
1 Stability Of A System

Consider the simple pendulum at its downward position, with
zero velocity. The ouput is the angle θ, which is zero as shown
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Figure 1: Pendulum in downward equilibrium position.

A quick sidewards tap on the mass is known as providing
an impulse. We’re sure that the pendulum moves away from
the downward position in response to the tap. But what will
happen in the long run? Here, we’re asking for the impulse
response of the simple pendulum.

For any input or initial conditions, there are three possible
behaviors of the impulse response yi(t) = L−1 {G(s)}:

1. yi(t) is unbounded (|yi(t)| → ∞)

2. yi(t) is bounded (We can find 0 < M < ∞ such that
|yi(t)| ≤ M for all t)

3. limt→∞ yi(t) = 0

We can use these three behaviors to define three notions of
stability:

Definition 1 (Unstable). G(s) is unstable (US) if its impulse
response is unbounded.

Definition 2 (Lyapunov Stable). G(s) is Lyapunov stable (LS)
if its impulse response is bounded.

Definition 3 (Asymptotically Stable). G(s) is asymptotically
stable (AS) if its impulse response satisfies limt→∞ yi(t) = 0.

Note: An asymptotically stable TF is Lyapunov stable. An
unstable system is not LS, and therefore not AS either.

Remark: Why are we interested in yi(t) → 0 instead of
yi(t) → a, where a ∕= 0? The answer is that we assume we
are interested in equilibria, and for a linear system, 0 is its
equilibrium.
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1.1 Stability and Poles of the Transfer Func-
tion

Let’s apply the notion of multiplicity of roots, first mentioned
in Laplace transforms, to the multiplicity of poles.

Definition 4 (Multiplicity). Let G(s) = β(s)/α(s).
If α(p) = 0,

lim
s→p

α(s)

(s− p)n
∕= 0, and lim

s→p

α(s)

(s− p)n−1
= 0,

then p is a pole of G(s) with multiplicity n.

Example 1. Let

G(s) =
1

(s− 2)(s− 1)2s3
.

Now, α(s) = (s− 2)(s− 1)2s3. By our definition above,

• p1 = 2 is a pole of G(s) with multiplicity 1

• p2 = 1 is a pole with multiplicity 2

• p3 = 0 is a pole with multiplicity 3

Fact: G(s) is asymptotically stable (AS) if and only if all its
poles are in the open left half plane (OLHP).

Fact: G(s) is Lyapunov stable (LS) if all its poles either

• are in the OLHP, or

• are on the imaginary axis (IA) with multiplicity 1.

Fact: G(s) is unstable (US) if has a pole

• in the open right half plane (OHRP), or

• on the IA with multiplicity greater than 1.

These facts above are one example of the idea studying G(s)
tells us something about the responses of a system to a given
set of inputs.

Example 2. Consider a system with transfer function G(s)
given by

G(s) =
s

s2 + 5s+ 6
. (1)

Classify the stability properties of this sytem.

Solution: The denominator polynomial is s2+5s+6. The
poles of G(s) are therefore the solutions (or, roots) of the equa-
tion s2+5s+6 = 0, which turn out to be p1 = −2, p2 = −3 (we
can also say p1 = −3, p2 = −2). The real part of both these
roots are in the OLHP, therefore G(s) is asymptotically stable.
Since G(s) is asymptotically stable (AS), it is also Lyapunov
stable (LS).

Example 3. Consider a system with transfer function G(s)
given by

G(s) =
s

s2 − 6s+ 5
. (2)

Classify the stability properties of this sytem.

Solution: The denominator polynomial is s2− 6s+5. The
poles of G(s) are therefore the solutions (or, roots) of the equa-
tion s2−6s+5 = 0, which turn out to be the complex conjugate
pair p1,2 = 3± j2. The real part of both these roots are strictly
positive, the poles are in the ORHP, therefore G(s) is unstable
(US).
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1.2 Initial and Final Value Theorems

In some case, we may only want to know the value of y(t) at
specific times of interest, and solving for y(t) using the inverse
Laplace transform is involved. For example, consider a sys-
tem that is stable, but not asymptotically stable. Then, y(t)
remains bounded, and if it approaches a constant value, we’d
like to know what that value is. We may be able to calcu-
late this value without ever solving for y(t). The Final Value
Theorem helps us do this.

1.2.1 Final Value Theorem

Let y(t) have the Laplace transform ŷ(s) (which could be a
response of the form G(s)û(s)). If the poles of ŷ(s) are in
the OLHP with the possible exception of a single pole at zero.
Then,

lim
t→∞

y(t) = lim
s→0

sŷ(s). (3)

1.2.2 Initial Value Theorem

A similar result let’s us know what the initial value is.

y(0) = lim
t→0

y(t) = lim
s→∞

sŷ(s). (4)

Example 4. Consider the response of a second order system
to a step input:

ŷstep(s) =
ω2
n

s(s2 + 2ξωns+ ω2
n)
,

where ξ > 0 Find the initial and final value of the response.
Solution:

ystep(0) = lim
s→∞

sŷstep(s) (5)

= lim
s→∞

s
ω2
n

s(s2 + 2ξωns+ ω2
n)

(6)

= lim
s→∞

ω2
n

s2 + 2ξωns+ ω2
n

(7)

= 0 (8)

Since ξ > 0, two poles are in the open left half plane, and
one on the imaginary axis. Therefore, we may use the FVT to
calcluate ystep(∞).

ystep(∞) = lim
s→0

sŷ(s) (9)

= lim
s→0

s
ω2
n

s(s2 + 2ξωns+ ω2
n)

(10)

= lim
s→0

ω2
n

s2 + 2ξωns+ ω2
n

(11)

= 1 (12)

If we have a mass-spring-damper at equilibrium, and apply a
step input force f(t) on the mass, the response of the position
of the mass y = q is

ŷ(s) =
1

(ms2 + cs+ k)

1

s
=⇒ ystep(∞) =

1

k
(13)

We’ve just shown that a stiffer spring (higher k) reduces the
distance (smaller 1/k) by which a constant force (step input
f(t)) moves the resting position (0 → 1

k
).
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