Hasan A. Poonawala

Department of Mechanical Engineering University of Kentucky

Email: hasan.poonawala@uky.edu Web: https://www.engr.uky.edu/~hap

This Slide Deck

Permanent Magnet DC Motors

- Most small / hobby DC motors
- Quadrotors, Mobile Robots, Robot Arms
- Block Diagram
- Servo Motor Control

Permanent Magnet Direct Current Motor

Figure: A PMDC (called a Galvanometer in Text) in Figure 10.8

Permanent Magnet Direct Current Motor

Figure: A lumped eletrical/mechanical model of a PMDC Motor

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + \mathbf{e}_{\mathrm{motor}}(t) = \mathbf{e}_i(t) \tag{1}$$

$$J\dot{\omega} + B\omega = \tau_{\text{electric}} + \tau_L(t)$$
, where (2)

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}, \quad e_{\mathrm{motor}} = \alpha \omega, \quad \tau_{\mathrm{electric}} = \alpha i(t), \text{ and}$$

Also, instead of a spring torque $K\theta$ on the galvanometer, we use a generic load torque $\tau_L(t)$

ME 340 Intro. to Mech. Systems

PMDC Model

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + \alpha\omega = e_i(t) \tag{3}$$
$$J\ddot{\omega} + B\omega = \alpha i + \tau_L(t) \tag{4}$$

PMDC Model

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + \alpha\omega = e_i(t) \tag{3}$$
$$J\ddot{\omega} + B\omega = \alpha i + \tau_L(t) \tag{4}$$

We can obtain the transfer functions $G_1(s)$ and $G_2(s)$ from the inputs applied voltage $e_i(t)$ and load torque $\tau_L(t)$ to the output ω (rotation speed):

$$\hat{\omega}(s) = \frac{G_1(s)\hat{e}_i(s) + G_2(s)\hat{\tau}_L(s)}{JLs^2 + (JR + BL)s + RB + \alpha^2}\hat{e}_i(s)$$

$$-\frac{Ls + R}{JLs^2 + (JR + BL)s + RB + \alpha^2}\hat{\tau}_L(s)$$
(5)

PMDC Model

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + \alpha\omega = e_i(t) \tag{3}$$
$$J\ddot{\omega} + B\omega = \alpha i + \tau_L(t) \tag{4}$$

We can obtain the transfer functions $G_1(s)$ and $G_2(s)$ from the inputs applied voltage $e_i(t)$ and load torque $\tau_L(t)$ to the output ω (rotation speed):

$$\hat{\omega}(s) = \frac{G_1(s)\hat{e}_i(s) + G_2(s)\hat{\tau}_L(s)}{JLs^2 + (JR + BL)s + RB + \alpha^2}\hat{e}_i(s)$$

$$-\frac{Ls + R}{JLs^2 + (JR + BL)s + RB + \alpha^2}\hat{\tau}_L(s)$$
(5)

Note: $2^{\rm nd}$ order model. Asymptotically stable for most physical values.

Analysis

$$\hat{\omega}(s) = G_1(s)\hat{e}_i(s) + G_2(s)\hat{\tau}_L(s)$$
(6)

If we apply a constant load torque T_L and voltage E_i (step inputs), what would happen?

Analysis

$$\hat{\omega}(s) = G_1(s)\hat{e}_i(s) + G_2(s)\hat{\tau}_L(s)$$
(6)

If we apply a constant load torque T_L and voltage E_i (step inputs), what would happen? FVT!

$$\hat{\omega}_{\text{step}}(\infty) = \lim_{s \to 0} \left(s \left(\frac{G_1(s) \frac{E_i}{s} + G_2(s) \frac{T_L}{s}}{s} \right) \right)$$
(7)

$$= G_1(0)E_i + G_2(0)T_L$$
 (8)

$$=\frac{\alpha E_i - RT_L}{RB + \alpha^2} \tag{9}$$

$$= c_1 - c_2 T_L$$
 (when $e_i(t)$, $au_L(t)$ are constant) (10)

Steady-State Torque-Speed Curve

Recap

- Derived transfer functions (TF) from inputs τ_L and e_i to output $\omega = \dot{\theta}$
- Used TFs to predict steady-state speed under constant voltage and load torque.
- ▶ Used this prediction to draw a steady-state torque-speed curve.
- Looked at stall torque and no-load speed.

We can represent the derived transfer functions using a block diagram.

We can represent the derived transfer functions using a block diagram.

We can choose the input signal $\hat{e}_i(s)$, but not $\hat{\tau}_L(s)$.

We can represent the derived transfer functions using a block diagram.

We can choose the input signal $\hat{e}_i(s)$, but not $\hat{\tau}_L(s)$.

Challenge: How do we ensure that $y(t) = \omega(t) \rightarrow \omega^*$, where ω^* is a desired steady speed?

ME 340 Intro. to Mech. Systems

We can represent the derived transfer functions using a block diagram.

We can choose the input signal $\hat{e}_i(s)$, but not $\hat{\tau}_L(s)$.

Challenge: How do we ensure that $y(t) = \omega(t) \rightarrow \omega^*$, where ω^* is a desired steady speed?

Applications: Electrical power tools, CNC Machines, quadrotor/drones, radio-controlled planes/cars

In hand-held power drills, we visually observe $\omega(t)$ and press a button to increase or decrease $\hat{e}_i(t)$

ME 340 Intro. to Mech. Systems

Feedback control is the automated version of this approach to regulating $\omega(t).$

Feedback control is the automated version of this approach to regulating $\omega(t).$

Feedback control is the automated version of this approach to regulating $\omega(t)$. $G_c(s)$ represents a **feedback control**.

ME 340 Intro. to Mech. Systems

Servo Loop

- $\hat{r}(s)$ is a reference signal
- $\hat{e}(s)$ is the error signal
- $\hat{u}(s)$ is the input or control signal
- $\hat{y}(s)$ is the output

Servo Loop

- $\hat{r}(s)$ is a reference signal
- $\hat{e}(s)$ is the error signal
- $\hat{u}(s)$ is the input or control signal
- $\hat{y}(s)$ is the output