reward and value functions. Therefore, let’s just learn V π.
One way to estimate V π is through policy evaluation, using Monte Carlo methods, which is what policy
gradients does. Alternatively,

(49)V π(st) =
1

N

N∑
i=1

T∑
t′=t

r(st′ , at′)

which requires state resetting.
V̂ πφ is the critic of actor πθ.
Batch actor-critic:

1. sample {si, ai} from πθ(a|s) (run robot)

2. fit V̂ πφ (st) to sampled reward sums
(
yi,t ≈ r(si,t, ai,t) + V̂ πφ (si,t+1)

)
3. evaluate Âπ(si, ai) = r(si, ai) + γV̂ πφ (s′i)− V̂ πφ (si)

4. ∇θJ(θ) =
∑
i∇θ log πθ(ai|si)Âπ(si, ai)

5. θ ← θ + α∇θJ(θ)

Online:

1. take action a ∼ πθ(a|s), get (s, a, s′, r)

2. update V̂ πφ (s) using target r + γV̂ πφ (s′)

3. evaluate Âπ(s, a) = r(s, a) + γV̂ πφ (s′)− V̂ πφ (s)

4. ∇θJ(θ) = ∇θ log πθ(a|s)Âπ(s, a)

5. θ ← θ + α∇θJ(θ)

Online in practice uses some batch data, leading to asynchronous parallel actor-critic.

Better Advantages

• To reduce variance, use an MC version Âπ(si,t, ai,t) =
∑T
t′=t γ

t′−tr(si,t′ , ai,t′)− V̂ πφ (si,t)

• Or n-step returns: Âπn(st, at) =
∑t+n
t′=t γ

t′−tr(st′ , at′)− V̂ πφ (st) + γnV πφ (st+n)

• Or Generalized Advantage Estimates (similar to eligibility traces):
ÂπGAE(st, at) =

∑∞
n=1 wnA

π
n(st, at). Choose wn ∝ λn−1, and get

ÂπGAE(st, at) =
∑∞
t′=t(γλ)t

′−tδt′ , where δt′ = r(st′ , at′) + γV̂ πφ (st′+1)− V̂ πφ (st′).

Table of Contents 15

5 ELIGIBILITY TRACES

5 Eligibility Traces

TD learning can often be accelerated by the addition of eligibility traces. When the lookup-table TD
algorithm described above receives input (rt, st+1) , it updates the table entry only for the immediately
preceding signal st. That is, it modifies only the immediately preceding prediction. But since rt+1 provides
useful information for learning earlier predictions as well, one can extend TD learning so it updates a
collection of many earlier predictions at each step.
There are two interpretations that lead to different algorithms that are equivalent. These are the forward
and backward views.

5.1 Forward View

The returns starting in state st till time T is given by

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT (50)

We may define n-step returns as

G
(1)
t = rt+1 + γV (st+1) (51)

G
(2)
t = rt+1 + γrt+2 + γ2V (st+1) (52)

G
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnV (st+n) (53)

We can weight n-step returns (total weightb= 1) to define TD target:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t (54)

Algorithm. Collect episode, for current state st, calculate Gλt , and then increment Vt(st) by ∆Vt(st) =
α
[
Gλt − Vt(st)

]
.

Vnew(s0) = Vold(s0) + α [r0 + γVold(s1)− Vold(s0)] (one-step) (55)

Vnew(s0) = Vold(s0) + α

[
(1− λ)

∞∑
n=1

λn−1G
(n)
0 − Vold(s0)

]
(forward eligibility trace) (56)

This implementation enables an offline version of TD(λ), which doesn’t really alleviate the waiting-for-n-
steps issue of MC methods.

5.2 Backward View

Eligibility traces may also be implemented as a short-term memory of many previous input signals so that
each new observation can update the parameters related to these signals. Eligibility traces are usually
implemented by an exponentially-decaying memory trace, with decay parameter λ.

Algorithm.

1. During episode, at each time, update for all states:

et(s) =

{
γλet−1(s), ifs 6= st

γλet−1(s) + 1, ifs = st
(57)

2. In st, calculate δt = rt + γV (st+1)−
3. Update for all states Vt+1(s)← Vt(s) + αδtet(s)

This implementation enables an online version of TD(λ). It may be shown to be equivalent to the updates
using the forward view.

Table of Contents 16

5.3 Parameter λ 5 ELIGIBILITY TRACES

5.3 Parameter λ

One interpretation of an eligibility trace is that it is a continuous parametrization, through λ ∈ [0, 1], from
Temporal Differences (λ = 0) at one end to Monte Carlo Methods at the other (λ = 1). This generates a
family of TD algorithms TD(λ), 0 ≤ λ ≤ 1. For some situations, an intermediate value of λ is better than
the extremes. This also applies to non lookup-table versions of TD learning, where traces of the components
of the input vectors are maintained. Eligibility traces do not have to be exponentially-decaying traces, but
these are usually used since they are relatively easy to implement and to understand theoretically.

Table of Contents 17

6 OPTIONS

6 Options

MDP+Options = SMDP
Theorem: For any MDP, and any set of options, the decision process that chooses among the options,
executing each to termination, is an SMDP.

Table of Contents 18

7 CONTINUOUS STATES AND ACTIONS

7 Continuous States And Actions

Continuous control in robotics is currently dominated by policy gradient methods, or their actor-critic
counterparts. Policy gradient = policy iteration. Evaluate advantage under old policy. New policy maximizes
old advantage. Want new policy to factor in new advantage.
So, if we bound KL divergence of the new and old policy, we definitely increase the objective function, that
is, distribtion mismatch under changing policies does not kill us.
Implementations:

• TRPO
Needs a simulator to work, due to the VINE or single-path method

• PPO (optimizes IS objective directly)

7.1 TRPO

Off-policy Importance Sampling that weights the advantage function (or Generalized Advantage Estimate).
However, the update step size is limited by a KL-divergence constraint.
The work starts off from [Kakade and Langford, 2002], which analyzes the improvement of a policy π̃θ̃ relative
to a policy πθ.
Consider a stochastic policy π, and let η(π) denote its expected discounted reward.

η(π) = Es0,a0,...

[∞∑
t=0

γtr(st)

]
, where (58)

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at) (59)

The standard definitions are then

Qπ(st, at) = Est+1,at+1,...

[∞∑
l=0

γlr(st+l)

]
, (60)

V π(st) = Eat,st+1,...

[∞∑
l=0

γlr(st+l)

]
, (61)

Aπ(s, a) = Qπ(s, a)− V π(s), where (62)

at ∼ π(at|st), st+1 ∼ P (st+1|st, at) for t ≥ 0 (63)

They provide a lower bound on the value of the new policy, that depends on a bunch of terms. This bound
starts with

η(π̃) = η(π) + Es0,a0,... ∼π̃

[∞∑
t=0

γtAπ(st, at)

]
, where (64)

at ∼ π̃(·|st) (65)

Let ρπ be the unnormalized discounted visitation frequencies where

ρπ(s) = P (s0 = s) + γP (s1 = s) + γ2 + γP (s2 = s) + · · · , where s0 ∼ ρ0. (66)

η(π̃) = η(π) +

∞∑
t=0

∑
s

P (st = s|π̃)
∑
a

π̃(a|s)γtAπ(s, a) (67)

= η(π) +
∑
s

∞∑
t=0

γtP (st = s|π̃)
∑
a

π̃(a|s)Aπ(s, a) (68)

= η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a) (69)

Table of Contents 19

7.1 TRPO 7 CONTINUOUS STATES AND ACTIONS

This equation imples that any policy update π → π̃ that has a nonnegative expected advantage at every
state s, i. e.

∑
a π̃(a|s)Aπ(s, a) ≥ 0, is guaranteed to non-decrease the expected returns. This implies the

well known result that π̃ = arg maxaA
π(s, a), improves the policy if there is even one state with a positive

advantage value and nonzero state visitation probability.
Equation (69) is difficult to optimize because of ρπ̃(s). Instead, we introduce the following local approxima-
tion to η:

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a) (70)

This approximation uses ρπ(s), not ρπ̃(s). Implicitly, the approximation ignores changes in state visitation
frequency. For differentiable policies, Lπ matches η to first order.

7.1.1 Results from [Kakade and Langford, 2002]

To address this issue [Kakade and Langford, 2002] proposed a policy updating scheme called conservative
policy iteration, for which they could provide explicit lower bounds on the improvement of η. Define π′ =
arg maxπ′ Lπold

(π′). The new policy πnew was defined to be the following mixture:

πnew(a|s) = (1− α)πold(a|s) + απ′(a|s) (71)

The term α controls the distance between πnew and πold. With the new policy so defined, we get the lower
bound

η (πnew) ≥ Lπold
(πnew)− 2εγ

(1− γ)2
α2, where (72)

ε = max
s

∣∣Ea∼π′(a|s) [Aπ(s, a)]
∣∣ (73)

It is likely that this lower bound doesn’t depend on π′ being defined as it was, but the proof technique might.
The validity of this premise is important for clarifying the seeming ambiguity in the use of KL divergence
for α in the next section.

7.1.2 Monotonic Improvement Guarantee for General Stochastic Policies

The lower bound on η (πnew) contains a term α that controls the distance between πnew and πold. It does so
by defining a mixture policy involving πold and π′, the latter maximizing approximation to η (πold).
Instead of defining direction by π′ and euclidean distance by α, TRPO proposes to use a total variation
metric for α whose square is bounded by a KL divergence between policies.

η (πnew) ≥ Lπold
(πnew)− 4εγ

(1− γ)2
α2, where (74)

ε = max
s,a
|Aπ(s, a)| (75)

The authors use two different approaches to prove this result.
Now,

α = Dmax
TV (πnew, πold) (76)

Dmax
TV (π, π̃) = max

s
DTV (π(·|s)‖π̃(·|s)) (77)

DTV (p‖q) =
1

2

∑
i

|pi − qi| (for discrete distributions) (78)

Since (DTV (p‖q))2 ≤ DKL (p‖q), we can rewrite the bound

η (π̃) ≥ Lπ (π̃)− CDmax
KL (π, π̃) , where (79)

C =
4εγ

(1− γ)2
, and (80)

Dmax
KL (π, π̃) = max

s
DKL (π(·|s)‖π̃(·|s)) (81)

Table of Contents 20

7.2 PPO 7 CONTINUOUS STATES AND ACTIONS

7.1.3 Algorithm 1

This lower bound can be turned into an algorithm for finding a sequence of policies with increasing expected
returns η. In short, for each policy πi we must calculate the advantage at all state-action pairs, which then
defines Lπi(π). Then, maximize Mi(π) = Lπi (π)−CDmax

KL (πi, π), for C calculated appropriately. The idea is
that we are maximizing the lower bound for η (πi+1), which is known as minorization-maximization. That is,
η (πi+1) ≥Mi(πi+1). By definition, η (πi) = Lπi(πi) = Mi(πi), so that η (πi+1)−η (πi) ≥Mi(πi+1)−Mi(πi).

7.1.4 TRPO Algorithm

Trust region policy optimization, which we propose in the following section, is an approximation to Algorithm
1, which uses a constraint on the KL divergence rather than a penalty to robustly allow large updates.
Instead of penalizing KL divergence in the objective, they use a constraint on KL divergence.

max
θ

Lθold(θ) (82)

s.t. Dmax
KL (θold‖θ) ≤ δ (83)

Let q denote an action sampling distribution. These expressions are approximated using

max
θ

Es∼ρθold ,a∼q
[
πθold(s, a)

q(s, a)
Qθold(s, a)

]
(84)

s.t. Es∼ρθold [DKL (πθold(·|s)‖πθ(·|s))] ≤ δ (85)

The rest of the description discusses how to sample and estimate these objective functions in what is mostly
a neighborhood of θold.
NOTE! This is not a policy gradient step, but a bona-fide optimization using sampling-based local estimates
of the objective and KL-divergence constraint.

7.2 PPO

Old summary. Like TRPO, Off-policy Importance Sampling that weights the advantage function (or
Generalized Advantage Estimate).
Unlike TRPO, uses a clipping of the importance-weighted advantage estimate.
Achieves a bound on update without needing hard constraint on KL-divergence.
When actor and critic share parameters, need a constraint to keep new critic after actor-driven update to
be close to old.
Also need a term to increase exploration, using entropy.

From paper. In the introduction of the PPO paper, the authors write

Q-learning with function approximation fails on many simple problems and is poorly under-
stood, vanilla policy gradient methods have poor data efficiency and robustness and trust region
policy optimization (TRPO) is relatively complicated, and is not compatible with architectures
that include noise such as dropout or parameter sharing between the policy and value function,
or with auxiliary tasks.

They start of with the most basic gradient estimator for policy gradients (PG):

ĝ = Êt
[
∇θ log πθ(at|st)Âπ(st, at)

]
(86)

Here, the expectation Êt indicates the empirical average over a nite batch of samples, in an algorithm that
alternates between sampling and optimization.

Table of Contents 21

7.2 PPO 7 CONTINUOUS STATES AND ACTIONS

They mention that this gradient is coming from

LPGθ = Êt
[
log πθ(at|st)Âπ(st, at)

]
(87)

Then they say

While it is appealing to perform multiple steps of optimization on this loss LPG using the
same trajectory, doing so is not well-justified, and empirically it often leads to destructively large
policy updates see Section 6 results are not shown but were similar or worse than the “no clipping
or penalty” setting.

When recounting TRPO, they state the equations as

max
θ

Êt
[
πθ(st, at)

πθold(st, at)
Aθold(st, at)

]
(88)

s.t. Êt [DKL (πθold(·|st)‖πθ(·|st))] ≤ δ (89)

They then state that

This problem can efficiently be approximately solved using the conjugate gradient algorithm,
after making a linear approximation to the objective and a quadratic approximation to the
constraint.

Note that the optimality conditions for the quadratically constrained linear objective lead to a system of
linear equations, which is where the CGM comes into the picture.
They remind us that the TRPO turned the KL-divergence penalty into a hard constraint because of the
difficulty in choosing a penalty coefficient (C in TRPO paper, β here).

Clipping. They propose to return to the penalty by using clipping.
Define

rt(θ) =
πθ(st, at)

πθold(st, at)
(90)

While TRPO is maximizing

LCPIθ = Êt
[
rt(θ)A

θold(st, at)
]

(91)

subject to constraints, where CPI comes from conservative policy iteration, we now maximize

LCLIPθ = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(92)

where ε is a hyperparameter, they say ≈ 0.2.

Adaptive KL Penalty. An alternate approach is to keep doing the unconstrained penalized version of
TRPO, for different values of β until the effect is to achieve a target KL-divergence.

Implementation. For implementations that use automatic differentation, one simply constructs the loss
LCLIP or LKLPEN instead of LPG, and one performs multiple steps of stochastic gradient ascent on this
objective.

Additional Losses. When the actor and critic share network parameters, a penalty LV Ft (θ) for fitting the
value function is used. Additionally, an incentive for higher entropy S[πθ](st) policies is added, to promote
exploration. These two loss terms have coefficients c1 and c2 respectively.

Table of Contents 22

7.3 ACKTR 7 CONTINUOUS STATES AND ACTIONS

7.3 ACKTR

Like TRPO, Off-policy Importance Sampling that weights the advantage function (or Generalized Advantage
Estimate).

Also uses PPO’s clipping.

From Jonathan’s description, uses a natural gradient, unlike PPO.

7.4 DDPG [Lillicrap et al., 2015]

While DQN solves problems with high-dimensional observation spaces, it can only handle discrete and low-
dimensional action spaces.
An obvious approach to adapting deep reinforcement learning methods such as DQN to continuous domains
is to to simply discretize the action space. However, this has many limitations, most no- tably the curse of
dimensionality
DQN is able to learn value functions using such function approximators in a stable and robust way due to
two innovations:

1. the network is trained off-policy with samples from a replay buffer to minimize correlations between
samples;

2. the network is trained with a target Q network to give consistent targets during temporal difference
backups.

In this work we make use of the same ideas, along with batch normalization [Ioffe and Szegedy, 2015], a
recent advance in deep learning.
The replay buffer is a finite history of experience units (st, at, rt, st+1), where newer experiences replace older
ones, and actor-critic updates happen by uniformly sampling this buffer to create a minibatch of experience.
Because DDPG is an off-policy algorithm, the replay buffer can be large, allowing the algorithm to benefit
from learning across a set of uncorrelated transitions.
So, we have the state st at time t. We take an action at coming from the distribution π(st), and collect

rewards r(st, at). The discounted reward in any run is Rt =
∑T
i=t γ

(i−t)r(si, ai). The goal is to find the
policy π∗ that maximizes the expected value of R1.

J = Eri,si∼E,ai∼π[R1]

where the ∼ operator shows the distributions of the random variables over which the expectation is taken.
We denote the discounted state visitation distribution for a policy π as ρπ .
We can also define

Qπ(st, at) = Eri≥t,si>t∼E,ai>t∼π [Rt|st, at]

The Bellman equations is

Qπ(st, at) = Ert,st+1∼E
[
r(st, at) + γEat+1∼π[Qπ(st+1, at+1)]

]
If the target policy is deterministic we can describe it as a function µ:S ← A and avoid the inner expectation
in the Bellman equation for Qπ:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γQπ(st+1, at+1)]

The expectations depend on the environment here, so that we can learn off-policy. Q-learning is an off-policy
algorithm that picks µ = arg maxaQ

π(s, a).
We can approximate Qπ and µ using functions parametrized by θQ and θµ respectively when doing the
learning.
With these parametrizations, we can learn by minimizing

L(θQ) = Est∼ρβ ,at∼β,rt∼E
[
‖Q(s, a|θQ)− yt‖2

]
Table of Contents 23

7.5 Guided Policy Search 7 CONTINUOUS STATES AND ACTIONS

where

yt = r(st, at) + γQ(st+1, µ(st+1)|θQ)

Let’s unpack this:

1. Perhaps we use β as a placeholder for the (unknown) policy inducing the distribution in the buffer?

2. The targets yt make sense of the observed rewards in light of the current policy

3. yt actually depends on θQ but this dependencex is ignored

4. We didn’t actually use θµ so far. It get used in Deterministic Policy Gradient, as µ(s|θµ)

So, in DPG the actor µ is updated by computing the gradient of J .

∇θµJ ≈ Est∼ρβ
[
∇θµQ(s, a|θQ)|s=st,a=µ(st|θµ)

]
= Est∼ρβ

[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµµ(s|θµ)|s=st

]
Notice the use of the chain rule.
Directly implementing Q-learning with neural networks proved to be unstable in many environments. Since
the network Q(s, a|θQ) being updated is also used in calculating the target value (equation 5), the Q update
is prone to divergence. Our solution is similar to the target network used in (Mnih et al., 2013) but modified
for actor-critic and using “soft” target updates, rather than directly copying the weights.
We create a copy of the actor and critic networks, Q′(s, a|θQ′)and µ′(s|θµ′) respectively, that are used for
calculating the target values. The weights of these target networks are then updated by having them slowly
track the learned networks: θ′ ← τθ+(1−τ)θ′ with τ � 1. This means that the target values are constrained
to change slowly, greatly improving the stability of learning. This simple change moves the relatively unstable
problem of learning the action-value function closer to the case of supervised learning, a problem for which
robust solutions exist. We found that having both a target µ′ and Q′ was required to have stable targets yi
in order to consistently train the critic without divergence. This may slow learning, since the target network
delays the propagation of value estimations. However, in practice we found this was greatly outweighed by
the stability of learning.
Batch normalization is the approach to take care of difference in scale among the components of the input.
A major challenge of learning in continuous action spaces is exploration. An advantage of off- policies
algorithms such as DDPG is that we can treat the problem of exploration independently from the learning
algorithm. We constructed an exploration policy µ′ by adding noise sampled from a noise process N to our
actor policy

(93)µ′(st) = µ(st|θµ) +N

7.5 Guided Policy Search

Build local linear dynamics models and quadratic cost models, find a new linear policy using iLQR. Then,
train a neural network to produce the same outputs. By corrupting linear policy with noise, we get a
stochastic policy, and then use KL-divergence as a way to guide. [Might not be right]

Table of Contents 24

7.5 Guided Policy Search 7 CONTINUOUS STATES AND ACTIONS

Figure 1: Image credit: Sergey Levine’s Lecture Slides

Table of Contents 25

8 FUNDAMENTAL PERFORMANCE LIMITS

8 Fundamental performance limits

There are two metrics for on-line algorithms: sample complexity and regret.

Sample complexity. Defined as the time required to find an approximately optimal policy. Well defined
for any kind of RL problems. A Probably Approximately Correct (PAC) framework.

Regret of an algorithm π . Defined as the difference between the cumulative reward of the optimal
policy and that gathered by π. Or, integral off difference between optimal reward and reward gathered by
π.
Can have problem-specific lower bounds (given MDP M) or minimax lower-bounds that depend on sizes of
S and A.

8.1 Episodic RL State-of-the-Art

Regret minimisation

• Minimax lower bound Ω(
√
HSAT) No problem-dependent lower bound is derived so far

• Algorithms: PSRL (Osband et al., 2013), UCBVI (Gheshlaghi Azar et al., 2017), UBEV (Dann et al.,
2017)

Sample complexity

• Minimax lower bound Ω(H
2SA
ε2 log 1

δ) No problem-dependent lower bound is derived so far

• Algorithms: UCFH (Dann & Brunskill, 2015), UBEV (Dann et al., 2017)

Upper Confidence Bound Value Iteration for episodic RL

8.2 Discounted RL

No regret analysis for this class.
Two definitions of sample complexity.
Minimimax bounds exist for these, no problem specific bounds.
Two classes of algorithms: Model-based algorithms

• Maintain an approximate MDP model by estimating transition probabilities and reward function, and
derive a value function from the approximate MDP. The policy is then derived from the value function.

• E3 (Kearns & Singh, 2002), R-max (Brafman & Tennenholtz, 2002), MoRmax (Szita & Szepesv Iari,
2010), UCRL (Lattimore & Hutter, 2012)

Model-free algorithms

• Directly learn a value (or state-value) function, which results in a policy.

• Delayed Q-Learning (Strehl et al. 2006), Median-PAC (Pazis et al., 2016)

8.3 Ergodic RL

There are four MDP classes

• Ergodic: strongly connected graph under any policy

• Unichain: common strongly connected SUBgraph under any policy

• Communicating: there exists a policy that creates a SCG

• Weakly communicating: There exists a policy with a recurrent class.

Important parameters characterizing MDPs: Diameter, gap1 ,gap2

Table of Contents 26

REFERENCES

9 Observations on RL

Summary. Policy gradients are essentially versions of policy improvement approaches. These ap-
proaches use the advantage of an action at a state to change the policy. Therefore, policy gradients change
the policy parameters based on advantages at states.
There are different ways to calculate this advantage, and they are essentially methods of policy evaluation.

Opinion. There’s a chicken-and-egg problem here the policy determines the connectivity of the MDP, and
the connectivity determines the value of that policy in this MDP.

Issue. If your initial policy is bad, your valuation of state is rubbish. The fundamental problem seems to
be that we will waste time changing bad policies based on bad estimates.

Q-Learning. Q-learning appears to break the chicken-and-egg problem by specifying the right policy to
learn from. The catch is that you need your policy to visit all state-action pairs infinitely often. This need
makes it inapplicable to continuous state and/or action spaces, which is what Schulman also observes in the
PPO paper.

Implication. TRPO and PPO seem to refuse to update policy parameters unless the returns improve.
This approach likely costs more in experience but allows progress, compared to regular policy gradients that
might use bad advantage estimates. If you cannot simulate at that level, you’re currently SOL in DRL.

Topology and RL. An MDP has no underlying topology of states, until you specify transition probabilities
(dynamics, action-dependent), and narrow it down with a policy (closed-loop dynamics). In continuous state
and action spaces, these spaces have a topology even before you specify the dynamics or a control that defines
the closed-loop. Is this distinction exploitable, and is anyone doing that already? It’s possible that
the value function and policy functions being parametrized as continuous functions via standard neural
networks is how this difference is accounted for. However, the learning doesn’t seem to care, it’s all based
on local advantage estimates.

References

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 23

[Kakade and Langford, 2002] Kakade, S. and Langford, J. (2002). Approximately optimal approximate re-
inforcement learning. In ICML, volume 2, pages 267–274. 2, 19, 20

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971. 2, 23

Table of Contents 27

	Introduction
	MDP Trajectories
	Valuation Functions
	Solving MDPs
	The Reinforcement Learning Problem
	Classification of RL Algorithms

	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Policy Gradients

	Policy Iteration
	Value Iteration
	PI vs VI
	Generalized policy iteration

	Monte Carlo Methods
	Policy evaluation using Monte Carlo Rollouts
	REINFORCE
	REINFORCE With Baselines

	Off-Policy Gradients With Importance Sampling
	Optimal Importance Sampling
	Normalized Importance Sampling

	Temporal Difference Learning
	Bootstrapping
	Bootstrapping The Value Function: TD(0)
	Fitted Value Iteration

	Boot-Strapping the Q Function: SARSA and Q-Learning
	Q-Learning
	Fitted Q-Iteration
	Deep Q-Learning

	Actor-Critic

	Eligibility Traces
	Forward View
	Backward View
	Parameter

	Options
	Continuous States And Actions
	TRPO
	Results from kakade2002approximately
	Monotonic Improvement Guarantee for General Stochastic Policies
	Algorithm 1
	TRPO Algorithm

	PPO
	ACKTR
	DDPG lillicrap2015continuous
	Guided Policy Search

	Fundamental performance limits
	Episodic RL State-of-the-Art
	Discounted RL
	Ergodic RL

	Observations on RL

